
XQuery Copyright 2006 by Ken Slonneger 1

XQuery
XQuery is a declarative programming language that can be
used to extract information from an XML document in much
the same way as SQL extracts information from a relational
database.

XQuery queries can act on a single XML document or a fixed
collection of XML documents.
The results of an XQuery query are normally expressed using
XML syntax, although the language of XQuery itself is not
expressed as XML.
Comments in XQuery are delimited by "(:" and ":)".

XQuery Data Model
XQuery incorporates a rich set of primitive data types,
including the atomic types from XPath and the simple types
from the XML Schema language.
It recognizes seven node types: document, element,
attribute, text, namespace, processing-instruction, and
comment.

Sequences
The main structure of XQuery is the ordered sequence.
The sequence in XQuery corresponds to the node set in
XSLT, but they have different characteristics.
A sequence may contain items of two types: simple types or
nodes.
A sequence may not contain another sequence.
A sequence with one item is the same as the item itself.

2 Copyright 2006 by Ken Slonneger XQuery

Sequences may contain items of various types (they are not
homogeneous).
Sequence literals are delimited by parentheses, and use
commas to separate their items.
The to operator can be used to define a sequence.
Sequences are not sets; their items have ordinal position,
starting at 1, and may include duplicates.
Items may be defined using data type constructors as in
xs:integer("837") and xs:date("2001-01-01").
Note that the month and day specifications require two digits.

Examples of Sequences
(1, 3, 5, 7, 9, 11,13)

1 to 5 (: same as (1, 2, 3, 4, 5) :)

(1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 5) (: not same as previous
sequence :)

(xs:date("2005-05-02"), xs:date("2005-05-04"),
xs:date("2005-05-06"))

("Hello", 45.8, 994, xs:date("1922-11-11"), true())

() (: Empty sequence :)

(<a>herky, , <c></c>, <d>dodo</d>)

((1, 3, 5), (7, 9, 11), 13, ()) (: same as first sequence :)

(xs:boolean("true"), xs:float("2.58"), 'Herky', xs:boolean(1))

XQuery Copyright 2006 by Ken Slonneger 3

XQuery Expressions
XQuery is a language of expressions, each of which
produces an XQuery sequence.
Remember that a single item is identical to a singleton
sequence containing that item.
Variables in XQuery are XML qualified names preceded by $.

Varieties of XQuery Expressions
• Literals and Variables
• Expressions with operators
• Calls of predefined and user defined functions
• Conditional expressions (if-then-else)
• Path expressions
• Element and Attribute constructors
• Quantified expressions (every and some)
• FLWOR expressions

Examples: Simple Expressions
483
34 + 17 * 5
$m div 2 (: $m must be bound to a number :)
string-length("herky")
if ($m > 0) then $m - 1 else $m + 1

(: must be a space between m and - :)

4 Copyright 2006 by Ken Slonneger XQuery

Path Expressions
XQuery allows XPath location paths as expressions.
We can build a literal node and select a subnode.

<one><two>herky</two><two>hawk</two></one>/two/text()
produces the value herkyhawk.

We want to use these paths to explore an existing XML
document.
One way to specify an XML document in XQuery is the function
doc, which takes the name of a file as a string parameter.
This function returns a single document as a source tree.

Example: Fetch student elements

doc("roster.xml")/roster/students/student

Running XQuery
The best (free) implementation of XQuery that I found was from
Saxon (Michael Kay).
Install the jar file saxon8.8.jar on your machine by putting it in
your bin directory and pointing CLASSPATH to its location.
The XQuery expression needs to be entered in a file to be
processed by Saxon.
For example, place the previous example into a text file with the
name students.

XQuery Copyright 2006 by Ken Slonneger 5

Execution
% java net.sf.saxon.Query students
<?xml version="1.0" encoding="UTF-8"?>
 <student id="94811">
 <name>Rusty Nail</name>
 <quizzes>
 <quiz>16</quiz>
 <quiz>12</quiz>
 </quizzes>
 <projects>
 <project>44</project>
 <project>52</project>
 </projects>
 <exams>
 <exam>77</exam>
 <exam>68</exam>
 <exam>49</exam>
 </exams>
 </student>
 <student id="2562">
 <name>Guy Wire</name>
 <quizzes>
 <quiz>15</quiz>
 <quiz>23</quiz>
 </quizzes>
 <projects>
 <project>33</project>
 <project>47</project>
 </projects>
 <exams>
 <exam>78</exam>
 <exam>86</exam>
 <exam>88</exam>
 </exams>
 </student>

:

6 Copyright 2006 by Ken Slonneger XQuery

 <student id="137745">
 <name>Barb Wire</name>
 <quizzes>
 <quiz>20</quiz>
 <quiz>25</quiz>
 </quizzes>
 <projects>
 <project>48</project>
 <project>60</project>
 </projects>
 <exams>
 <exam>38</exam>
 <exam>48</exam>
 <exam>66</exam>
 </exams>
 </student>%

Note that complete elements are returned as the value of the
expression, and that the result is not a well-formed XML
document because it does not have a single root.
Such a structure is called a forest.

You can see that Saxon always provides an XML declaration at
the beginning of the result.
Furthermore, it does not supply a new line at the end of the
result.
To stay in line with Saxon, we will define our queries to produce
legal XML as much as possible.
That means intermixing XML tags and XPath expressions that
need to be evaluated.
To separate literal data from expressions that must be
evaluated, XQuery uses braces to indicate what must be
evaluated.
I use an alias xquery that takes the file name as a parameter
and causes the execution of the Java class net.sf.saxon.Query.

XQuery Copyright 2006 by Ken Slonneger 7

Example: Fetch name elements
<newRoot>
{
 doc("roster.xml")/roster/students/student/name
}
</newRoot>

Results
<?xml version="1.0" encoding="UTF-8"?>
<newRoot>
 <name>Rusty Nail</name>
 <name>Guy Wire</name>
 <name>Norman Conquest</name>
 <name>Eileen Dover</name>
 <name>Barb Wire</name>
</newRoot>%

Example: Fetch the names only
<newRoot>
{
 doc("roster.xml")/roster/students/student/name/text()
}
</newRoot>

Results
<?xml version="1.0" encoding="UTF-8"?>
<newRoot>Rusty NailGuy WireNorman ConquestEileen

DoverBarb Wire</newRoot>%

8 Copyright 2006 by Ken Slonneger XQuery

Alternate Version
<newRoot>
{
 doc("roster.xml")/roster/students/student/string(name)
}
</newRoot>

The results are the same.

Saxon Options
The results from an XQuery query under Saxon are displayed
on the screen.

How to Put Results in a File
Saxon has an option (-o outfile) that directs the results to the
named file.

% java net.sf.saxon.Query -o stdts.out students

Another way is to pipe the stream through the Unix cat function.
% java net.sf.saxon.Query students | cat > stds.out

To see the other Saxon options enter:
% java net.sf.saxon.Query

XQuery Copyright 2006 by Ken Slonneger 9

FLWOR
XQuery queries can be written as FLWOR (pronounced
"flower") expressions.

F : for each item in an XPath expression
L : let a new variable have a value
W : where a condition (a predicate) is satisfied
O : order by some XPath value
R : return a sequence of values

Example 1
for $m in 1 to 10
let $n := $m + 1
where $m > 4
order by $m descending
return $m * $n

Produces the result: 110 90 72 56 42 30
Observe that the let phrase uses := to describe the binding
of a variable. This symbol is the assignment operator in
many programming languages.
As in XSLT, variables may not have their values altered.
Some of the components of a FLWOR expression are optional.
A return is required, and it must be preceded by at least one
for or one let.
A FLOWR expression may have multiple for and let
components, and these can be nested in the expression.

10 Copyright 2006 by Ken Slonneger XQuery

We want to produce well-formed XML, so delimit the sequence
and its components with XML tags.
Remember braces indicate which parts of the expression
need to be evaluated.

Example 2
<numbers>
{

for $m in (1 to 10) (: parentheses are redundant :)
let $n := $m + 1
where $m > 4
order by $m descending
return <num>{ $m * $n }</num>

}
</numbers>

Results
<?xml version="1.0" encoding="UTF-8"?>
<numbers>
 <num>110</num>
 <num>90</num>
 <num>72</num>
 <num>56</num>
 <num>42</num>
 <num>30</num>
</numbers>%

We now turn to using XQuery to solve the problems that were
considered in the XSLT chapter.
You can compare these solutions with the XSLT stylesheets to
help you judge the usefulness of XQuery.

XQuery Copyright 2006 by Ken Slonneger 11

Problem 1
Find the sum of all first exams, the number of first exams, and
the average on that exam.

File: p1.xq
<exam1>
{

let $doc := doc("roster.xml")
let $e1s := $doc/roster/students/student/exams/exam[1]
let $sum := sum($e1s)
let $num := count($e1s)
return (<sum>{ $sum }</sum>,

<num>{ $num }</num>,
<average>{ $sum div $num }</average>)

}
</exam1>

Observe how a sequence of elements is built using
parentheses and commas in the return expression.
Also, note how braces are used to force evaluation when
expressions are interspersed with literal output.

Results from p1.xq
<?xml version="1.0" encoding="UTF-8"?>
<exam1>
 <sum>382</sum>
 <num>5</num>
 <average>76.4</average>
</exam1>

12 Copyright 2006 by Ken Slonneger XQuery

Problem 2
Find the sum, the count, and the average for the quizzes for
each student.

An XQuery program is generally made up of a prolog and a
body.
So far our examples have only consisted of the body.
A prolog can be used to define global variables, functions, and
namespaces among a few other items.
Each prolog definition begins with the keyword declare and ends
with a semicolon.
In the next solution we define a global variable in the prolog.

File: p2.xq
declare variable $doc := doc("roster.xml");
<quizzes>
{
 for $s in $doc/roster/students/student
 let $sum := sum($s/quizzes/quiz)
 let $num := count($s/quizzes/quiz)
 return
 <student>

{ $s/name }
<sum>{ $sum }</sum>
<num>{ $num }</num>
<average>{ $sum div $num }</average>

 </student>
}
</quizzes>

In this solution, the XPath "$s/name" returns an element, so we
do not need to supply tags, but tags are required for the three
new elements, sum, num, and average.

XQuery Copyright 2006 by Ken Slonneger 13

Results from p2.xq
<?xml version="1.0" encoding="UTF-8"?>
<quizzes>
 <student>
 <name>Rusty Nail</name>
 <sum>28</sum>
 <num>2</num>
 <average>14</average>
 </student>
 <student>
 <name>Guy Wire</name>
 <sum>38</sum>
 <num>2</num>
 <average>19</average>
 </student>
 <student>
 <name>Norman Conquest</name>
 <sum>44</sum>
 <num>2</num>
 <average>22</average>
 </student>
 <student>
 <name>Eileen Dover</name>
 <sum>39</sum>
 <num>2</num>
 <average>19.5</average>
 </student>
 <student>
 <name>Barb Wire</name>
 <sum>45</sum>
 <num>2</num>
 <average>22.5</average>
 </student>
</quizzes>

14 Copyright 2006 by Ken Slonneger XQuery

Problem 3
Find out if there are exam scores below 50. If so, tell how many
there are.
This problem makes good use of the conditional expression.
Do not confuse a conditional expression (if-then-else) with the
conditional commands (if and if-else) in Java.

File: p3.xq
declare variable $doc := doc("roster.xml");
<exams>
{

let $num := count($doc/roster/students/student/
 exams/exam[. < 50])

return
<answer>
{

if ($num > 0)
then concat($num, " exams below 50")
else "No exams less than 50."

}
</answer>

}
</exams>

Results from p3.xq
<?xml version="1.0" encoding="UTF-8"?>
<exams>
 <answer>3 exams below 50</answer>
</exams>

XQuery Copyright 2006 by Ken Slonneger 15

Comparison Operators (four kinds)
So far our use of comparison operators has been naive, simply
comparing values with the traditional symbols <, >, and their
variants.
Xquery has a much more sophisticated range of comparison
operators that we cover now.

Value Comparison Operators
These operators are used to compare single values and
sequences of single or no values.
They produce a boolean value (true or false), the empty
sequence, or an error.
The types of the operands must be compatible, although some
types will be promoted to yield compatible types.
Unfortunately, string does not promote to a number type
automatically.
The value comparison operators:

eq ne lt le gt ge

Note:
Using comparison operators can be very tricky.

Comparing the contents of elements will normally be made
as string comparisons.
If we want to compare values as numbers, we must convert
the strings to numbers.

16 Copyright 2006 by Ken Slonneger XQuery

Problem 4
Find the names of all students who scored higher on exam 1
than on exam 3.
This problem can be solved by using a conditional expression
or by using a where clause in the FLWOR expression.

File: p4a.xq
<higher>
{

for $s in doc("roster.xml")/roster/students/student
let $e1 := $s/exams/exam[1]
let $e3 := $s/exams/exam[3]
return

if ($e1 gt $e3) (: beware :)
then

<student>
{ ($s/name, $s/exams/exam[1], $s/exams/exam[2]) }
</student>

else ()
}
</higher>

When the test fails, the query returns an empty sequence,
which is equivalent to returning nothing.

XQuery Copyright 2006 by Ken Slonneger 17

File: p4b.xq
<higher>
{

for $s in doc("roster.xml")/roster/students/student
let $e1 := $s/exams/exam[1]
let $e3 := $s/exams/exam[3]
where $e1 gt $e3 (: beware :)
return

<student>
{ ($s/name, $s/exams/exam[1], $s/exams/exam[2]) }
</student>

}
</higher>

Change Rusty Nail's first exam to 7.

Results from p4a.xq and p4b.xq
<?xml version="1.0" encoding="UTF-8"?>
<higher>
 <student>
 <name>Rusty Nail</name>
 <exam>7</exam>
 <exam>49</exam>
 </student>
 <student>
 <name>Norman Conquest</name>
 <exam>99</exam>
 <exam>78</exam>
 </student>
 <student>
 <name>Eileen Dover</name>
 <exam>90</exam>
 <exam>89</exam>
 </student>
</higher>

18 Copyright 2006 by Ken Slonneger XQuery

The problem with these queries is that the two exams are being
compared as strings. The value comparison operator gt does
not promote the values to integers.
Solution: Cast each value to an integer explicitly.

if (xs:integer($e1) gt xs:integer($e3)) in p4a.xq
where xs:integer($e1) gt xs:integer($e3) in p4b.xq

Now the queries work correctly.

Problem 5
Find all students who scored 80 or higher on exam 3.

File: p5.xq
<exams>
{

for $s in doc("roster.xml")/roster/students/student
let $e := $s/exams/exam[3]
where $e ge 80 (: beware :)
return

<student>
{ $s/name }
<exam>{ $e/text() }</exam>

</student>
}
</exams>

Alternative
<student>{ ($s/name, $e) }</student>

XQuery Copyright 2006 by Ken Slonneger 19

Results from p5vc.xq
Warning: on line 12 of file:
 /mnt/nfs/fileserv/fs3/slonnegr/xml/xquery/roster/p5vc:
 Comparison of xdt:untypedAtomic? to xs:integer will
 fail unless the first operand is empty

Error on line 12 of
file:/mnt/nfs/fileserv/fs3/slonnegr/xml/xquery/roster/p5vc:
 XPTY0004: Cannot compare xs:string to xs:integer
 Query processing failed: Run-time errors were reported

The problem with this query is that the exam as a string is being
compared to a number. The value comparison operator ge does
not promote this string value to an integer.
Solution: Cast the string value to an integer explicitly.

where xs:integer($e) ge 80
Now the query works correctly.

Results from p5.xq (revised)
<?xml version="1.0" encoding="UTF-8"?>
<exams>
 <student>
 <name>Guy Wire</name>
 <exam>88</exam>
 </student>
 <student>
 <name>Eileen Dover</name>
 <exam>89</exam>
 </student>
</exams>

20 Copyright 2006 by Ken Slonneger XQuery

General Comparisons
These operators are used to compare two sequences.
They return true if any pair of elements from the two sequences
satisfy the relation.
If the sequences are singleton values, these comparisons will
be similar to value comparison operators.
The general comparison operators:

= != < <= > >=

Examples
Expression Value

(1, 2, 3) = (3, 4) true
(1, 2, 3) != (3, 4) true
(1, 2, 3) >= (3, 4) true
(1, 2, 3) < (3, 4) true
(1, 2) = (3, 4) false

These general comparison operators can be used in many
examples that compare two single values, but remember that
comparisons of strings will be carried out alphabetically.
Example: p4a.xq

if (xs:integer($e1) gt xs:integer($e3)) can be written
if (xs:integer($e1) > xs:integer($e3))

Example: p4b.xq
where xs:integer($e1) gt xs:integer($e3) can be written

where xs:integer($e1) > xs:integer($e3)
Example: p5.xq

where xs:integer($e) ge 80 can be written
where xs:integer($e) >= 80

XQuery Copyright 2006 by Ken Slonneger 21

Node Comparison: is
The is operator is used to compare single nodes and empty
sequences.
This operator tests for node identity in the same way that
the Java == operator tests for identity between objects.
Examples

Expression Value
<tag>content</tag> is <tag>content</tag> false
let $x := <tag>content</tag>

let $y := $x return $x is $y true
doc('roster.xml') is doc('roster.xml')) true

(1, 2) is (1, 2) error

Problem
Produce an XML document that contains each pair of distinct
students in roster.xml.
Since this property describe a symmetric relation, we get
each pair twice in different orders.

File: pairs.xq
declare variable $doc := doc("roster.xml");
<answer>
{

for $s1 in $doc/roster/students/student
for $s2 in $doc/roster/students/student
where not($s1 is $s2)
return

<pair>
{ ($s1/name, $s2/name) }
</pair>

}
</answer>

22 Copyright 2006 by Ken Slonneger XQuery

Results from pairs.xq (20 pairs)
<?xml version="1.0" encoding="UTF-8"?>
<answer>
 <pair>
 <name>Rusty Nail</name>
 <name>Guy Wire</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Norman Conquest</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Eileen Dover</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Guy Wire</name>
 <name>Rusty Nail</name>
 </pair>

:
:

 <pair>
 <name>Eileen Dover</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Barb Wire</name>
 <name>Rusty Nail</name>
 </pair>
 <pair>
 <name>Barb Wire</name>
 <name>Guy Wire</name>
 </pair>

XQuery Copyright 2006 by Ken Slonneger 23

 <pair>
 <name>Barb Wire</name>
 <name>Norman Conquest</name>
 </pair>
 <pair>
 <name>Barb Wire</name>
 <name>Eileen Dover</name>
 </pair>
</answer>

Node Comparison: deep-equal
The deep-equal function is used to compare single nodes
and sequences.
This function traverses the tree rooted at the nodes or the
sequences to see if they are identical in structure and values.

Examples
Expression Value

deep-equal(<tag>123</tag>, <tag>123</tag>) true

let $v := <tag>123</tag> return deep-equal($v, $v) true

deep-equal(doc('roster.xml'), doc('roster.xml')) true

deep-equal((1, 2), (2, 1)) false

deep-equal((1, 2), (1, 2)), true

deep-equal(<tg a="1">z</tg>, <tg a="2">z</tg>)) false

deep-equal(<tg a="1">z</tg>, <tg a="1">z</tg>)) true

24 Copyright 2006 by Ken Slonneger XQuery

Order Comparison Operators
These operators are used to compare the positions of two
nodes in an XML document.

<< returns true if the first operand occurs before the
second in the document (the first operand is reachable
from the second operand using the preceding axis).

>> returns true if the first operand occurs after the second
in the document (the first operand is reachable from the
second operand using the following axis).

Problem
Produce an XML document that contains each pair of distinct
students in roster.xml, but produce each pair only once
independent of order.
This solution creates the pairs as an asymmetic relation.

File: pairsA.xq
declare variable $doc := doc("roster.xml");
<answer>
{

for $s1 in $doc/roster/students/student
for $s2 in $doc/roster/students/student
where $s1 << $s2
return

<pair>
{ ($s1/name, $s2/name) }
</pair>

}
</answer>

XQuery Copyright 2006 by Ken Slonneger 25

Results from pairsA.xq (10 pairs)
<?xml version="1.0" encoding="UTF-8"?>
<answer>
 <pair>
 <name>Rusty Nail</name>
 <name>Guy Wire</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Norman Conquest</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Eileen Dover</name>
 </pair>
 <pair>
 <name>Rusty Nail</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Guy Wire</name>
 <name>Norman Conquest</name>
 </pair>
 <pair>
 <name>Guy Wire</name>
 <name>Eileen Dover</name>
 </pair>
 <pair>
 <name>Guy Wire</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Norman Conquest</name>
 <name>Eileen Dover</name>
 </pair>
 <pair>
 <name>Norman Conquest</name>
 <name>Barb Wire</name>
 </pair>

26 Copyright 2006 by Ken Slonneger XQuery

 <pair>
 <name>Eileen Dover</name>
 <name>Barb Wire</name>
 </pair>
</answer>

Finding Positions in Sequences
The for phrase in a FLWOR expression allows an at clause
that captures the ordinal position of each item processed
by the for.

for $m at $p in (5, 10, 15, 20)
return ($p, $m)

This XQuery program returns the sequence 1 5 2 10 3 15 4 20.

Problem 6
Find all students who scored 80 or higher on any exam,
indicating which exam it is.
The following solution uses a variable to remember the position
of each exam in the sequence containing the three exams for
each student.

File: p6.xq
<exams>
{

for $s in doc("roster.xml")/roster/students/student
for $e at $pos in $s/exams/exam
where xs:integer($e) ge 80
return

<student>
{ $e/ancestor::student/name (: or $s/name :) }
{ $e }
<position>{ $pos }</position>

</student>
}
</exams>

XQuery Copyright 2006 by Ken Slonneger 27

Results from p6.xq
<?xml version="1.0" encoding="UTF-8"?>
<exams>
 <student>
 <name>Guy Wire</name>
 <exam>86</exam>
 <position>2</position>
 </student>
 <student>
 <name>Guy Wire</name>
 <exam>88</exam>
 <position>3</position>
 </student>
 <student>
 <name>Norman Conquest</name>
 <exam>99</exam>
 <position>1</position>
 </student>
 <student>
 <name>Eileen Dover</name>
 <exam>90</exam>
 <position>1</position>
 </student>
 <student>
 <name>Eileen Dover</name>
 <exam>89</exam>
 <position>3</position>
 </student>
</exams>

28 Copyright 2006 by Ken Slonneger XQuery

Sorting
The order by clause in a FLWOR expression controls the
order that the sequence will be output.
It takes an expression that specifies the properties of the
sequence items that are used to sort the sequence.
The property specification may be followed by ascending
(the default) or descending modifiers.
Multiple properties can be listed, separated by commas, with
the early properties taking precedence over the later properties.

Problem 7
Show the total on projects for each student, listing the
students by name, sorted alphabetically.

File: p7a.xq
<projects>
{

for $s in doc("roster.xml")/roster/students/student
let $proj := sum($s/projects/project)
order by $s/name
return

<student>
{ $s/name }
<total>{ $proj }</total>

</student>
}
</projects>

XQuery Copyright 2006 by Ken Slonneger 29

Results from p7a.xq
<?xml version="1.0" encoding="UTF-8"?>
<projects>
 <student>
 <name>Barb Wire</name>
 <total>108</total>
 </student>
 <student>
 <name>Eileen Dover</name>
 <total>85</total>
 </student>
 <student>
 <name>Guy Wire</name>
 <total>80</total>
 </student>
 <student>
 <name>Norman Conquest</name>
 <total>96</total>
 </student>
 <student>
 <name>Rusty Nail</name>
 <total>96</total>
 </student>
</projects>

In a second solution, we sort the names by surname first
and then by given name.

File: p7b.xq
<projects>
{

for $s in doc("roster.xml")/roster/students/student
let $proj := sum($s/projects/project)
order by substring-after($s/name,' '),

substring-before($s/name,' ')

30 Copyright 2006 by Ken Slonneger XQuery

return
<student>

{ $s/name }
<total>{ $proj }</total>

</student>
}
</projects>

Results from p7b.xq
<?xml version="1.0" encoding="UTF-8"?>
<projects>
 <student>
 <name>Norman Conquest</name>
 <total>96</total>
 </student>
 <student>
 <name>Eileen Dover</name>
 <total>85</total>
 </student>
 <student>
 <name>Rusty Nail</name>
 <total>96</total>
 </student>
 <student>
 <name>Barb Wire</name>
 <total>108</total>
 </student>
 <student>
 <name>Guy Wire</name>
 <total>80</total>
 </student>
</projects>

In the next version, we sort the students by their ID numbers.

XQuery Copyright 2006 by Ken Slonneger 31

File: p7c.xq
<projects>
{

for $s in doc("roster.xml")/roster/students/student
let $proj := sum($s/projects/project)
order by $s/@id
return

<student>
<id>{ data($s/@id) }</id>
<total>{ $proj }</total>

</student>
}
</projects>

Results from p7c.xq
<?xml version="1.0" encoding="UTF-8"?>
<projects>
 <student>
 <id>132987</id>
 <total>96</total>
 </student>
 <student>
 <id>137745</id>
 <total>108</total>
 </student>
 <student>
 <id>2562</id>
 <total>80</total>
 </student>
 <student>
 <id>49194</id>
 <total>85</total>
 </student>
 <student>
 <id>94811</id>
 <total>96</total>
 </student>
</projects>

32 Copyright 2006 by Ken Slonneger XQuery

Observe that we used the function data to extract the value
of the id attribute. The function string has the same effect.
Without this function application, the attribute id stays an
attribute, and the first id element will be presented as shown
below.

<id id="132987"/>

The only problem with the solution given above is that the ID
numbers are sorted alphabetically instead of numerically.
To get a numeric sort we need to convert the order by
property specified by the id attribute into an integer.

File: p7d.xq
<projects>
{

for $s in doc("roster.xml")/roster/students/student
let $proj := sum($s/projects/project)
order by xs:integer($s/@id)
return

<student>
<id>{ string($s/@id) }</id>
<total>{ $proj }</total>

</student>
}
</projects>

Results from p7d.xq
<?xml version="1.0" encoding="UTF-8"?>
<projects>
 <student>
 <id>2562</id>
 <total>80</total>
 </student>

XQuery Copyright 2006 by Ken Slonneger 33

 <student>
 <id>49194</id>
 <total>85</total>
 </student>
 <student>
 <id>94811</id>
 <total>96</total>
 </student>
 <student>
 <id>132987</id>
 <total>96</total>
 </student>
 <student>
 <id>137745</id>
 <total>108</total>
 </student>
</projects>

Problem 8
Find the average scores on the exams for each of the students.
For a change of pace, we sort the student names by surname
from the end of the alphabet.

File: p8.xq
<exams>
{

for $s in doc("roster.xml")/roster/students/student
let $avg := avg($s/exams/exam)
order by substring-after($s/name,' ') descending
return

<student>
{ $s/name }
<average>{ $avg }</average>

</student>
}
</exams>

34 Copyright 2006 by Ken Slonneger XQuery

Results from p8.xq
<?xml version="1.0" encoding="UTF-8"?>
<exams>
 <student>
 <name>Guy Wire</name>
 <average>84</average>
 </student>
 <student>
 <name>Barb Wire</name>
 <average>50.66666666666664</average>
 </student>
 <student>
 <name>Rusty Nail</name>
 <average>64.66666666666667</average>
 </student>
 <student>
 <name>Eileen Dover</name>
 <average>86</average>
 </student>
 <student>
 <name>Norman Conquest</name>
 <average>85.33333333333333</average>
 </student>
</exams>

Function Definitions
The prolog of an XQuery program allows the definition of
functions as well as variables.
Basic Syntax

declare function funName($p1, $p2, $p3)
{

an expression that defines the result of the
function

}; (: do not forget the semicolon :)

XQuery Copyright 2006 by Ken Slonneger 35

The Saxon implementation of XQuery requires that all user-
defined functions must lie in an explicit namespace.
A namespace and its prefix are defined in the prolog using the
following syntax.

declare namespace prefix = "unique.uri";

In the next solution to Problem 8, we define a namespace and a
function in that namespace to calculate the average of a
sequence of nodes.

File: p8f.xq
Suppose for the sake of this example that XQuery has no
function to compute the average of a sequence of numbers.
In this solution we will write our own function for this computation.

declare namespace myfun = "myfun.slonnegr.cs.uiowa.edu";
declare function myfun:average($nodes)
{

let $sum := sum($nodes)
let $num := count($nodes)
return $sum div $num

};

<exams>
{

for $s in doc("roster.xml")/roster/students/student
let $avg := myfun:average($s/exams/exam)
order by substring-after($s/name, ' ') descending
return

<student>
{ $s/name }
<average>{ $avg }</average>

</student>
}
</exams>

36 Copyright 2006 by Ken Slonneger XQuery

The results are the same as those with the previous solution to
Problem 8.

Creating Elements and Attributes
We have seen many examples of XQuery programs that have
created elements for the result document using literal text to
define opening and closing tags.
Attributes can be associated with these elements defined
literally by putting them into the start tags.
As an example, here is the body of the previous XQuery
program with an attribute defined for the student elements.

File: p8fa.xq
<exams>
{

for $s at $p in doc("roster.xml")/roster/students/student
let $avg := myfun:average($s/exams/exam)
order by substring-after($s/name, ' ') descending
return

<student index="{ $p }">
{ $s/name }
<average>{ $avg }</average>

</student>
}
</exams>

XQuery Copyright 2006 by Ken Slonneger 37

Results from p8fa.xq
<?xml version="1.0" encoding="UTF-8"?>
<exams>
 <student index="2">
 <name>Guy Wire</name>
 <average>84</average>
 </student>
 <student index="5">
 <name>Barb Wire</name>
 <average>50.66666666666664</average>
 </student>
 <student index="1">
 <name>Rusty Nail</name>
 <average>64.66666666666667</average>
 </student>
 <student index="4">
 <name>Eileen Dover</name>
 <average>86</average>
 </student>
 <student index="3">
 <name>Norman Conquest</name>
 <average>85.33333333333333</average>
 </student>
</exams>

This approach to creating elements and attributes requires that
we know the names of the elements and attributes statically,
which means as literal text in the program.

Sometimes we want to create elements and attributes whose
names are not known until runtime and are calculated based on
information found in the source document.

38 Copyright 2006 by Ken Slonneger XQuery

Element and Attribute Constructors
XQuery has constructors for building elements and attributes
whose names can be derived dynamically.

Constructors
element literalName { contents of element }
element { computedName } { contents of element }

attribute literalName { attribute value }
attribute { computedName } { attribute value }

The constructors with the literal names can replace the
placement of start and end tags in an XQuery program.
The code below is another version of the body of the previous
solution to Problem 8.

File: p8fb.xq
element exams
{

for $s at $p in doc("roster.xml")/roster/students/student
let $avg := myfun:average($s/exams/exam)
order by substring-after($s/name, ' ') descending
return element student

{
attribute index { $p },
$s/name,
element average { $avg }

}
}

The results using this body will be identical to those from the
previous solution with the index attribute.

XQuery Copyright 2006 by Ken Slonneger 39

Creating Elements and Attributes Dynamically
To illustrate the constructors for elements and attribute, we build
an XML document that has entirely new attributes and elements
that depend on the original document.
For testing purposes, we start with the same XML document we
used in XSLT. It contains multiple elements and attributes.
File: dynamic.xml

<?xml version="1.0"?>
<!-- dynamic.xml -->
<root>
 <items>
 <item position="01" code="a25">
 <id>FX483</id>
 <name>Element1</name>
 <description>Debris</description>
 </item>
 <item position="02" code="b38">
 <id>FH390</id>
 <name>Element2</name>
 <description>Junk</description>
 </item>
 <item position="03" code="a88">
 <id>FA881</id>
 <name>Element3</name>
 <description>Trash</description>
 </item>
 </items>
</root>

In the first example we build a new XML document with elements
that parallel root, items, and item, but the content of the item
elements will be replaced by their attributes as new content.

40 Copyright 2006 by Ken Slonneger XQuery

Building Attributes
Observe that in this XQuery program, we assume that we do
not know the names of the attributes for the item elements,
but we can still form them into new elements.

File: da.xq
<newroot>

<newitems>
{

for $item in doc("dynamic.xml")/root/items/item
return <newitem>

{
for $at in $item/@*
return element {$at/name()} { data($at) }

}
</newitem>

}
</newitems>

</newroot>

Results from da.xq
<?xml version="1.0" encoding="UTF-8"?>
<newroot>
 <newitems>
 <newitem>
 <position>01</position>
 <code>a25</code>
 </newitem>
 <newitem>
 <position>02</position>
 <code>b38</code>
 </newitem>
 <newitem>
 <position>03</position>
 <code>a88</code>
 </newitem>
 </newitems>
</newroot>

XQuery Copyright 2006 by Ken Slonneger 41

Building Elements and Attributes
In this XQuery program we move the item attributes to the
content of the newitem element again, but this time we turn the
orginal element content of the item elements into attributes for
the newitem elements.
Now we have to use an element constructor to build the
newitem elements.

File: dea.xq
<newroot>

<newitems>
{

for $item in doc("dynamic.xml")/root/items/item
return element newitem

 {
for $e in $item/*
return attribute { $e/name() } { $e/text() },
for $at in $item/@*
return element { $at/name() } { string($at) }

}
}
</newitems>

</newroot>

Results from dea.xq
<?xml version="1.0" encoding="UTF-8"?>
<newroot>
 <newitems>
 <newitem id="FX483" name="Element1"

description="Debris">
 <position>01</position>
 <code>a25</code>
 </newitem>
 <newitem id="FH390" name="Element2"

description="Junk">
 <position>02</position>
 <code>b38</code>
 </newitem>

42 Copyright 2006 by Ken Slonneger XQuery

 <newitem id="FA881" name="Element3"
description="Trash">

 <position>03</position>
 <code>a88</code>
 </newitem>
 </newitems>
</newroot>

Quantified Expressions
Two expressions in Xquery implement the quantifiers from
predicate logic: every and some.
Each takes a variables and two expressions as arguments and
produces a boolean value.
These quantified expressions are evaluated in the same way
they are read.

some var in seq-expr satisfies bool-expr
returns true if and only if there exists a value in the
sequence that makes the boolean expression true.

every var in seq-expr satisfies bool-expr
returns true if and only if every value in the sequence
makes the boolean expression true.

Both can be defined in terms of other Xquery expressions.
some var in seq-expr satisfies bool-expr

has the same meaning as
exists(for var in seq-expr where bool-expr return 1)

every var in seq-expr satisfies bool-expr
has the same meaning as

empty(for var in seq-expr where not(bool-expr) return 1)

XQuery Copyright 2006 by Ken Slonneger 43

Simple Examples
Expression Value

every $n in 1 to 10 satisfies $n gt 0 true
every $n in 1 to 10 satisfies $n mod 3 eq 0 false
some $n in 1 to 10 satisfies $n mod 3 eq 0 true

some $n in 1 to 10 satisfies $n lt 0 false

Problem
Find out whether or not anyone scored higher than 95 on
any exam in the XML document roster.xml.
This problem can be reworded: Tell whether there exists
an exam score higher than 95 in the student information.

File: p95.xq
declare variable $d := doc("roster.xml");
<answer>
{

if (some $e in
$d/roster/students/student/exams/exam

satisfies number($e) gt 95)
then "Someone scored higher than 95 on an exam."
else "No one scored higher than 95 on an exam."

}
</answer>

Results from p95.xq
<?xml version="1.0" encoding="UTF-8"?>
<answer>Someone scored higher than 95 on

an exam.</answer>

44 Copyright 2006 by Ken Slonneger XQuery

Problem
Find all pairs of students where the first student scored higher
than the second student on each of the exams.
The idea with the solution to this problem is to generate all pairs
of students (in both orders), and for each pair verify that the two
students have the same number of exams and that every exam
for the first student is greater than the corresponding exam of
the second student.

File: higher.xq
declare variable $doc := doc("roster.xml");
<answer>
{

for $s1 in $doc/roster/students/student
for $s2 in $doc/roster/students/student
where not($s1 is $s2) (: want all distinct pairs :)
return

let $e1 := $s1/exams/exam
let $e2 := $s2/exams/exam
where

count($e1) = count($e2)
and
(every $p in 1 to count($e1)

satisfies number($e1[$p])>number($e2[$p]))
return

<pair>
{ ($s1/name, $s2/name) }
</pair>

}
</answer>

Note: It was necessary to place the every expression
inside parentheses.

XQuery Copyright 2006 by Ken Slonneger 45

Results from higher.xq
<?xml version="1.0" encoding="UTF-8"?>
<answer>
 <pair>
 <name>Guy Wire</name>
 <name>Rusty Nail</name>
 </pair>
 <pair>
 <name>Guy Wire</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Norman Conquest</name>
 <name>Rusty Nail</name>
 </pair>
 <pair>
 <name>Norman Conquest</name>
 <name>Barb Wire</name>
 </pair>
 <pair>
 <name>Eileen Dover</name>
 <name>Rusty Nail</name>
 </pair>
 <pair>
 <name>Eileen Dover</name>
 <name>Barb Wire</name>
 </pair>
</answer>

46 Copyright 2006 by Ken Slonneger XQuery

Problem: Prime Numbers
Write an Xquery function that tests whether a number is prime
or not.
Use this function to find all the prime numbers up to 100
An integer is prime if it is greater than 1 and has the property that
its only divisors are 1 and itself.
The number 2 is the only even prime.
A number n > 2 is prime if it has no divisors in the interval
2 ≤ d < n. This property is equivalent to the following conditions:
• no divisors in the interval 2 ≤ d ≤ n/2
• no divisors in the interval 2 ≤ d ≤ sqrt(n)

Since Xquery has no square root function, we use the first
condition.

File: primes.xq
declare namespace myfun = "myfun.slonnegr.cs.uiowa.edu";
declare function myfun:prime($n)
{

$n = 2 or
 ($n > 2 and

 (every $d in 2 to $n idiv 2 satisfies $n mod $d > 0))
};
<primes>
{

for $k in (1 to 100)
where myfun:prime($k)
return

<prime>{ $k }</prime>
}
</primes>

XQuery Copyright 2006 by Ken Slonneger 47

Result from primes.xq
<?xml version="1.0" encoding="UTF-8"?>
<primes>
 <prime>2</prime>
 <prime>3</prime>
 <prime>5</prime>
 <prime>7</prime>
 <prime>11</prime>
 <prime>13</prime>
 <prime>17</prime>
 <prime>19</prime>
 <prime>23</prime>
 <prime>29</prime>
 <prime>31</prime>
 <prime>37</prime>
 <prime>41</prime>
 <prime>43</prime>
 <prime>47</prime>
 <prime>53</prime>
 <prime>59</prime>
 <prime>61</prime>
 <prime>67</prime>
 <prime>71</prime>
 <prime>73</prime>
 <prime>79</prime>
 <prime>83</prime>
 <prime>89</prime>
 <prime>97</prime>
</primes>

48 Copyright 2006 by Ken Slonneger XQuery

Joins
The join is a principal operation in the world of relational
databases.
The idea is to meld the information stored in two or more
database tables by comparing values in specific columns in
such a way to define those rows of information that are desired.
Joins can be performed in Xquery to combine the information in
two or more XML documents, selecting only that information that
satisfies certain conditions on the elements in the documents.

In the following examples we consider various problems that can
be solved using join operations that combine the information in
roster.xml and a new version of the phone XML document.

File: phone.xml
<?xml version="1.0" standalone="no"?>
<!DOCTYPE phoneNumbers SYSTEM "phone.dtd">
<phoneNumbers>
 <title>Phone Numbers</title>
 <entries>
 <entry>
 <name gender="male">Rusty Nail</name>
 <phone>335-0055</phone>
 <city>Iowa City</city>
 </entry>
 <entry>
 <name gender="male">Guy Wire</name>
 <phone>354-9876</phone>
 <city>Coralville</city>
 </entry>

XQuery Copyright 2006 by Ken Slonneger 49

 <entry>
 <name gender="female">Eileen Dover</name>
 <phone>354-9876</phone>
 <city>Coralville</city>
 </entry>
 <entry>
 <name gender="female">Candy Barr</name>
 <phone>335-4582</phone>
 <city>North Liberty</city>
 </entry>
 <entry>
 <name gender="female">Barb Wire</name>
 <phone>337-5967</phone>
 <city>Coralville</city>
 </entry>
 </entries>
</phoneNumbers>

Cartesian Product
The most general sort of join includes all pairs of items from
two sequences derived from XML documents.

AxB = { (a,b) | a∈A and b∈B }

Problem
Find all pairs of persons from the XML documents
roster.xml and phone.xml.

50 Copyright 2006 by Ken Slonneger XQuery

File: cartesian.xq
declare variable $roster := doc("roster.xml");
declare variable $phone := doc("phone.xml");
<pairs>
{

for $s in $roster/roster/students/student
for $e in $phone/phoneNumbers/entries/entry
return

<pair>
{ concat("(", $s/name/text(), ", ", $ e/name/text(), ")") }
</pair>

}
</pairs>

Results from cartesian.xq
<?xml version="1.0" encoding="UTF-8"?>
<pairs>

<pair>(Rusty Nail, Rusty Nail)</pair>
<pair>(Rusty Nail, Guy Wire)</pair>
<pair>(Rusty Nail, Eileen Dover)</pair>
<pair>(Rusty Nail, Candy Barr)</pair>
<pair>(Rusty Nail, Barb Wire)</pair>
<pair>(Guy Wire, Rusty Nail)</pair>
<pair>(Guy Wire, Guy Wire)</pair>
<pair>(Guy Wire, Eileen Dover)</pair>
<pair>(Guy Wire, Candy Barr)</pair>
<pair>(Guy Wire, Barb Wire)</pair>
<pair>(Norman Conquest, Rusty Nail)</pair>
<pair>(Norman Conquest, Guy Wire)</pair>
<pair>(Norman Conquest, Eileen Dover)</pair>
<pair>(Norman Conquest, Candy Barr)</pair>
<pair>(Norman Conquest, Barb Wire)</pair>
<pair>(Eileen Dover, Rusty Nail)</pair>
<pair>(Eileen Dover, Guy Wire)</pair>

XQuery Copyright 2006 by Ken Slonneger 51

<pair>(Eileen Dover, Eileen Dover)</pair>
<pair>(Eileen Dover, Candy Barr)</pair>
<pair>(Eileen Dover, Barb Wire)</pair>
<pair>(Barb Wire, Rusty Nail)</pair>
<pair>(Barb Wire, Guy Wire)</pair>
<pair>(Barb Wire, Eileen Dover)</pair>
<pair>(Barb Wire, Candy Barr)</pair>
<pair>(Barb Wire, Barb Wire)</pair>

</pairs>

Observe that each document contains information for five
persons. The cartesian product therefore contains 25 ordered
pairs.

Inner Joins
Usually we do not want all possible ordered pairs of elements
from the two sequences.
With an inner join we select only those pairs that are equal or
are related in some particular way.

Problem
Find all students in roster.xml who are in the phone
document as well.

File: equi-join.xq
<students>
{
 for $s in doc("roster.xml")/roster/students/student
 for $e in doc("phone.xml")/phoneNumbers/entries/entry
 where $s/name = $e/name
 return
 <student>
 { $s/name }
 </student>
}
</students>

52 Copyright 2006 by Ken Slonneger XQuery

Results from equi-join.xq
<?xml version="1.0" encoding="UTF-8"?>
<students>
 <student>
 <name>Rusty Nail</name>
 </student>
 <student>
 <name>Guy Wire</name>
 </student>
 <student>
 <name>Eileen Dover</name>
 </student>
 <student>
 <name>Barb Wire</name>
 </student>
</students>

More complicated conditions on the elements of the two
sequences to be combined can be used to solve more
challenging problems.

XQuery Copyright 2006 by Ken Slonneger 53

Problem
Find all students who are in the roster document and
the phone document and are females from Coralville,
showing their names and id numbers.

File: coralville.xq
<students>
{

for $s in doc("roster.xml")/roster/students/student
for $e in doc("phone.xml")/phoneNumbers/entries/entry
where $s/name=$e/name and

$e/name/@gender="female" and
$e/city="Coralville"

return
<student>
{ $s/@id, $s/name }
</student>

}
</students>

Results from coralville.xq
<?xml version="1.0" encoding="UTF-8"?>
<students>
 <student id="49194">
 <name>Eileen Dover</name>
 </student>
 <student id="137745">
 <name>Barb Wire</name>
 </student>
</students>

54 Copyright 2006 by Ken Slonneger XQuery

Problem
Find all female students in roster.xml whose projects
scores are all greater than 20.

File: project20.xq
<students>
{

for $s in doc("roster.xml")/roster/students/student
for $e in doc("phone.xml")/phoneNumbers/entries/entry
where $s/name=$e/name and

$e/name/@gender="female" and
(every $p in $s/projects/project

satisfies number($p) gt 20)
return

<student>
{ $s/name }
</student>

}
</students>

Results from project20.xq
<?xml version="1.0" encoding="UTF-8"?>
<students>
 <student>
 <name>Eileen Dover</name>
 </student>
 <student>
 <name>Barb Wire</name>
 </student>
</students>

XQuery Copyright 2006 by Ken Slonneger 55

Problem
Find the phone number(s) of the student(s) who
scored highest on exam 3.

In the solution to this problem we need to allow for the case
where there are no exams in the sequence defined by the
XPath expression.
To make this query more challenging we have changed the
third exam score of Rusty Nail to 89 so that two students
have the maximum score.

File: max3.xq
declare variable $roster := doc("roster.xml");
declare variable $phone := doc("phone.xml");
<students>
{

let $exams :=
(for $s in $roster/roster/students/student
 for $e in $phone/phoneNumbers/entries/entry
 where $s/name=$e/name
 return $s)/exams/exam[3]

return
if (count($exams) > gt 0)
then

let $mx := max($exams)
return

for $s in $roster/roster/students/student
for $e in $phone/phoneNumbers/entries/entry
where $s/name=$e/name and

xs:integer($s/exams/exam[3])
=xs:integer($mx)

56 Copyright 2006 by Ken Slonneger XQuery

return
<student>
{ $e/phone }

</student>
else ()

}
</students>

Results from max3.xq
<?xml version="1.0" encoding="UTF-8"?>
<students>
 <student>
 <phone>335-0055</phone>
 </student>
 <student>
 <phone>354-9876</phone>
 </student>
</students>

Self-Joins
The sequences in a join may come from the same XML
document creating what is know as a self-join.

Problem
For each person in the phone.xml document, find all
others who live in the same city.

XQuery Copyright 2006 by Ken Slonneger 57

File: samecity.xq
declare variable $phone := doc("phone.xml");
<people>
{

for $p1 in $phone/phoneNumbers/entries/entry
return

<person>
<name>{ $p1/name/text() }</name>
<neighbors>
{

for $p2 in $phone/phoneNumbers/entries/entry
where not($p1 is $p2) and $p1/city=$p2/city
return
<name>{ $p2/name/text() }</name>

}
</neighbors>

</person>
}
</people>

Results from samecity.xq
<?xml version="1.0" encoding="UTF-8"?>
<people>

<person>
<name>Rusty Nail</name>
<neighbors/>

</person>
<person>

<name>Guy Wire</name>
<neighbors>

<name>Eileen Dover</name>
<name>Barb Wire</name>

</neighbors>
</person>

58 Copyright 2006 by Ken Slonneger XQuery

<person>
<name>Eileen Dover</name>
<neighbors>

<name>Guy Wire</name>
<name>Barb Wire</name>

</neighbors>
</person>
<person>

<name>Candy Barr</name>
<neighbors/>

</person>
<person>

<name>Barb Wire</name>
<neighbors>

<name>Guy Wire</name>
<name>Eileen Dover</name>

</neighbors>
</person>

</people>

Problem
For each student in roster.xml, find all other students
who have higher scores on project 1 and on project 2.

XQuery Copyright 2006 by Ken Slonneger 59

File: higherp.xq
declare variable $roster := doc("roster.xml");
<students>
{

for $s1 in $roster/roster/students/student
return

<student>
{

$s1/name,
<higher>
 {

for $s2 in $roster/roster/students/student
where

$s2/projects/project[1] gt $s1/projects/project[1]
and
$s2/projects/project[2] gt $s1/projects/project[2]

return
$s2/name

}
 </higher>

}
</student>

}
</students>

Results from higherp.xq
<?xml version="1.0" encoding="UTF-8"?>
<students>

<student>
<name>Rusty Nail</name>
<higher>

<name>Barb Wire</name>
</higher>

</student>

60 Copyright 2006 by Ken Slonneger XQuery

<student>
<name>Guy Wire</name>
<higher>

<name>Rusty Nail</name>
<name>Norman Conquest</name>
<name>Barb Wire</name>

</higher>
</student>
<student>

<name>Norman Conquest</name>
<higher>

<name>Barb Wire</name>
</higher>

</student>
<student>

<name>Eileen Dover</name>
<higher>

<name>Rusty Nail</name>
<name>Norman Conquest</name>
<name>Barb Wire</name>

</higher>
</student>
<student>

<name>Barb Wire</name>
<higher/>

</student>
</students>

XQuery Copyright 2006 by Ken Slonneger 61

Imperative Programming: Day of the Week
The Schillo algorithm for calculating the day of the week from
the month, day, and year can be expressed as an XQuery
function.

File: dow.xq
declare namespace myfun = "myfun.slonnegr.cs.uiowa.edu";
declare function myfun:dow($m, $d, $y)
{

let $mn := if ($m > 2) then $m - 2 else $m + 10
let $yr := if ($m > 2) then $y else $y - 1
let $ct := $yr idiv 100
let $an := $yr mod 100
let $base := (13 * $mn - 1) idiv 5 + $an idiv 4 + $ct idiv 4
let $rem := ($base + $an + $d - 2 * $ct) mod 7
let $offset := if ($rem < 0) then $rem + 7 else $rem
return if ($offset = 0) then "Sunday"

else if ($offset = 1) then "Monday"
else if ($offset = 2) then "Tuesday"
else if ($offset = 3) then "Wednesday"
else if ($offset = 4) then "Thursday"
else if ($offset = 5) then "Friday"
else if ($offset = 6) then "Saturday"
else "error"

};
<dow>
{
 element last { myfun:dow(12, 8, 2006) },
 element ww1 { myfun:dow(11, 11, 1918) },
 element ww2 { myfun:dow(12, 7, 1941) },
 element ny { myfun:dow(9, 11, 2001) },
 element first { myfun:dow(1, 1, 2001) }
}
</dow>

62 Copyright 2006 by Ken Slonneger XQuery

Results from dow.xq
<?xml version="1.0" encoding="UTF-8"?>
<dow>
 <last>Friday</last>
 <ww1>Monday</ww1>
 <ww2>Sunday</ww2>
 <ny>Tuesday</ny>
 <first>Monday</first>
</dow>

Square Roots with Newton's Method
XQuery has no function for computing the square root of a
floating-point number.
We provide such a function using Newton's method.
First we show a method in Java that solves the problem.
Rather than testing for convergence, we simple calculate the
first 20 terms in the sequence that converges to the square
root.

Sqrt in Java
static double sqrt(double x)
 {

double oldx, newx = x/2.0;
for (int k=1; k<=20; k++)
{

oldx = newx;
newx = (oldx * oldx + x)/(2.0 * oldx);

}
return newx;

}

XQuery Copyright 2006 by Ken Slonneger 63

Since XQuery has no imperative variables, this algorithm needs
to be expressed using recursion so that we can pass the
changing values as parameters.
First we write a tail recursive version of the algorithm in Java.
This approach requires two methods, one to start the recursion
and another to do the recursion, passing the changing "variable"
values as parameters.

static double sqrt(double x)
{

return step(20, x, x/2.0);
}

static double step(int k, double x, double oldx)
{

double newx = (oldx * oldx + x)/(2.0 * oldx);
if (k <= 0)

return newx;
else

return step(k-1, x, newx);
}

The method step is tail recursive because the only time it calls
itself is as the last action in its body.

64 Copyright 2006 by Ken Slonneger XQuery

Sqrt in XQuery
The last Java definition translates into XQuery in a
straightforward manner.
Since we want to perform the calculations using the xs:double
type, we need to express literals using e or E.
Numeric literals with a decimal point are viewed as xs:decimal, a
type that will not be implemented as efficiently for arithmetic.

File: sqrt.xq
declare namespace myfun = "myfun.slonnegr.cs.uiowa.edu";
declare function myfun:sqrt($x)
{

myfun:step(20, $x, $x div 2e1)
};
declare function myfun:step($k, $x, $oldx)
{

let $newx := ($oldx * $oldx + $x) div ($oldx + $oldx)
return if ($k <= 0)

then $newx
else myfun:step($k - 1, $x, $newx)

};
<squareRoots>
{

for $x in (1 to 15)
return <root num="{ $x }">

{ myfun:sqrt($x) }
</root>

}
</squareRoots>

XQuery Copyright 2006 by Ken Slonneger 65

Results from sqrt.xq
<?xml version="1.0" encoding="UTF-8"?>
<squareRoots>
 <root num="1">1</root>
 <root num="2">1.414213562373095</root>
 <root num="3">1.7320508075688774</root>
 <root num="4">2</root>
 <root num="5">2.23606797749979</root>
 <root num="6">2.4494897427831783</root>
 <root num="7">2.6457513110645907</root>
 <root num="8">2.82842712474619</root>
 <root num="9">3</root>
 <root num="10">3.1622776601683795</root>
 <root num="11">3.3166247903554</root>
 <root num="12">3.4641016151377544</root>
 <root num="13">3.605551275463989</root>
 <root num="14">3.7416573867739413</root>
 <root num="15">3.8729833462074166</root>
</squareRoots>

Static Typing and Dynamic Typing
A programming language is typed statically if variables and
functions are declared to be certain types in the text of the
program and the compiler verifies the consistent use of these
variables and functions.
A language is dynamically typed if variables and functions are
not typed in the program, so that the runtime system needs to
determine the type of expressions during the execution of the
program.

66 Copyright 2006 by Ken Slonneger XQuery

Strong Typing in XQuery
XQuery allows a programmer to type variables when they first
occur in a program and the results of functions when they are
defined.
Variables are created in a for clause, in a let clause, a declare
variable clause, and as parameters to functions.
A variable is declared as a certain type by adding a phrase,
as some-type, after the variable
Typing is illustrated by new versions of the day of the week
problem and the square root problem.
In both cases, the results are identical to the previous versions.
The first program chooses the day string differently.

File: dowt.xq
declare function myfun:dow($m as xs:integer,

$d as xs:integer,
$y as xs:integer) as xs:string

{
let $mn as xs:integer := if ($m > 2) then $m - 2 else $m + 10
let $yr as xs:integer := if ($m > 2) then $y else $y - 1
let $ct as xs:integer := $yr idiv 100
let $an as xs:integer := $yr mod 100
let $base as xs:integer :=

(13 * $mn - 1) idiv 5 + $an idiv 4 + $ct idiv 4
let $rem as xs:integer := ($base + $an + $d - 2 * $ct) mod 7
let $offset as xs:integer :=

if ($rem < 0) then $rem + 7 else $rem
return let $days := ("Sunday", "Monday", "Tuesday",

"Wednesday","Thursday", "Friday", "Saturday")
 return $days[$offset + 1]

};

XQuery Copyright 2006 by Ken Slonneger 67

Square Root Program
File: sqrtt.xq

declare namespace myfun = "myfun.slonnegr.cs.uiowa.edu";
declare function myfun:sqrt($x as xs:double) as xs:double
{

myfun:step(20, $x, $x div 2e1)
};
declare function myfun:step($n as xs:integer,

$x as xs:double,
$oldx as xs:double) as xs:double

{
let $newx as xs:double :=

($oldx * $oldx + $x) div ($oldx + $oldx)
return if ($n <= 0)

then $newx
else myfun:step($n - 1, $x, $newx)

};
<squareRoots>
{

for $x as xs:integer in (1 to 15) (: coerced to xs:double :)
return <root num="{ $x }">

{ myfun:sqrt($x) }
</root>

}
</squareRoots>

Notes on Typing
• Although an XQuery implementation is not required to

provide static type checking, with these declarations,
static type checking is possible and dynamic type checking
will be more effective.

68 Copyright 2006 by Ken Slonneger XQuery

• As with any strongly typed programming language, the
XQuery processor uses the redundant information shown in
the type declarations to recognize programmer errors.

• Observe the use of XML Schema types in XQuery. All of
these types are available, although XQuery programmers
normally use only xs:boolean, xs:string, xs:date, xs:time,
xs:dateTime, xs:double, xs:float, xs:decimal, xs:integer, and
xs:QName.

• Note that we are using the prefix xs without a namespace
declaration. XQuery executes in an environment with five
predefined namespaces:

Prefix Namespace
xs http://www.w3.org/2001/XMLSchema
fn http://www.w3.org/2003/11/xpath-functions

xml http://www.w3.org/XML/1998/namespace
xdt http://www.w3.org/2003/11/xpath-datatypes
xsi http://www.w3.org/2001/XMLSchema-instance

The function namespace is also the default namespace, so
predefined functions may be access in two ways: fn:concat or
just concat.

XQuery as a Programming Language
XQuery is a fully Turing complete programming language, but
there are many algorithms for which it is not well suited.

Some Language Properties
• Can be statically typed
• Can be strongly typed
• Parameters passed by value
• Static scoping is followed
• Parameters use positional correspondence
• Methods have no side effects
• Referentially transparent
• Declarative

XQuery Copyright 2006 by Ken Slonneger 69

Example: Translating to German
This is another problem that we solved in the XSLT chapter.
The goal is to translate the phoneA.xml document into another
XML document with the same content and structure but with all
of the tags expressed in German.
Since the structure of the document is known ahead of time,
the XQuery program follows that structure using literal
elements (start and end tags).
But since the gender attribute may or may not occur in a name
element, it must be created dynamically. Other solutions may
be possible.
Whether to include the gender attribute, the middle element,
and the city element depends on their existence in the original
XML document. We use the conditional expression (if-then-
else) to determine whether they are present.
Observe the use of parentheses and a comma to build a single
value for the first return command.

File: german.xq
<Telefonnummern>
{

let $doc := doc("phoneA.xml")
return
(

<Titel>{ $doc/phoneNumbers/title/text() }</Titel>,
<Eintraege>
{

for $e in $doc/phoneNumbers/entries/entry
let $gender := $e/name/@gender
let $middle := $e/name/middle/text()
let $city := $e/city/text()

70 Copyright 2006 by Ken Slonneger XQuery

return
<Eintrag>

<Name>
{

if ($gender)
 then attribute Geschlect { $gender } else ()

}
<Vorname1>{ $e/name/first/text() }</Vorname1>
{

if ($middle)
then <Vorname2>{ $middle }</Vorname2>
else ()

}
<Nachname>{ $e/name/last/text() }

</Nachname>
</Name>
<Telefonnummer>

{ $e/phone/text() }
</Telefonnummer>
{

if ($city) then <Stadt>{ $city }</Stadt> else ()
}

</Eintrag>
}
</Eintraege>

)
}
</Telefonnummern>

Recall that $e/name/last produces the element <last>Nail</last>,
whereas $e/name/last/text() produces just the string "Nail".
The output from executing this XQuery program is identical to
that obtained from the stylesheet in the XSLT chapter.
You might want to compare the XQuery program with the XSLT
stylesheet to form an opinion about the effectiveness of these
two technologies.

XQuery Copyright 2006 by Ken Slonneger 71

XQuery in Java
No standard has been developed for executing XQuery in
Java at this time.
However, several systems that link XQuery to Java have
been proposed and developed.
We consider one that appears to be fairly complete (and
free): Saxon.

Classes and Interfaces
The following classes and interfaces are used to run XQuery
from Java in Saxon.
Some of these items come from the Java API.
net.sf.saxon.Configuration

This class holds details of user-selected configuration
options.
We need to create one object of this class, but do not
need any of its instance methods at this time.

Configuation config = new Configuration();

net.sf.saxon.query.StaticQueryContext
An object of this class holds information about the static
context that is used when a query is compiled.
We need to create one object of this class using the
Configuration object.

StaticQueryContext sqc =
new StaticQueryContext(config);

This object can be used to build an object that
encapsulates a stream connected to an XML document.

DocumentInfo doc =
sqc.buildDocument(

new StreamSource("phoneA.xml"));

72 Copyright 2006 by Ken Slonneger XQuery

net.sf.saxon.query.DynamicQueryContext
An object of this class contains a dynamic context for
query execution.
We need to create one object of this class using the
Configuration object.

DynamicQueryContext dqc =
new DynamicQueryContext(config);

This object can hold a reference to a stream that
encapsulates the XML document to be queried.

dqc.setContextItem(
sqc.buildDocument(

new StreamSource("phoneA.xml")));

net.sf.saxon.query.XQueryExpression
An object of this class represents a compiled XQuery
query. It is created by calling an overloading instance
method on the StaticQueryContext object.

XQueryExpression exp1 =
sqc.compileQuery(queryString);

XQueryExpression exp2 =
sqc.compileQuery(readerObject);

XQueryExpression contains several instance methods for
evaluating a compiled XQuery query.
java.util.List evaluate(DynamicQueryContent dqc)

The evaluate method executes the compiled query
using the DynamicQueryContext object and returning a
the result as a sequence (a node set).

XQuery Copyright 2006 by Ken Slonneger 73

Object evaluateSingle(DynamicQueryContent dqc)
The evaluateSingle method executes the compiled
query, returning the first (or only) item in the result.
This method is particularly useful when the expression
returns only a single value, such as a string, a number,
or a boolean.
The resulting value may need to be downcast to String,
Long or Double, or Boolean.

void run(DynamicQueryContext dqc,
javax.xml.transform.Result res,

java.util.Properties props)
The run method executes the compiled query, sending the
results directly to a Result object, usually a StreamResult
object from the package javax.xml.transform.stream.
The class StreamResult implements the interface Result
and has constructors that take a Writer (a FileWriter
usually), a File object, or an OutputStream (System.out
usually) as a parameter.
The third parameter is a java.util.Properties object that
describes various constraints on the result, such as the
following.

props.setProperty(OutputKeys.METHOD, "xml");
props.setProperty(OutputKeys.INDENT, "yes");

net.sf.saxon.om.SequenceIterator
iterator(DynamicQueryContext dqc)

The iterator method executes the compiled query,
returning an iterator object containing the node set
result. See the documentation to learn how to use a
SequenceIterator object since it is slightly different from
java.util.Iterator.

74 Copyright 2006 by Ken Slonneger XQuery

net.sf.saxon.trans.XPathException
This exception may be thrown by buildDocument,
compileQuery, evaluate, evaluateSingle, run, and iterator

javax.xml.transform.OutputKeys
This class contains a collection of useful constants (static
final variables), including METHOD, INDENT, ENCODING,
STANDALONE, and DOCTYPE_PUBLIC.

javax.xml.transform.stream.StreamSource
The objects of this class encapsulate an input stream of
XML markup data. It has constructors that take a Reader,
an InputStream, a File, or a String (a URI) as a parameter.

javax.xml.transform.stream.StreamResult
The objects of this class encapsulate an output stream of
XML markup data. It has constructors that take a Writer,
an OutputStream, a File, or a String (a URI) as a parameter.

Example Applications
Now we write several Java programs that use the Saxon API
to execute XQuery queries to solve various problems, some
of which were solved using DOM, SAX, or both.
The first example provides an XQuery evaluator that takes a
string specifying the output method ("xml", "html", or "text")
and the name of a file that contains an XQuery query.
Sample Execution

java Execute xml german.xq
java Execute html table.xq

where table.xq is a query that builds an HTML table containing
the information in phoneA.xml.

XQuery Copyright 2006 by Ken Slonneger 75

File: Execute.java
import net.sf.saxon.Configuration;
import net.sf.saxon.query.DynamicQueryContext;
import net.sf.saxon.query.StaticQueryContext;
import net.sf.saxon.query.XQueryExpression;
import net.sf.saxon.trans.XPathException;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import java.io.*;
import java.util.Properties;

public class Execute
{

public static void main(String [] args)
{

if (args.length != 2)
throw new IllegalArgumentException(

"Usage: java Execute method queryFile");
String meth = args[0];
String xqFile = args[1];
if (!meth.equals("xml") &&

!meth.equals("html") &&
!meth.equals("text"))

throw new IllegalArgumentException(
"Bad method specification.");

try
{

Configuration config = new Configuration();
StaticQueryContext sqc =

new StaticQueryContext(config);

76 Copyright 2006 by Ken Slonneger XQuery

DynamicQueryContext dqc =
new DynamicQueryContext(config);

XQueryExpression exp =
sqc.compileQuery(new FileReader(xqFile));

Properties props = new Properties();
props.setProperty(OutputKeys.METHOD, meth);
if (meth.equals("html"))

props.setProperty(OutputKeys.DOCTYPE_PUBLIC,
 "-//W3C//DTD HTML 4.01 Transitional//EN");

int pos = xqFile.indexOf(".");
if (pos >= 0) xqFile = xqFile.substring(0, pos);
File file = new File(xqFile + "." + meth);
exp.run(dqc, new StreamResult(file), props);

}
catch (XPathException e)
{ System.out.println(e); }
catch (IOException e)
{ System.out.println(e); }

}
}

Testing Execute.java
The XML example using german.xq works fine with Execute,
creating a file named german.xml.
For HTML we have a query file table.xq that analyzes the XML
document phoneA.xml and generates an HTML document that
creates a table to display the information.
The query file is shown on the next page.
Observe that we need to run the gender attribute value
through the string function to get the query to work properly.
Otherwise the gender attribute is added to the td element in
the HTML.

XQuery Copyright 2006 by Ken Slonneger 77

File: table.xq
<html>

<head>
<title>A list of phone numbers</title>

</head>
<body>

<h1>Phone Numbers</h1>
<table border="2" cellpadding="5">

<tr bgcolor="ffaacc">
<th>Name</th> <th>Gender</th>
<th>Phone</th> <th>City</th>

</tr>
{

for $e in
doc("phoneA.xml")/phoneNumbers/entries/entry

let $first := $e/name/first/text()
let $last := $e/name/last/text()
let $phone := $e/phone/text()
let $city := $e/city/text()
order by $e/name/last
return

<tr>
<td> { concat($first," ",$last) } </td>
<td> { string($e/name/@gender) } </td>
<td> { $phone } </td>
<td> { $city } </td>

</tr>
}

</table>
</body>

</html>

78 Copyright 2006 by Ken Slonneger XQuery

Result: table.html
<!DOCTYPE html
 PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">
 <title>A list of phone numbers</title>
 </head>
 <body>
 <h1>Phone Numbers</h1>
 <table border="2" cellpadding="5">
 <tr bgcolor="ffaacc">
 <th>Name</th>
 <th>Gender</th>
 <th>Phone</th>
 <th>City</th>
 </tr>
 <tr>
 <td>Helen Back</td>
 <td>female</td>
 <td>337-5967</td>
 <td></td>
 </tr>
 <tr>
 <td>Justin Case</td>
 <td>male</td>
 <td>354-9876</td>
 <td>Coralville</td>
 </tr>
 <tr>
 <td>Pearl Gates</td>
 <td>female</td>
 <td>335-4582</td>
 <td>North Liberty</td>
 </tr>

XQuery Copyright 2006 by Ken Slonneger 79

 <tr>
 <td>Rusty Nail</td>
 <td></td>
 <td>335-0055</td>
 <td>Iowa City</td>
 </tr>
 </table>
 </body>
</html>

Producing Text Output
To illustrate the use of "text" as the output method, we write
a query that extracts information from phoneA.xml and prints
it as labeled text.

File: phoneText.xq
for $e in doc("phoneA.xml")/phoneNumbers/entries/entry
let $cr := "

"
let $g := $e/name/@gender
let $gender := if ($g) then concat("Gender = ", $g, $cr)

else ()
let $c := $e/city/text()
let $city := if ($c) then concat("City = ", $c, $cr)

 else ()
order by $e/name/last
return

concat ("Name = ", $e/name/first/text(), " ",
 $e/name/last/text(), $cr,
 $gender,
 "Phone = ", $e/phone/text(), $cr,
 $city, $cr
)

80 Copyright 2006 by Ken Slonneger XQuery

Resulting text: phoneText.text
Name = Helen Back
Gender = female
Phone = 337-5967

 Name = Justin Case
Gender = male
Phone = 354-9876
City = Coralville

 Name = Pearl Gates
Gender = female
Phone = 335-4582
City = North Liberty

 Name = Rusty Nail
Phone = 335-0055
City = Iowa City

Observations
• The extra space in front of the last three Name labels is

inexplicable.
• The string function was not needed for the attribute value

unlike the previous example.
• Escaped line feed and return characters (\n and \r) are

viewed as plain text and not the control characters we
want. That is why the variable $cr is defined as it is.

• Conclusion: XQuery is not as well suited to create text
output as it is to build XML and HTML documents.

XQuery Copyright 2006 by Ken Slonneger 81

Building Java Objects from XML
In the next example we extract information from phoneA.xml
and use it to build an ArrayList of Entry objects.

This problem was solved previously using both DOM
(PhoneParser.java) and SAX (SaxPhone.java).
The result of the query that determines the number of entry
elements in the XML document must cast to Long.

For some reason, we need to apply the string function to the
results of each of the queries that extract phone data. Using
text() did not work.
Queries for elements or attributes that do not exist produce
empty strings.

This program uses the same version of the Entry class and the
Name class as was used in the DOM chapter.

The execution of this program creates the same output as the
program in the DOM chapter.

82 Copyright 2006 by Ken Slonneger XQuery

File: QueryPhone.java
import net.sf.saxon.Configuration;
import net.sf.saxon.query.DynamicQueryContext;
import net.sf.saxon.query.StaticQueryContext;
import net.sf.saxon.query.XQueryExpression;
import net.sf.saxon.trans.XPathException;
import javax.xml.transform.stream.StreamSource;
import java.util.*;

public class QueryPhone
{

public static void main(String [] args)
{

List<Entry> entries = new ArrayList<Entry>();
try
{

Configuration config = new Configuration();
StaticQueryContext sqc =

new StaticQueryContext(config);
DynamicQueryContext dqc =

new DynamicQueryContext(config);
dqc.setContextItem(

sqc.buildDocument(
new StreamSource("phoneA.xml")));

String query = "count(/phoneNumbers/entries/entry)";
XQueryExpression exp = sqc.compileQuery(query);
Long count = (Long)exp.evaluateSingle(dqc);
int num = count.intValue();

XQuery Copyright 2006 by Ken Slonneger 83

for (int k = 1; k <= num; k++)
{

query =
"string(/phoneNumbers/entries/entry["+k+"]/name/first)";

exp = sqc.compileQuery(query);
String first = (String)exp.evaluateSingle(dqc);
query =

"string(/phoneNumbers/entries/entry["+k+"]/name/middle)";
exp = sqc.compileQuery(query);
String middle = (String)exp.evaluateSingle(dqc);
query =

"string(/phoneNumbers/entries/entry["+k+"]/name/last)";
exp = sqc.compileQuery(query);
String last = (String)exp.evaluateSingle(dqc);
Name name = new Name(first, middle, last);

query =
"string(/phoneNumbers/entries/entry["+k+"]/name/@gender)";

exp = sqc.compileQuery(query);
String gender = (String)exp.evaluateSingle(dqc);
query =

"string(/phoneNumbers/entries/entry["+k+"]/phone)";
exp = sqc.compileQuery(query);
String phone = (String)exp.evaluateSingle(dqc);
query =

"string(/phoneNumbers/entries/entry["+k+"]/city)";
exp = sqc.compileQuery(query);
String city = (String)exp.evaluateSingle(dqc);

84 Copyright 2006 by Ken Slonneger XQuery

Entry ent = new Entry(name, gender, phone, city);
entries.add(ent);

}
}
catch (XPathException ex)
{ System.out.println(ex); }
for (int k = 0; k < entries.size(); k++)
{

Entry anEntry = entries.get(k);
System.out.println(anEntry);

}
}

}

Creating an XML Document
This program builds an XML document from an ArrayList of
Entry objects in the same way as the program XMLBuilder in
the DOM chapter.
The idea of the program is to create an XQuery query string
based on the information found in the Entry objects in an
ArrayList.
A method makeQuery builds the query string in a StringBuffer,
converts the StringBuffer to a String, and returns the String.
That query string is then executed using the Saxon Java API.

File: QueryBuilder.java
import net.sf.saxon.Configuration;
import net.sf.saxon.query.DynamicQueryContext;
import net.sf.saxon.query.StaticQueryContext;
import net.sf.saxon.query.XQueryExpression;
import net.sf.saxon.trans.XPathException;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.stream.StreamResult;

XQuery Copyright 2006 by Ken Slonneger 85

import java.io.*;
import java.util.*;
public class QueryBuilder
{

static String mkQuery(List<Entry> entries)
{

StringBuffer query =
new StringBuffer("<phoneNumbers>");

query.append("{ (element title { \"Phone Numbers\" }, ");
query.append("element entries { (");
boolean first = true;
for (Entry anEntry : entries)
{

if (!first) query.append(", "); // put a comma
first = false; // between entries
query.append("element entry { (element name { (");
Name name = anEntry.getName();
String gender = anEntry.getGender();
if (gender != null)

query.append("attribute gender {\"" + gender + "\" },");
query.append("element first { \"" + name.getFirst() + "\" },");
String middle = name.getMiddle();
if (middle != null)

query.append("element middle {\"" + middle + "\" },");
query.append("element last { \""

+ name.getLast() + "\" }) },");
query.append("element phone { \""

+ anEntry.getPhone() + "\" }");
String city = anEntry.getCity();
if (city != null && !city.equals(""))

query.append(", element city { \"" + city + "\" }");
query.append(") }");

}

86 Copyright 2006 by Ken Slonneger XQuery

query.append(") }) } </phoneNumbers>");
return query.toString();

}
public static void main(String [] args)
{

List<Entry> entries = new ArrayList<Entry>();
entries.add(new Entry(new Name("Robin", "Banks"),

"354-4455"));
entries.add(new Entry(new Name("Forrest", "Murmers"),

"male", "341-6152", "Solon"));
entries.add(new Entry(new Name("Barb", "A", "Wire"),

 "337-8182", "Hills"));
entries.add(new Entry(new Name("Isabel", "Ringing"),

"female", "335-5985", null));
String query = mkQuery(entries);
System.out.println(query); // for debugging query
try
{

Configuration config = new Configuration();
StaticQueryContext sqc =

new StaticQueryContext(config);
DynamicQueryContext dqc =

new DynamicQueryContext(config);
XQueryExpression exp = sqc.compileQuery(query);
Properties props = new Properties();
props.setProperty(OutputKeys.METHOD, "xml");
File file = new File("newPhone.xml");
exp.run(dqc, new StreamResult(file), props);

}
catch (Exception e)
{ System.out.println(e); }

}
}

XQuery Copyright 2006 by Ken Slonneger 87

Query String Built by QueryBuilder
<phoneNumbers>
{

(element title { "Phone Numbers" },
element entries
{ (element entry

 { (element name
{ (element first { "Robin" },
 element last { "Banks" }) },

 element phone { "354-4455" }) },
element entry { (element name

{ (attribute gender {"male" },
 element first { "Forrest" },
 element last { "Murmers" }) },

 element phone { "341-6152" },
 element city { "Solon" }) },

element entry
{ (element name

{ (element first { "Barb" },
 element middle {"A" },
 element last { "Wire" }) },

 element phone { "337-8182" },
 element city { "Hills" }) },

 element entry
{ (element name

{ (attribute gender {"female" },
 element first { "Isabel" },
 element last { "Ringing" }) },

 element phone { "335-5985" }) }) })
}
</phoneNumbers>

88 Copyright 2006 by Ken Slonneger XQuery

File: newPhone.xml
<?xml version="1.0" encoding="UTF-8"?>
<phoneNumbers>
 <title>Phone Numbers</title>
 <entries>
 <entry>
 <name>
 <first>Robin</first>
 <last>Banks</last>
 </name>
 <phone>354-4455</phone>
 </entry>
 <entry>
 <name gender="male">
 <first>Forrest</first>
 <last>Murmers</last>
 </name>
 <phone>341-6152</phone>
 <city>Solon</city>
 </entry>
 <entry>
 <name>
 <first>Barb</first>
 <middle>A</middle>
 <last>Wire</last>
 </name>
 <phone>337-8182</phone>
 <city>Hills</city>
 </entry>
 <entry>
 <name gender="female">
 <first>Isabel</first>
 <last>Ringing</last>
 </name>
 <phone>335-5985</phone>
 </entry>
 </entries>
</phoneNumbers>

