Solutions for Homework 1

March 22, 2005

Question 1 Prove the Tutte-Berge Formula.
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Proof: For any subset U C V, we have
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v(G) < |U|+0(G-U) <|U|+ %(IV \ Ul +4(U))

Hence, we are done if we show the reverse inequality. We can prove this by induction on |V].
First note that we can assume G is connected otherwise we can apply induction to each connected
component of G. The case |V| = ¢ is trivial. If a graph G of order n is the smallest counter-
example, there are two unmatched vertices u,v € G. Select a matching M and the unmatched
vertices u, v such that the distance between u and v is minimized. If dist(u,v) = 1, we can augment
the matching M. Hence assume dist(u,v) > 1. There exists a matching N that misses a vertex
t on the u — v path. Select such a matching such that |M N N| is maximized. By minimiality of
dist(u,v), we it follows that N covers v and v. Since both M and N are maximum size matching,
there exists a vertex x covered by M but not by N. Let z € e = zy € M. Then y is covered by some
edge f € N. But (N \ {f})U{e} is a maximum matching that has a larger intersection with M, a
contradiction.(Source : Schirjver’s notes. http://homepages.cwi.nl/~lex/files/tutteb.pdf) O

Question 2 Let G = (V, E) be a graph. An edge cover of G = (V, E) is a set of edges F' C E such
that for every vertex v € V there exists an edge in F' incident on v. Let p(G) denote the size of a
smallest edge cover in G and let ¥(G) denote the size of a largest matching in G. Prove that for
any graph G = (V, E) with no isolated vertices, |V| = v(G) + p(G)

Proof: Let M be a matching of size v(G). For each of the |V| — 2| M| vertices v missed by M, add
to M an edge covering v. We obtain an edge cover of size |V|—2|M|+|M| = |V|—-|M]| = |V|-v(G).
Hence, p(G) < |V|—v(G). If F is an edge cover of size p(G), for each v € V delete dp(v) — 1 edges
incident on v, where dr(v) is the degree of v in the graph induced by F. We obtain a matching
of size at least |[F| — > cy(dp(v) — 1) = |F| = (2|F| — |V|) = |[V| = |F| < |V| — p(G). Hence,
v(G) > |V] — p(G). (Source : http://homepages.cwi.nl/~lex/files/agtco.pdf) O

Question 3 Exercise 1, Chapter 2, page 40. To show that if a matching M of a bipartite graph G
is suboptimal, there exists an M-augmenting path in G.

Proof: Let N be a matching of G of size larger than M. Let H = (V,M @ N). It follows that
each vertex of H has degree at most 2. Furthur, each component is either a path or a cycle. Since



|N| > |M]|, there must be an odd path with more edges from N than M and this is an augmenting
path of M. O

Question 4 Exercise 18, Chapter 3, page 64. Find a bipartite graph G with partition classes A
and B such that for H = G[A], there are at most A (H) edge-disjoint H-paths in G.
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Figure 1: An example where there is only one edge-disjoint H-path, but Ag(H) = 2

Question 5 Consider the following flow network with capacities 1, R, and M. Assume that
M > 4 is an integer and R = (/5 — 1)/2. We will show that there is an infinite sequence of
augmentations possible for this network.

1. Let ag =1, a1 = R, and ap19 = ayp — anp41 for any n > 0. Show by induction that a, = R™.

Proof: By induction. a2 = a1 —ay = 1 - R = R?. Assume true for a,_1,a,_2, then
an=0pn o—a, 1 =R"2-R"!'=R"%1-R)=R" 0

2. Start with an initial flow f that assigns 1 unit of flow to edges (s,c¢),(c,b) and (b,t) and 0
units everywhere else. Now notice that the residual capacities of edges (c,d) and (a,b), are
ag and a; and the residual capacity of (b,c) = 1. Describe a sequence of 4 augmentations
after which the residual capacities of edges (c,d), (a,b) and (b,c) are as =1 — R,a3 =2R—1
and 1 respectively.

Solution : Four iterations :

(a) Send R units of flow along the path P; = sabcdt. Now the residual capacities of the
edges on P are (s,a) = M — R, (b,a) = R, (b,c) =1—R,(¢,d) =1—R,(d,t) = M — R.

(b) Send R units of flow along the path P, = scbat. The residual capacities of the edges on
P, are (s,c) =M —1—R,(b,c) =1,(a,b) = R, (a,t) = M — R.

(c) Send R? units of flow along the path P; = sabcdt. Now the residual capacities of the
edges on P; are (s,a) = M — (R + R?),(a,b) = R3,(b,c) =1— R%,(c,d) =1— (R+
RZ)a (da t) =M - (R + RQ)

(d) Send R? units of flow along the path P3 = sdcbt. The residual capacities of the edges
along P3 become (s,d) = M — R% (c,d) = R?,(b,c) = 1,(b,t) = M — 1 — R2.



3. Call the sequence of 4 augmentations described in (2) a round. Generalize your solution
to (2) and show a sequence of of n rounds after which the residual capacities of the edges
(¢c,d), (a,b) and (b, c) are respectively agy,, aop+1, and 1. What is the value of the flow at this
point 7 What is the limiting value of the flow as n — o0 ?

Solution :

For :=1 to n do
1. send R*!=ay | units of flow through P;

2. send R* ! =gy ; units of flow through P,
3. send R% = ag; units of flow through P;
4. send R% = ay units of flow through P;
5. 1+1+1
End For

From the solution to the previous question we know that the residual capacities of edges
((c,d), (a,b), (b,c)) are respectively (a9, a3, 1) at the end of round 1. Assume that the claim
holds for rounds 7 < n. Hence, the residual capacities of ((c,d), (a,b), (b,c)) are respectively
(a2n,a2n+1,1). Consider the execution of round n + 1.

e Send agy,+1 units of flow through P;. The residual capacities become (aop, —a2on 11, @2n+1—
a1, 1 — agnq1).

e Send agp 1 units of flow through P3. The residual capacities become (agp+2,Gon+1,1).

e Send a9y, o units of flow through P;. The residual capacities become (agp+2—a2n42, G2n+1—
a2n 12,1 — azny2).

e Send a9y o units of flow through P3. The residual capacities become (agy 12, a2,43,1).

as required.

The value of the flow after n rounds is

n 2n
1—{—22(0,2”_14-&2”) = 1+220,i
i=1 i=1
= 14 2a;+ 2[(&0 — a1) + (a1 — a2) + -+ (a2n72 — a2n,1)]
1+2R+ 2(0,() — G/Qn_l)
= 3 + 2R — 2a2n_1

The limiting value of this flow as n — oo is 3 + 2R = 3 + (v/5 — 1) ~ 4.23 However, the
optimum flow in the network is clearly 2M + 1, and for M > 4, the optimum value of the
flow is atleast 9. Hence, the Ford-Fulkerson algorithm does not converge to an optimum flow.
(Read More about it in : http://www.cs.tau.ac.il/~zwick/papers/flow.ps.gz)

Question 6 Suppose G is an r-connected graph of even order having no Ki,41 as an induced
subgraph. Prove that G has a 1-factor.



Proof: We will show that Tutte’s condition holds and hence G has a 1-factor. Tutte’s condition
states that VS C V, if | S| > ¢(G — S) holds, then G has a 1-factor. Here ¢(G — S) is the number of
odd components in G—S. Since G is r-connected, we only need to consider subsets S where |S| > r,
otherwise G remains connected. For a given subset S, let Cy,---,C,, be the odd components of
G — S. Since G is r-connected it follows that there are at least r edges from each C; to distinct
vertices of S. Hence there are at least mr edges crossing S. If m > | S| there are |S| vertices which
have at least mr > r|S| edges adjacent to them. Hence, must be at least one vertex with r + 1
edges from distinct odd components which yields an induced K ,41. Hence, m < |S| and Tutte’s
condition holds. O

Question 7 Let A = (Ai,---,A.,) be a collection of subsets of a set Y. A system of distinct
representatives (SDR) for A is a set of distinct elements a1, -, an, in Y such that a; € A;. Prove
that A has an SDR iff | Ujes A;| > |S| for all S C {1,---,m}.

Proof: Consider the following bipartite graph H = (A,Y, E) where (A;,z) € E iff z € A;. Now
the result follows from application of Hall’s theorem on this graph. O

Question 8 Let N = (G, s,t,¢) be a flow-network and suppose (S, S) and (T, T) are two minimum
capacity cuts of N. Recall that if (A, A) is a cut of N, then s € A and t € S. Prove that
(SUT,SUT) and (SNT,SNT) are also a minimum cuts of N.

Proof: If S CT or T C S, the result is trivial. Hence, assume this is not the case. Let us define
the following sets.

| (z,y) € (S,8) N (T, T)}
|z eSyeSUT}—-X
|z €eT,ye SUT} - X
|z € S,yeSNT}
|z eT,ye SNT}
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Now, we can express (S,S) and (T,T) in terms of these sets.

($,S)=A+C+X
(I,T)=B+D+X

Hence,

(S$,8)+(I,\T) = A+B+C+D+2-X
= (A+B+X)+(C+D+X)
= (SUT,SUT)+(SNT,SNT)

Since (S, S) and (T, T) are min-cuts of the graph, equality is achieved only when the values of both
cuts on the RHS of the equation above are equal to the min-cost cut. O



