
Limits of Computation : HW 1 Solutions and
other problems

Rajiv Raman

February 23, 2007

1 Homework 1

1. We need to show that a turing machine with a doubly infinite tape, D is
equivalent to an ordinary turing machine, M. In order to show equivalence
between D and M, we need to show two things. First that any language L
that can be recognized by M can be recognized by D as well, and second
that any language L’ that can be recognized by D can be recognized by M.
We can show this by simulation. i.e., simulate D to behave exactly like M
and vice-versa.

In this case, this first part i.e., simulating M by D is fairly straightforward.
Mark the left hand end of the input of D and prevent it from moving it’s
head to the left of this mark.

To show the other direction, that we can simulate D with M, we can do one
of two things.

(a) Mark the end of the input of M with a special marker, and treat the
tape to the right of this marker as a the tape to the left of the input of
D. When D moves to the left of the input, M moves to the right of the
marker. When D writes to the right of the input, we shift the contents
of M’s tape, from the marker onwards to the right end of the tape, one
cell to the right.

(b) M uses two tapes. The first tape represents the input and the part of
the tape of D to the right of the input and the second tape represents
the part of the tape of D to the left of the input. When D writes to
the left of the input, M writes on the second tape and when D writes
on the part of the input or to the right of the input, M writes on the
first tape. The portion of the tape of D to the left of the input appears

1

in reverse order on the second tape. Since we know that 2-tape turing
machines are equivalent to 1-tape turing machines, we are done.

It is clear in either case that M simulates D.

2. In this problem, we need to show that a turing machine R with only RIGHT
and RESET moves is equivalent to an ordinary turing machine M.

Again, one direction is straight forward. M simulates R as follows. When
R moves RIGHT, M does the same. When R does a RESET, M moves it’s
tape head all the way to the left end of the input.

The second part, that R simulates M can be shown as follows. When M
moves it’s head RIGHT, R does the same. When M moves left, R cannot
but gets the same effect by doing the following :

(a) R marks the current head location on the tape

(b) Resets and copies the entire tape one cell to the right, except for the
mark which is kept on the same tape cell.

(c) R resets again and scans RIGHT until it finds the cell with the mark.

3. The language accepted by the machine are all strings starting with a 0.
Consider any input string starting with a 1. The TM can only move from q0

to q4, the reject state on encountering a 1. Hence, all computation paths will
reject. Now consider an input string starting with a 0. On each computation
path, the TM does one of the following :

(a) Converts the 0 to a 1, moves RIGHT and to state q1, or

(b) Converts the 0 to a 1, moves RIGHT and stays in state q0.

Hence, there is one computation path that stays at q0 converting the 0’s to
1’s and moving RIGHT until just before the first 1 is encountered, when it
moves to state q1. On q1, the machine can convert the 1 to 0, move the head
LEFT and go to state q2. On q2, since the current cell contains a 1, moves
to q0 and moves RIGHT. Here, the 1 was converted to 0 and has the effect
of a string starting with a 0. This gives us a method to convert the 1 to a
0 if it is not (unless the string starts with a 1) and move to the start state,
in effect dealing with a smaller string starting with a 0. Now at the end of
the input, the control moves to state q1 where, upon seeing a B, moves to
the accept state. Thus, the languages accepted by the TM are all strings
starting with a 0.

2

4. This problem again asks to prove equivalence between a 2-dimensional turing
machine, N and an ordinary TM, M. So we need to show two things : How
N can simulate M and M can simulate N.

The first part again is straightforward. N just doesn’t use the UP and DOWN
moves thus simulating a single dimensional turing machine with a doubly
infinite tape. This has been shown equivalent to M in Problem 1, and hence
we are done.

To show the second part, one approach is the following. Place a special end
of row marker “#” at both ends of the input. This corresponds to the input
row. All other cells are empty. We show how we simulate each of the moves
of N using M.

(a) RIGHT/LEFT : When N moves RIGHT by one cell, M does as well,
unless it reaches an end of row marker “#”. In this case, we expand
each row of M by one cell to the right, namely mark the current tape
position, rewind to the start of the tape, and move RIGHT. When an
end of row marker is encountered, move all tape contents one cell to
the RIGHT. Now we can rewind again and go back to the old head
position, and move one cell to the right. The LEFT move is similar.

(b) UP/DOWN : In order to simulate an UP move of N, we need to move
left beyond the end of row marker to the the row above. However, we
also need to ensure we are at the same column. This can be done by
marking all the tape contents from the current head position to the
end of row marker. Then, counting off the columns by unmarking the
contents of the old row and marking the cell of the new row.i.e., the
head moves LEFT from the current position, marking each cell until it
reaches the end of row marker #. Upon encountering the #, we know
we have moved to the row above. Now, we move RIGHT, unmark the
rightmost marked cell, traverse LEFT till we find the first unmarked
cell after the # and mark this cell. This way, we count the columns so
at the end when there are no more marked cells to thr right of #, we
have reached the corresponding column of the row above. Now we can
unmark all the cells till the current cell and we have in effect executed
an UP move. The DOWN move is similar.

We also need to take care that if we end up beyond the last row, we add a
new row by inserting an end of row marker. Thus M simulates N.

5. This is again a simulation question, so we want to show that a turing machine
M can simulate a queue automaton Q and vice-versa. We will show the first

3

part using a 2-tape turing machine M. This is sufficient since we know that 2-
tape TMs are equivalent to 1-tape TMs. To show the first part, M maintains
the input on the first tape, and uses the second tape as the queue. When Q
moves it’s input tape head to the right, M does the same. When Q does a
push, M writes the symbol on the right end of the second tape. When Q does
a pull, M removes the left most element from the second tape and moves all
symbols on the second tape one space to the left. Thus M simulates Q.

To show Q simulates M, we augment M’s alphabet with additional symbols
ã for each symbol a of M’s alphabet. This constitutes Q’s alphabet. The
symbols ã will be used to maintain the position of M’s tape head. Q also
uses a special end-of-tape marker #, which is placed at the end of the input.
At the start of the simulation Q pushes the entire input into the queue, with
the first symbol a replaced by ã.

When M moves RIGHT, Q pulls each symbol from the queue and pushes
them back into the queue, except for the marked alphabet. This is replaced
with the new symbol written by M and the next symbol pulled, say a is
replaced by ã and pushed into the queue.

Moving LEFT is trickier, since the symbol has already been pushed into the
queue. We can simulate a LEFT move by maintaining a history of one more
symbol in the control of Q. i.e., Q pulls two symbols at a time from the queue
and pushes them, swapping the marker on the symbol if necessary. This can
be seen to execute a left move. For example, say the tape contents are c, b̃, a.
The configuration of M after the move is say, c, x, ã. Thus, we pull both a
and b̃ from the queue, swap the marker from b to a, replace b with x and
push ã and b in order into the queue in order.

2 Problem Session 1

1. (Problem 3.15) Show that the collection of decidable languages is closed
under

(a) Union: (in the textbook).

(b) Concatenation: Let K, L be decidable languages. The concatenation
of languages K and L is the language KL = {xy|x ∈ K and y ∈ L}.
Since K and L are decidable languages, it follows that there exist turing
machines MK and ML that decide the languages K and L respectively.
In order to prove that KL is decidable, we can construct a turing ma-
chine that decides KL.

4

This machine, MKL can use the machines MK and ML to decide if a
string is in KL or not. The machine can be constructed as follows :
Consider an input string w. We need to decide if w is of the form xy for
x ∈ K and y ∈ L. If this is the case, there must be a position at which
we can partition w into x and y. Since there are only finitely many
ways to partition the string, we can try all possibilities and accept if
there is such a partition and reject otherwise. We will describe a non-
deterministic turing machine since it is easier to describe.

i. On input w, non-deterministically partition w into strings xy.

ii. Input x to MK and y to y on ML.

iii. accept if both MK and ML accept, else reject.

If there is an accepting computation path, then we have found a suc-
cessful split and the string is in KL. If all computation paths reject,
then the string is not in KL. In either case, it is easy to see that the
machine MKL halts. Thus, KL is decidable.

(c) Star: For a language L, L∗ = {x ∈ L∪LL∪LLL∪· · ·}. i.e. all strings
obtained by concatenating L with itself, and so on. To show that L∗ is
decidable, the idea is similar to the previous solution. We want to find
cuts of the input string w, such that each of them is accepted by the
TM ML that decides L. Let ML∗ be the machine that that decides L∗.

i. On input w : For each way to cut w into parts w1w2 · · ·wn

ii. Run ML on wi for i = 1, · · · , n.

iii. If ML accepts each of the strings wi accept.

iv. If all cuts have been tried without success, reject.

(d) Complementation : This is fairly straightforward, but the point to
note is that turing recognizable languages are NOT closed under com-
plementation, while turing decidable languages are. For a language L,
let ML denote the turing machine deciding L. Then the turing machine
for the complement is ML′ which on input w, accepts if ML rejects, and
accepts otherwise.

(e) Intersection : This is again fairly simple. Let K and L be two turing
decidable languages, and let MK and ML denote the turing machines
deciding K and L respectively. Let MK∩L denote the turing machine
deciding K ∩ L. MK∩L works as follows.

i. On input w to MK∩L,

ii. Input w to MK .

iii. If MK rejects, reject.

5

iv. Else Input w to ML.

v. If ML accepts, accept. Else reject.

2. Show that the collection of turing recognizable languages is closed under the
following operations.

(a) Union : (in the textbook).

(b) Concatenation : Let K and L be two turing recognizable languages,
and let MK and ML denote the turing machines that recognize K and
L respectively. We construct a non-deterministic turing machine MKL

that recognizes the language KL.

i. Non-deterministically cut input w into w1 and w2

ii. Run MK on w1. If it halts and rejects, reject.

iii. Run ML on w2. If it accepts, accept. If it halts and rejects, reject.

Note the difference between the turing machines for recognizable and
decidable languages. Here, we need to take care of the fact that the
machines MK and ML need not halt.

(c) Star : For a turing recognizable language L, we construct a non-
deterministic turing machine ML∗ that recognizes L∗. The idea is sim-
ilar to the decidable case.

i. On input w, non-deterministically cut w into parts w1w2 · · ·wn.

ii. Run ML on wi for all i. If ML accepts all of them, accept. If ML

halts and rejects for any i, reject.

If there is a way to cut w into strings w1w2 · · ·wn such that each wi ∈ L,
then there is a computation path in ML∗ that accepts w in a finite
number of steps.

(d) Intersection : Let K and L be two turing recognizable languages, and
let MK , ML, MK∩L denote the turing machines recognizing K, L, K ∩L
respectively. We use MK and ML to construct MK∩L. The machine
MK∩L works as follows.

i. On input w, run MK on w. If it halts and rejects, reject. If it
accepts, goto step ii.

ii. Run ML on w. If it halts and rejects, reject. If it accepts, accept.

MK∩L accepts a string w only if both MK and ML accept, thus w
belongs to K ∩ L.

3. To answer question 3.17, we require a few definitions and the solution to
Problem 3.18. So we start with the definitions.

6

Definition 1 An enumerator is a turing machine with an attached printer,
or output tape and a work tape. This machine does not accept any input,
but uses the work tape and outputs strings on the output tape. The strings
produced by an enumerator E is the language enumerated by E.

We will use the following theorem in the textbook (Page 153, Theorem 3.21).

Theorem 2 A language is turing-recognizable if and only if some enumera-
tor enumerates it.

We can now extend this theorem to show the following theorem (Ex. 3.18).

Theorem 3 A language is turing-decidable if and only if some enumerator
enumerates the strings of this language in lexicographic order.

Proof: In order to prove this theorem, recall the proof technique in showing
how different turing machine models are equivalent. Just like in the earlier
cases, we need to show equivalence between a turing machine that decides
a language and an enumerator that enumerates it. Thus we need show the
proof in both directions.

Assume we have a turing machine to decide a language L. We can use
this TM to construct an enumerator E as follows. We generate strings in
lexicographic order, and input each string into the TM for L. If the TM
accepts, print the string. Then, E prints all strings of L in lexicographic
order.

Now we need to show the other direction. i.e., if we have an enumerator
E for a language L, then we can use E to construct a turing machine that
decides L. We consider two cases.

(a) If L is a finite language, it is decidable because all finite languages are
decidable.

(b) If L is infinite, a decider for L operates as follows. On receiving input
w, the decider enumerates all strings of L in lexicographic order until
a string greater than w in the lexicographic order appears. This must
eventually occur since L is infinite. If w has appeared in the enumera-
tion already, then accept. If w has not appeared yet, then it will never
appear, and hence we can reject.

7

Now, we can solve problem 3.17. Let E be an enumerator for B. We con-
struct an enumerator D which outputs the strings of C in lexicographic
order. The decidability of C follows from the previous theorem. Enumerator
D simulates E. When E outputs the ith TM < Mi >, enumerator D pads
Mi by adding sufficiently many extra useless states to Mi to obtain a new
TM M ′

i where the length of < M ′
i > is greater than the length of < M ′

i−1 >.
Then E outputs < M ′

i >.

4. (Problem 4.17) We need to prove both directions. To handle the easier one
first, assume that D exists. A TM recognizing C operates on input x by
going through each possible string y and testing whether < x, y >∈ D. If
such a y is ever found, accept, else just continue searching.

For the other direction, assume that C is recognized by TM M . Define
a language B to be {(x, y)|M accepts x within |y| steps }. Language B is
decidable, and if x ∈ C then M accepts x within some number of steps, so
< x, y >∈ B for sufficiently long y, but if x 6∈ C, then < x, y >6∈ C for any
y.

5. (Problem 4.18) Let A and B be two languages such that A ∩B = ∅, and A,
and B are recognizable. Let J be the TM recognizing A and K be the TM
recognizing B. We will show that the language decided by TM T separates
A and B. The TM T works as follows.

(a) On input w :

(b) Simulate J and K on w by alternating the steps of the two machines.

(c) If J accepts first, reject. If K accepts first, accept.

The algorithm T terminates because A ∩ B = Σ∗. So either J or K will
accept w eventually. A ⊆ C because if w ∈ A, w will not be recognized by
J and will be accepted by K first. B ⊆ C because if w ∈ B, w will not be
recognized by K and will be accepted by J first. Therefore, C separates A
and B.

8

