22M:027 INTRODUCTION TO LINEAR ALGEBRA

FALL SEMESTER 2008

The final examination is scheduled for Monday, December 15 2008, 9:45-11:45 A.M. in 205 MLH. 

General Information

 News

Homework Assignments

Daily Syllabus

 


GENERAL INFORMATION

Syllabus 
Textbook: Elementary Linear Algebra with Applications by H. Anton and C. Rorers, 9th Edition.
Office Hours: Thursday 10:30 A.M.-12:20 P.M. and Friday 11:30 A.M.-12:20 P.M. 
Office: 325 J
Phone: (319) 335-3873 
Grader: TBA , e-mail: @math.uiowa.edu           

                                                                                                                                                                                                                                           Top of the page


NEWS    

The final examination is scheduled for Monday, December 15 2008, 9:45-11:45 A.M. in 205 MLH.  You may bring in three sheet of notes ( 8.5" x 11.5", both sides).  

You may use a basic calculator (non-graphing, without symbolic calculation).

You may not use cell phones, or other electronic devices during the exams. 

The Second Midterm will be held on Thursday, November 20, in class. The test will cover Chapters 4, 5, and 6. 

You may bring in one sheet of notes (one paper, 8.5" x 11.5", both sides) and a basic calculator (non-graphing, without symbolic calculation)


The First Midterm will be held on Thursday, October 9, in class. The test will cover Chapters 1, 2, and 3. 

You may bring in one sheet of notes (one paper, 8.5" x 11.5", both sides) and a basic calculator (non-graphing, without symbolic calculation)


 

                          

                                                                                                                                                                                                                                                 Top of the page


HOMEWORK ASSIGNMENTS

Homework 1 due 9/8:  Sect. 1.1. Ex.2, 14; Sect. 1.2. Ex.2, 5(c, d), 6(b, d), 7(b, d), 10(b), 11(b), 14(c), 18. 

Homework 2 due 9/15:  Sect. 1.3. Ex. 4(a,c), 5(a,g), 7(b,d), 13(a) 14(a), 17(b); Sect. 1.5. Ex. 2 (all), 7(b, d); Sect. 1.6. Ex. 2, 4, 12.  

Homework 3 due 9/22:  Sect. 1.7. Ex. 1(a,bc), 2(b), 3(a), 5(b); Sect. 2.1. Ex. 2 (b),6, 12, 18; Sect. 2.2. Ex. 2(b,c), 6, Sect. 2.3. Ex. 4(b).

Homework 4 due 9/29:  Sect. 3.1. Ex. 3(b), 4(a), 12(a,b,c), 21(all); Sect. 3.2. Ex. 2 (c), 9(c); Sect. 3.3. Ex. 1(d), 4(c), 6(c), 12, 17(c).  

Homework 5 due 10/06:  Sect. 3.4. Ex. 2(a), 3(b), 4(a), 18(a), 9(a,b,c), 10(a); Sect. 3.5. Ex. 1 (c), 2(c), 4(b),  5(b),6(a), 7(b), 9(a), 10(b), 39(a), 40 (a).

Homework 6 due 10/13:  Sect. 4.1. Ex.  3, 4, 5(c), 6(c,e), 9(c), 10(a), 11(a), 14(e), 17(d), 23, 35(a); Sect. 4.2. Ex. 1 (b), 3, 5(a), 6(b), 9(a), 10(a), 12(b). 

Homework 7 due 10/20:  Sect. 4.3. Ex.  1(a,b,c,d), 2(a), 4, 6(a), 9(a), 10(a), 13(a,b), 14(a), 16(c); Sect. 5.1. Ex. 6 , 10, 13.

Homework 8 due 10/27:  Sect. 5.2. Ex.  1(d,e), 2(all), 3(b), 7(b,d), 9(b), 10(a,b), 11(b,d); Sect. 5.3. Ex. 1(all) , 2(all), 4(b,c,d), 5(b), 6(a, b).

Homework 9 due 11/03:  Sect. 5.4. Ex.  1(all), 3(b),  4(a), 7(c), 9(b), 10(a), 11, 12, 18(a,c); Sect. 5.5. Ex. 2(b), 3(a) , 5(b), 6(a, b), 8(a,b), 9(a, b), 10(a, b). 

Homework 10 due 11/10:  Sect. 5.6. Ex. 2(d), 5(all); Sect. 6.1 Ex. 3(b),  4(a), 7(b), 9(d), 10(all), 12(a), 14, 18(a); Sect. 6.2. Ex. 6(a), 8(a), 9(a, b), 14, 15(c), 16, 18(c). 

Homework 11 due 11/19:  Sect. 6.3. Ex. 3(a,b), 4(a,b), 6(a), 8, 10(a), 11(b), 12(a,b), 17(b), 24(d,e) ; Sect. 6.5. Ex. 8(all), 10(all); Sect. 6.6. 3(d,f), 6(a,b). 

Homework 12 due 12/10:  Sect. 6.4. 3(b,d), 4(a); Sect. 7.1.3. Ex. 1(d,f), 2(d,f), 3(d,f), 4(a), 5(a), 6(a), 12; Sect. 7.2. Ex. 8, 11, 14, 18.

                                                                                                                                                                     Top of the page


DAILY SYLLABUS

Week Monday Wednesday Thursday Friday
8/25
1.1. Introduction
8/27
1.2 Gaussian Elimination
8/28
1.2 Gaussian Elimination (cont.)
8/29
Practice
Quiz
9/1
NO CLASS!
9/3
1.3 Matrices and Matrix Operations
9/4
1.3, 1.4 Matrix Multiplication (cont.)
9/5
1.5  Inverse Matrix
Quiz
3 9/8
1.5 Finding the Inverse of a Matrix

9/10
1.5, 1.6 Invertible Matrix Theorem

9/11
1.7 Diagonal, Triangular and Symmetric matrices
9/12
Chaper 1 Review
Quiz

4 9/15 2.1-2.3 Determinants
9/17 2.1(cont.) Applications of Determinants: Finding matrix Inverse
9/18 2.1(cont.) Applications of Determinants: Cramer's rule 9/19
2.4 Combinatorial Approach to Determinants
Quiz
5 9/22
3.1, 3.2 Vectors
9/24
3.3 Dot Product; Projections
9/19
3.4 Cross product

9/26

3.4 (cont.)
Quiz
9/29
3.5 Lines and Planes
10/1
3.5 (cont.) 
10/2
4.1 Euclidean n-space
10/3
Introduction to Matlab (lecture1.m)
Quiz
7 10/6
4.2 Linear Transformations
10/8
Ch. 1,2,3 Review
10/9
Midterm I
10/10
4.2 (cont.) Examples  of Linear Transformations
8 10/13
4.3 The Standard Matrix  of a Linear Transformations
10/15
Ch. 4 Review
10/16
5.1 Vector Spaces
10/17
5.2 Vector Subspaces
Quiz
9 10/20
5.2 Linear Combinations; Span.
10/22
5.3 Linear Independence
10/23
5.4 Basis, Dimensions
10/24
Basis (cont.) Quiz
10  10/27
Review
10/29
5.5 Fundamental Spaces
10/30
5.5 (cont.)
10/31
5.6
Rank and nullity
Quiz
11  11/3
6.1 Inner product
11/5
6.2 Angle, Orthogonality
11/6
6.3 Orthoganal and Orthonormal Bases,
11/7
6.3 Gram-Schmidt
Quiz
12 11/10
6.3 Gram-Schmidt
QR-factorization
11/12
6.5 Change of Basis
11/13
6.6 Orthogonal Matrices
11/14
Quiz
13 11/17
Review
11/19
Review
11/20
Midterm 2
11/21
Least-square
14  12/1
Midterm2 Review
12/3
Eigenvalues, Eigenvectors
12/4
Diagonalization
12/5
Diagonalization (cont.)
Quiz
15 12/8
Orthogonal diagonalization
12/10
LU-decomposition

12/11
Review
Quiz
12/12
Review

 


 

                                                                                                                                                                                         Top of the page