Solutions for Homework 1

March 22, 2005

Question 1 Prove the Tutte-Berge Formula.

$$v(G) = min_{U \subseteq V} rac{|V| + |U| - q(U)}{2}$$

Proof: For any subset $U \subseteq V$, we have

$$v(G) \leq |U| + v(G - U) \leq |U| + \frac{1}{2}(|V \setminus U| + q(U)) = \frac{|V| + |U| - q(U)}{2}$$

Hence, we are done if we show the reverse inequality. We can prove this by induction on |V|. First note that we can assume G is connected otherwise we can apply induction to each connected component of G. The case $|V| = \phi$ is trivial. If a graph G of order n is the smallest counterexample, there are two unmatched vertices $u, v \in G$. Select a matching M and the unmatched vertices u, v such that the distance between u and v is minimized. If dist(u, v) = 1, we can augment the matching M. Hence assume dist(u, v) > 1. There exists a matching N that misses a vertex v on the v path. Select such a matching such that v is maximized. By minimiality of v distv is distv, we it follows that v covers v and v. Since both v and v are maximum size matching, there exists a vertex v covered by v but not by v. Let v is v if v is covered by some edge v distance between v and v is a maximum matching that has a larger intersection with v and v contradiction. (Source: Schirjver's notes. http://homepages.cwi.nl/v-lex/files/tutteb.pdf)

Question 2 Let G = (V, E) be a graph. An edge cover of G = (V, E) is a set of edges $F \subseteq E$ such that for every vertex $v \in V$ there exists an edge in F incident on v. Let $\rho(G)$ denote the size of a smallest edge cover in G and let $\nu(G)$ denote the size of a largest matching in G. Prove that for any graph G = (V, E) with no isolated vertices, $|V| = \nu(G) + \rho(G)$

Proof: Let M be a matching of size $\nu(G)$. For each of the |V|-2|M| vertices v missed by M, add to M an edge covering v. We obtain an edge cover of size $|V|-2|M|+|M|=|V|-|M|=|V|-\nu(G)$. Hence, $\rho(G) \leq |V|-\nu(G)$. If F is an edge cover of size $\rho(G)$, for each $v \in V$ delete $d_F(v)-1$ edges incident on v, where $d_F(v)$ is the degree of v in the graph induced by F. We obtain a matching of size at least $|F|-\sum_{v\in V}(d_F(v)-1)=|F|-(2|F|-|V|)=|V|-|F|\leq |V|-\rho(G)$. Hence, $\nu(G) \geq |V|-\rho(G)$. (Source: http://homepages.cwi.nl/ \sim lex/files/agtco.pdf)

Question 3 Exercise 1, Chapter 2, page 40. To show that if a matching M of a bipartite graph G is suboptimal, there exists an M-augmenting path in G.

Proof: Let N be a matching of G of size larger than M. Let $H = (V, M \oplus N)$. It follows that each vertex of H has degree at most 2. Furthur, each component is either a path or a cycle. Since

|N| > |M|, there must be an odd path with more edges from N than M and this is an augmenting path of M.

Question 4 Exercise 18, Chapter 3, page 64. Find a bipartite graph G with partition classes A and B such that for H = G[A], there are at most $\frac{1}{2}\lambda_G(H)$ edge-disjoint H-paths in G.

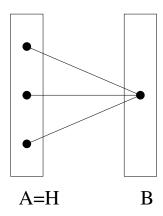


Figure 1: An example where there is only one edge-disjoint H-path, but $\lambda_G(H)=2$

Question 5 Consider the following flow network with capacities 1, R, and M. Assume that $M \geq 4$ is an integer and $R = (\sqrt{5} - 1)/2$. We will show that there is an infinite sequence of augmentations possible for this network.

- 1. Let $a_0 = 1$, $a_1 = R$, and $a_{n+2} = a_n a_{n+1}$ for any $n \ge 0$. Show by induction that $a_n = R^n$.

 Proof: By induction. $a_2 = a_1 a_0 = 1 R = R^2$. Assume true for a_{n-1}, a_{n-2} , then $a_n = a_{n-2} a_{n-1} = R^{n-2} R^{n-1} = R^{n-2}(1-R) = R^n$.
- 2. Start with an initial flow f that assigns 1 unit of flow to edges (s, c), (c, b) and (b, t) and 0 units everywhere else. Now notice that the residual capacities of edges (c, d) and (a, b), are a_0 and a_1 and the residual capacity of (b, c) = 1. Describe a sequence of 4 augmentations after which the residual capacities of edges (c, d), (a, b) and (b, c) are $a_2 = 1 R$, $a_3 = 2R 1$ and 1 respectively.

Solution: Four iterations:

- (a) Send R units of flow along the path $P_1 = sabcdt$. Now the residual capacities of the edges on P_1 are (s, a) = M R, (b, a) = R, (b, c) = 1 R, (c, d) = 1 R, (d, t) = M R.
- (b) Send R units of flow along the path $P_2 = scbat$. The residual capacities of the edges on P_2 are (s,c) = M-1-R, (b,c) = 1, (a,b) = R, (a,t) = M-R.
- (c) Send R^2 units of flow along the path $P_1 = sabcdt$. Now the residual capacities of the edges on P_1 are $(s,a) = M (R+R^2), (a,b) = R^3, (b,c) = 1 R^2, (c,d) = 1 (R+R^2), (d,t) = M (R+R^2).$
- (d) Send R^2 units of flow along the path $P_3 = sdcbt$. The residual capacities of the edges along P_3 become $(s, d) = M R^2$, $(c, d) = R^2$, (b, c) = 1, $(b, t) = M 1 R^2$.

3. Call the sequence of 4 augmentations described in (2) a round. Generalize your solution to (2) and show a sequence of n rounds after which the residual capacities of the edges (c,d),(a,b) and (b,c) are respectively a_{2n},a_{2n+1} , and 1. What is the value of the flow at this point? What is the limiting value of the flow as $n \to \infty$?

Solution:

```
For i=1 to n do 1.\quad \text{send } R^{2i-1}=a_{2i-1} \text{ units of flow through } P_1 2.\quad \text{send } R^{2i-1}=a_{2i-1} \text{ units of flow through } P_2 3.\quad \text{send } R^{2i}=a_{2i} \text{ units of flow through } P_1 4.\quad \text{send } R^{2i}=a_{2i} \text{ units of flow through } P_3 5.\quad i\leftarrow i+1 End For
```

From the solution to the previous question we know that the residual capacities of edges ((c,d),(a,b),(b,c)) are respectively $(a_2,a_3,1)$ at the end of round 1. Assume that the claim holds for rounds $i \leq n$. Hence, the residual capacities of ((c,d),(a,b),(b,c)) are respectively $(a_{2n},a_{2n+1},1)$. Consider the execution of round n+1.

- Send a_{2n+1} units of flow through P_1 . The residual capacities become $(a_{2n}-a_{2n+1}, a_{2n+1}-a_{2n+1}, 1-a_{2n+1})$.
- Send a_{2n+1} units of flow through P_3 . The residual capacities become $(a_{2n+2}, a_{2n+1}, 1)$.
- Send a_{2n+2} units of flow through P_1 . The residual capacities become $(a_{2n+2}-a_{2n+2}, a_{2n+1}-a_{2n+2}, 1-a_{2n+2})$.
- Send a_{2n+2} units of flow through P_3 . The residual capacities become $(a_{2n+2}, a_{2n+3}, 1)$.

as required.

The value of the flow after n rounds is

$$1 + 2\sum_{i=1}^{n} (a_{2n-1} + a_{2n}) = 1 + 2\sum_{i=1}^{2n} a_i$$

$$= 1 + 2a_1 + 2[(a_0 - a_1) + (a_1 - a_2) + \dots + (a_{2n-2} - a_{2n-1})]$$

$$= 1 + 2R + 2(a_0 - a_{2n-1})$$

$$= 3 + 2R - 2a_{2n-1}$$

The limiting value of this flow as $n \to \infty$ is $3 + 2R = 3 + (\sqrt{5} - 1) \approx 4.23$ However, the optimum flow in the network is clearly 2M + 1, and for $M \ge 4$, the optimum value of the flow is at least 9. Hence, the Ford-Fulkerson algorithm does not converge to an optimum flow. (Read More about it in: http://www.cs.tau.ac.il/~zwick/papers/flow.ps.gz)

Question 6 Suppose G is an r-connected graph of even order having no $K_{1,r+1}$ as an induced subgraph. Prove that G has a 1-factor.

Proof: We will show that Tutte's condition holds and hence G has a 1-factor. Tutte's condition states that $\forall S \subseteq V$, if $|S| \geq q(G-S)$ holds, then G has a 1-factor. Here q(G-S) is the number of odd components in G-S. Since G is r-connected, we only need to consider subsets S where $|S| \geq r$, otherwise G remains connected. For a given subset S, let C_1, \dots, C_m be the odd components of G-S. Since G is r-connected it follows that there are at least r edges from each C_i to distinct vertices of S. Hence there are at least mr edges crossing S. If m > |S| there are |S| vertices which have at least mr > r|S| edges adjacent to them. Hence, must be at least one vertex with r+1 edges from distinct odd components which yields an induced $K_{1,r+1}$. Hence, $m \leq |S|$ and Tutte's condition holds. \square

Question 7 Let $A = (A_1, \dots, A_m)$ be a collection of subsets of a set Y. A system of distinct representatives (SDR) for A is a set of distinct elements a_1, \dots, a_m in Y such that $a_i \in A_i$. Prove that A has an SDR iff $|\bigcup_{i \in S} A_i| \geq |S|$ for all $S \subseteq \{1, \dots, m\}$.

Proof: Consider the following bipartite graph H = (A, Y, E) where $(A_i, x) \in E$ iff $x \in A_i$. Now the result follows from application of Hall's theorem on this graph.

Question 8 Let N = (G, s, t, c) be a flow-network and suppose (S, \overline{S}) and (T, \overline{T}) are two minimum capacity cuts of N. Recall that if (A, \overline{A}) is a cut of N, then $s \in A$ and $t \in \overline{S}$. Prove that $(S \cup T, \overline{S \cup T})$ and $(S \cap T, \overline{S \cap T})$ are also a minimum cuts of N.

Proof: If $S \subseteq T$ or $T \subseteq S$, the result is trivial. Hence, assume this is not the case. Let us define the following sets.

$$\begin{array}{lll} X & = & \{(x,y) \mid (x,y) \in (S,\overline{S}) \cap (T,\overline{T})\} \\ A & = & \{(x,y) \mid x \in S, y \in \overline{S \cup T}\} - X \\ B & = & \{(x,y) \mid x \in T, y \in \overline{S \cup T}\} - X \\ C & = & \{(x,y) \mid x \in S, y \in \overline{S} \cap T\} \\ D & = & \{(x,y) \mid x \in T, y \in S \cap \overline{T}\} \end{array}$$

Now, we can express (S, \overline{S}) and (T, \overline{T}) in terms of these sets.

$$(S, \overline{S}) = A + C + X$$

 $(T, \overline{T}) = B + D + X$

Hence,

$$\begin{array}{rcl} (S,\overline{S}) + (T,\overline{T}) & = & A+B+C+D+2\cdot X \\ & = & (A+B+X) + (C+D+X) \\ & = & (S\cup T,\overline{S\cup T}) + (S\cap T,\overline{S\cap T}) \end{array}$$

Since (S, \overline{S}) and (T, \overline{T}) are min-cuts of the graph, equality is achieved only when the values of both cuts on the RHS of the equation above are equal to the min-cost cut.