Limits of Computation: Problem Session 2 and hints for Homework 2

Rajiv Raman

February 28, 2007

1. (Problem 5.12) Let $E = \{ \langle M \rangle | M \text{ is a single-tape TM which ever writes a blank symbol over a non-blank symbol on any input} \}$. We show that A_{TM} reduces to E. Assume for the sake of conradiction that E is decidable, and let R be a TM that decides E. We can use R to construct a TM S that decides A_{TM} . The TM S works as follows:

TM S: On input $\langle M, w \rangle$

1. Use M and w to construct TM T_w .

TM T_w : On any input

- a. Simulate M on w. Use symbol \sqcup' instead of \sqcup when writing and treat it like \sqcup when reading.
- b. If M accepts, write a true blank symbol.
- 2. Run R on $\langle T_w \rangle$ to determine whether T_w ever writes a blank.
- 3. If R accepts, M accepts w, therefore accept. Otherwise reject.
- 2. (Problem 5.13) Use the universal turing machine described in the textbook.
- 3. (Problem 5.14) Let $L_{TM} = \{ \langle M, w \rangle | M \text{ on } w \text{ tries moving it's head left}$ from the leftmost cell, at some point in it's computation}. Assume to the contrary that TM R decides L_{TM} . Construct a TM S that uses R to decide A_{TM} .

TM S: On input $\langle M, w \rangle$

1. Convert M to M', where M' first moves it's input over one square to the right, and writes a new symbol \$ on the leftmost tape cell. Then M' simulates M on the input.

If M' ever sees a \$, then M' moves it's head one square to the right and remains in the same state. If M accepts, M' moves it's head all the way to the left and then moves left off the leftmost tape cell.

- 2. Run R on < M', w >.
- 3. If R accepts, accept. If R rejects, reject.
- 4. (Problem 5.15) Consider the length of the shortest computation path of a TM that would result in a left move. You can use this to design a TM that decides the language.
- 5. (Problem 5.17) Try to find the conditions under which dominos with a unary alphabet can form a match. Use this observation to design a TM that decides PCP over a unary alphabet.
- 6. (Problem 5.19) Any match for SPCP starts with a domino that has two equal strings, and therefore is a match all by itself. So we only need to check whether the input contains a domino that has two equal strings. If so, *accept*, else *reject*.
- 7. (Problem 5.33) We need to show two reductions. The first to show S is not turing recognizable, reduce A_{TM} to \overline{S} , and similarly to show \overline{S} is not turing recognizable, reduce A_{TM} to S.
- 8. (Problem 5.35) Design a TM that decides X... or show that X is not decidable by reducing any undecidable problem to X.