
22C:137/22M:152 Midterm Exam Solutions

Notes: (a) Solve all 4 problems listed below. (b) You are not to discuss these problems with
your classmates or anyone else. You are also not allowed to use any sources other than the
textbook, Schrijver’s notes, and your notes from my lectures. (c) You are welcome to see me
during my office hours 2-3 on Wednesday, or set up an alternate time to meet, or ask questions
by e-mail. (d) Each problem is worth 50 points.

1. Suppose G = (X,Y,E) is a bipartite graph. Let H be the graph obtained from G by
adding one vertex to Y if |G| is odd and then adding the edges of a clique on the vertices
in Y .

(i) Prove that G has a matching of size |X| iff H has a 1-factor.

(ii) Prove that if G satisfies Hall’s condition, that is, |N(S)| ≥ |S| for all S ⊆ X, then
H satisfies Tutte’s condition, which is that, q(H − T ) ≤ |T | for all T ⊆ V (H).

(iii) Use items (i) and (ii) to derive Hall’s theorem from Tutte’s theorem.

Solution to 1(i): If G has a matching of size X and let M be such a matching. Then
|X| vertices in Y are matched by M , leaving |Y | − |X| vertices in Y unmatched. Since
|H| is even, |Y | − |X| is even and since H[Y ] is a clique we can pick a matching M ′ of
vertices in Y not matched by M . M ∪M ′ is a 1-factor of H.

If H has a 1-factor, say M then the maximal subset MX ⊆M of edges incident on X is
a matching of X in G.

Solution to 1(ii): Suppose H violates Tutte’s condition, i.e., q(H − T ) > |T | for some
T ⊆ V (H). Since Y ⊆ V (H) is a clique, one of the components C in H − T contains all
of Y −T and the remanining components are singletons from X. Let k be the number of
singletons in H−T . Then, q(H−T ) = k+1, if |C| is odd, and q(H−T ) = k, otherwise.
If |C| is even, then q(H − T ) ≤ |T | from Hall’s theorem.

On the other hand, if |C| is odd, then V (H) = |T |+k+ |C|. Since |V (H)| is even and |C|
is odd, |T |+k must be odd. Since q(H−T ) = k+1 > |T |, k ≥ |T |. The fact that |T |+k
is odd rules out k = |T | ⇒ k > |T |. Let S be this set of k vertices. Then N(S) ⊆ T ∩ Y
and therefore |N(S)| ≤ |T ∩ Y | ≤ |T | < k = |S| violating Hall’s condition.

Solution to 1(iii): Suppose ∀ S ⊆ X, |N(S)| ≥ |S|. Then, by (iii) H satisfies Tutte’s
condition and therefore has a 1-factor. By (i) this implies that G has a matching of X.

2. (i) Prove that κ′(G) = κ(G) if G is a 3-regular simple graph. (ii) Find with proof the
smallest 3-regular graph with connectivity 1. (iii) Use this to obtain a simple proof that
the Petersen graph is 3-connected.

Solution to 2(i) : κ(G) ≤ κ′(G) always. We now show that κ(G) ≥ κ′(G). Let
t = κ′(G). Then for any pair of vertices, u, v ∈ V (G), {u, v} 6∈ E(G), there are t edge
disjoint paths between u and v. If two of these paths share a vertex w, w 6∈ {u, v}, then
degree(w) ≥ 4 which is impossible since G is 3-regular. Therefore, there are t internally



vertex disjoint paths between u and v. Since the choice of u and v is arbitrary, it follows
that κ(G) ≥ t.

Solution to 2(ii) : If κ(G) = 1, then by (i), κ′(G) = 1. Therefore, G has a bridge. Let
e be a bridge in G. G− e has two connected components, call these H1 and H2. H1 has
one vertex with degree 2 and the rest of degree 3. Since H1 has one degree 2 vertex, it
has at least three vertices. Hence it has at least one degree 3 vertex. This means that it
has at least 4 vertices. Can H1 have one degree 2 vertex and 3 degree 3 vertices ? No,
because a graph has an even number of odd degree vertices. Hence, |H1| ≥ 5. Similarly,
|H2| ≥ 5 and therefore |G| ≥ 10. One example of a 3-regular 10-vertex graph G with
κ(G) = 1 is shown in Figure 1.

Figure 1: An example of the smallest 3-regular graph which is 1-connected

Solution to 2(iii) : Consider the labelling of the Petersen graph as shown in Figure 2.
Let A = {a1, · · · , a5} and B = {b1, · · · , b5}. Note that G[A] and G[B] are both 5-cycles.
For any vertices ai, aj , i 6= j, there are two edge-disjoint ai − aj paths in G[A] because
G[A] is a cycle. Also, let pij be a path between bi and bj in G[B]. Then ai− pij − aj is a
path that is edge disjoint from any path in G[A]. Hence, there are at least 3 edge-disjoint
ai − aj paths in G. The same argument holds for vertices bi and bj , i 6= j.

Now consider a pair ai, bj . Let p
A
ij be a shortest ai − aj path in G[A] and let p

B
ij be a

shortest bi − bj path in G[B]. Since G[A] and G[B] are 5-cycles, |p
A
ij | ≤ 2 and |p

B
ij | ≤ 2.

Therefore, there exists k ∈ {1, · · · , 5} k 6= i and k 6= j such that pA
ij is not incident

on ak and pB
ij is not incident on bk. Let q

A be an ai − ak path in G[A] that is edge-

disjoint from pA
ij and let q

B be a bk − bj path in G[B] edge-disjoint from pB
ij . Then

ai − bi − pB
ij , ai − pA

ij − bj and ai − qA − ak − bk − qB are 3 edge-disjoint ai − bj paths.
Since κ′(G) = 3⇒ κ(G) = 3.

3. Let X be a finite set and let r : 2X → Z.

(i) Show that if r = rM for some matroid M on X then r satisfies the following
conditions:

(a) 0 ≤ r(Y ) ≤ |Y | for each subset Y of X;

(b) r(Z) ≤ r(Y ) whenever Z ⊆ Y ⊆ X;

(c) r(Y ∩ Z) + r(Y ∪ Z) ≤ r(Y ) + r(Z) for all Y,Z ⊆ X.

(ii) Now show the converse: Suppose that r : 2X → Z satisfies conditions (a)-(c). Let
I = {Y ⊆ X | r(Y ) = |Y |}. Show that M = (X, I) is a matroid.
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Figure 2: The petersen graph and a labelling

Solution to 3(i): (a) For any Y ⊆ X, rM (Y ) is the common size of an inclusion-wise
maximal independent subset of Y . Since φ is an independent set, rM (Y ) is always defined
and rM (Y ) ≥ 0. The size of any subset of Y is at most Y and therefore rM (Y ) ≤ |Y |.
(b) Let B be a basis of Z. Then rM (Z) = |B|. Since Z ⊆ Y , it follows that B ⊆ Y .
Furthermore, since B is independent rM (Y ) ≥ |B| = rM (Z).
(c) Let B1 be a basis of Y ∩ Z. Let B2 be a basis of Y ∪ Z that contains B1. Note that
B2 ∩ (Y ∩ Z) = B1, otherwise Y ∩ Z would contain an independent set larger than B1

— which is not possible. Therefore, B2 can be partitioned into BY , BZ , and B1 where
BY ⊆ Y − Z and BZ ⊆ Z − Y . Therefore, r(Y ∩ Z) + r(Y ∪ Z) = |BY |+ |BZ |+ 2|B1|.
Since BY ∪B1 ⊆ B2, BY ∪B1 is an indendent set (contained in Y ) and therefore r(Y ) ≥
|BY |+ |B1|. Similarly, r(Z) ≥ |BZ |+ |B1|. Therefore, r(Y )+r(Z) ≥ |BY |+ |BZ |+2|B1|.

Solution to 3(ii): We show that M = (X, I) is a matroid by showing that the three
axioms of a matroid are satisfied.

Axiom 1. From (a) it follows that 0 ≤ r(φ) ≤ |φ| = 0 and therefore φ ∈ I.

Axiom 2. Let Y ⊆ X be an independent set and let Z ⊆ Y be arbitrary. From (b) it
follows that r(Z) ≤ |Z|. If r(Z) = |Z| then Z ∈ I and we are done. So we assume
that r(Z) < |Z|. Then

r((Y − Z) ∩ Z) + r((Y − Z) ∪ Z) = r(φ) + r(Y ) = |Y |.

Also,
r(Y − Z) + r(Z) < |Y − Z|+ |Z| = |Y |.

From (c) we have that

r((Y − Z) ∩ Z) + r((Y − Z) ∪ Z) ≤ r(Y − Z) + r(Z),

but this implies that |Y | < |Y |, a contradiction.

Axiom 3. Let Y,Z ∈ I such that |Y | < |Z|. If there is an x ∈ Z − Y such that
Y ∪ {x} ∈ I, we are done. So we assume that for all x ∈ Z − Y , Y ∪ {x} is not an
independent set. (a) implies that r(Y ∪ {x}) ≤ |Y | + 1. Since Y ∪ {x} is not an
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independent set, r(Y ∪ {x}) ≤ |Y |. Furthermore, (b) implies that r(Y ∪ {x}) ≥ |Y |
and hence r(Y ∪{x}) = |Y |. Now consider any subset S ⊆ Z−X. We will show by
induction on |S| that r(Y ∪S) = |Y |. We have already shown this for all S ⊆ Z−X
with |S| = 1. So suppose that S ⊆ Z −X with |S| ≥ 2 and let x and y be distinct
elements in S. Let A = Y ∪ (S − {x}) and B = Y ∪ (S − {y}). Then,

r(A ∪B) + r(A ∩B) = r(Y ∪ S) + r(Y ∪ (S − {x, y}) ≤ r(Y ∪ S) + |Y |.

The last inequality follows from the induction hypothesis. Also,

r(A) + r(B) = r(Y ∪ (S − {x})) + r(Y ∪ (S − {y})) = 2|Y |.

The last equality follows from the induction hypothesis. Using (c) we get that
r(Y ∪S) ≤ |Y |. Using (b) we get that r(Y ∪S) ≥ |Y |, which implies that r(Y ∪S) =
|Y |.

Now let S = Z−Y . Then r(Y ∪S) = |Y | by the above argument. Also, r(Y ∪S) =
r(Z) = |Z| since Z is an independent set. However, |Y | < |Z| and so we have a
contradiction.
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