
Pipes Copyright 2007 by Ken Slonneger 1

Pipes

A pipe is a stream mechanism that connects two threads
so that output from one becomes input to the other.

Properties of a Pipe
• Uni-directional stream
• Buffered communication conduit
• Thread-safe
• Two ends to a pipe, one each for sending and receiving

Pipes come in two varieties
1. byte streams using the classes

PipedInputStream
PipedOutputStream

2. character streams using the classes
PipedReader
PipedWriter

Bytes Bytes

PipedInputStreamPipedOutputStream connected to

2 Copyright 2007 by Ken Slonneger Pipes

Constructing a Pipe

Create two pipe stream objects, one for output and one for
input, and connect the objects to form a single pipe.

PipedOutputStream pipeOut =new PipedOutputStream();

PipedInputStream pipeIn = new PipedInputStream();

pipeOut.connect(pipeIn);
or

pipeIn.connect(pipeOut);

Alternatively, the second piped stream can be connected to
the first using another constructor:

PipedInputStream pipeIn =
new PipedInputStream(pipeOut);

Note that the pipe just set up provides a byte stream whose
ends are of type OutputStream and InputStream, respectively.

The ends of the pipe can then be wrapped as a
DataOutputStream and DataInputStream for sending binary
data from one thread to another.

Example: Hamming Numbers

Generate the sequence of integers consisting of 1 and the
numbers whose only factors are 2, 3, and 5, in ascending
order with no duplicates.

Want to produce the increasing sequence of all numbers
of the form 2i•3j•5k where i≥0, j≥0, and k≥0.

Pipes Copyright 2007 by Ken Slonneger 3

Two Observations

• If h is a Hamming number, then so are 2•h,
3•h, and 5•h.

• If n≠1 is a Hamming number, then n = 2•h,
n = 3•h, or n = 5•h for some Hamming number h.

Note that there may be more than one way of calculating n.

First 15 Hamming numbers:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24

Note that 16 = 2•8 whereas 20 = 2•10 and 5•4.

Solution using Four Threads
• One thread receives a number from the main method

and sends back 2 times that number.

• Another thread receives a number from the main
method and sends back 3 times that number.

• Another thread receives a number from the main
method and sends back 5 times that number.

• The main method, also a thread, prints 1 and sends
1 to each of the other threads. It then receives the
numbers sent by the other threads, printing the next
larger number and sending it back to the other threads.

This solution requires six pipes connected to the main
method for sending and receiving numbers to and from
each of the other three threads.

The three threads that multiply by 2, 3, and 5 are
instances of the class Multiple, which is given the
ends of two pipes in its constructor.

4 Copyright 2007 by Ken Slonneger Pipes

Each thread wraps the pipes as DataInput and DataOutput
streams to facilitate communicating binary integers.

import java.io.*;
class Multiple extends Thread
{

private int mult;
private DataInputStream in;
private DataOutputStream out;

public Multiple(int m, PipedInputStream i,
PipedOutputStream o)

{ mult = m;
try
{ in = new DataInputStream(new PipedInputStream(o));

out = new DataOutputStream(new PipedOutputStream(i));
}
catch (IOException e) { }

}

public void run()
{

try
{ while (true)

{ int k = in.readInt();
out.writeInt(mult*k);

}
}
catch (IOException e) { }

}
}

Pipes Copyright 2007 by Ken Slonneger 5

The main class sets up the six pipes, starts the three
threads, and begins the Hamming sequence by sending
the number 1 to each of the threads.

This diagram shows how the six pipes are connected
among the four threads.

public class Hamming
{

static int NUMBER = 100;
public static void main(String [] args)
{

try

6 Copyright 2007 by Ken Slonneger Pipes

{
PipedInputStream pipeIn2 = new PipedInputStream();
PipedOutputStream pipeOut2 =

new PipedOutputStream();
new Multiple(2, pipeIn2, pipeOut2).start();

PipedInputStream pipeIn3 = new PipedInputStream();
PipedOutputStream pipeOut3 =

new PipedOutputStream();
new Multiple(3, pipeIn3, pipeOut3).start();

PipedInputStream pipeIn5 = new PipedInputStream();
PipedOutputStream pipeOut5 =

new PipedOutputStream();
new Multiple(5, pipeIn5, pipeOut5).start();

DataInputStream myIn2 =
new DataInputStream(pipeIn2);

DataInputStream myIn3 =
new DataInputStream(pipeIn3);

DataInputStream myIn5 =
new DataInputStream(pipeIn5);

DataOutputStream myOut2 =
new DataOutputStream(pipeOut2);

DataOutputStream myOut3 =
new DataOutputStream(pipeOut3);

DataOutputStream myOut5 =
new DataOutputStream(pipeOut5);

myOut2.writeInt(1); // Send 1 to
myOut3.writeInt(1); // each thread
myOut5.writeInt(1);

// Start generating the sequence

Pipes Copyright 2007 by Ken Slonneger 7

int k = 1; // Counter
int last = 1; // Last term in sequence so far
format(last, 6); // Formatted output

int n2 = myIn2.readInt(); // Get first values
int n3 = myIn3.readInt(); // from each thread
int n5 = myIn5.readInt();

while (k < NUMBER)
{

k++;

// Skip terms that are not bigger than last
while (n2 <= last) n2 = myIn2.readInt();
while (n3 <= last) n3 = myIn3.readInt();
while (n5 <= last) n5 = myIn5.readInt();

// Select the smallest of available numbers
if (n2 <= n3 && n2 <= n5)
{ last = n2;

format(last, 6);
myOut2.writeInt(n2);
myOut3.writeInt(n2);
myOut5.writeInt(n2);
n2 = myIn2.readInt();

}
else if (n3 <= n2 && n3 <= n5)
{ last = n3;

format(last, 6);
myOut2.writeInt(n3);
myOut3.writeInt(n3);

8 Copyright 2007 by Ken Slonneger Pipes

myOut5.writeInt(n3);
n3 = myIn3.readInt();

}
else if (n5 <= n3 && n5 <= n2)
{ last = n5;

format(last, 6);
myOut2.writeInt(n5);
myOut3.writeInt(n5);
myOut5.writeInt(n5);
n5 = myIn5.readInt();

}
if (k%10==0) System.out.println();

}
}
catch (IOException e) { }
System.out.println("That's all");

}

static void format(int n, int size)
{

String s = String.valueOf(n);
for (int k=1; k<=size-s.length(); k++)

System.out.print(" ");
System.out.print(s);

}
}

Pipes Copyright 2007 by Ken Slonneger 9

Output
1 2 3 4 5 6 8 9 10 12

15 16 18 20 24 25 27 30 32 36
40 45 48 50 54 60 64 72 75 80
81 90 96 100 108 120 125 128 135 144

150 160 162 180 192 200 216 225 240 243
250 256 270 288 300 320 324 360 375 384
400 405 432 450 480 486 500 512 540 576
600 625 640 648 675 720 729 750 768 800
810 864 900 960 972 1000 1024 1080 1125 1152

1200 1215 1250 1280 1296 1350 1440 1458 1500 1536
That's all

Example: Character Stream Pipes
Problem: Read text from a file and write it to another file,

removing multiple spaces and formatting the text
so that no line has more than 30 characters.

Solution: The text is processed by a series of threads
that are connected by pipes.
Each thread performs one step of the processing.

Note that the individual threads act on Readers and Writers
and are unaware of the pipes that are connecting them.
Each can be used in other applications that need the
particular behavior that it performs.

Thread One: ReadFile
• Constructor takes a String (file name) and a Writer.
• Characters read from the file are sent to the Writer.
• A final space is appended to the output stream so

that the last word of the text is recognized.

10 Copyright 2007 by Ken Slonneger Pipes

import java.io.*;
class ReadFile extends Thread
{

private String fileName;
private FileReader fr;
private Writer out;

public ReadFile(String fn, Writer w)
{ fileName = fn; out = w; }

public void run()
{

try
{ fr = new FileReader(fileName);

int ch = fr.read();
while (ch != -1)
{

if (out!=null) out.write(ch);
ch = fr.read();

}
}
catch (IOException ioe)
{ System.out.println("Error1:" + ioe); }
finally
{ try

{ if (fr!=null) fr.close();
if (out!=null)
{ out.write(' '); out.close(); }

}
catch (IOException ioe)
{ System.out.println("Error2:" + ioe); }

}
}

} // End of ReadFile Thread

Pipes Copyright 2007 by Ken Slonneger 11

Thread Two: Tokenize
• Constructor takes a Reader and a Writer.
• Characters are read and tokenized as words using

whitespace as the only delimiter.
• The individual words (Strings) are written to the output

stream.

class Tokenize extends Thread
{

private Reader in;
private Writer out;

 private PrintWriter pw;

public Tokenize(Reader r, Writer w)
{

in = r; out = w;
}

public void run()
{

boolean newWord = false;
try
{ pw = new PrintWriter(out);

String word = "";
int ch = in.read();
while (ch != -1)
{

if (Character.isWhitespace((char)ch))
{ if (!newWord && pw!=null)

pw.println(word);
word = "";
newWord = true;

}

12 Copyright 2007 by Ken Slonneger Pipes

else if (newWord)
{ word = word + (char)ch;

newWord = false;
}
else

word = word + (char)ch;
ch = in.read();

}
}
catch (IOException ioe)
{ System.out.println("Error3:" + ioe); }
finally
{ try

{ if (in!=null) in.close();
if (out!=null) out.close();

}
catch (IOException ioe)
{ System.out.println("Error4:" + ioe); }

}
}

} // End of Tokenize Thread

Thread Three: Format
• Constructor takes a Reader and a Writer.
• Read Strings (words) and write them, keeping track

of the length of the line written.
• Insert newlines so that the lines have no more than

30 characters.

class Format extends Thread
{

static final int WIDTH = 30;
private Reader in;
private Writer out;

Pipes Copyright 2007 by Ken Slonneger 13

PrintWriter pw;

public Format(Reader r, Writer w)
{

in = r; out = w;
}
public void run()
{

try
{ BufferedReader br = new BufferedReader(in);

pw = new PrintWriter(out);
int len = 0;
String s = br.readLine();
while (s!=null)
{

if (len + s.length() <= WIDTH)
{

if (pw!=null) pw.print(s + " ");
len = len + s.length() + 1;

}
else
{ if (pw!=null) pw.println();

if (pw!=null) pw.print(s + " ");
len = s.length() + 1;

}
s = br.readLine();

}
}
catch (IOException ioe)
{ System.out.println("Error5:" + ioe); }
finally
{ try

{ if (in!=null) in.close();
if (out!=null) out.close();

}

14 Copyright 2007 by Ken Slonneger Pipes

catch (IOException ioe)
{ System.out.println("Error6:" + ioe); }

}
}

// End of Format Thread

Thread Four: WriteFile
• Constructor takes a Reader and a String, a file name.
• Characters read from stream are written to the new file.

class WriteFile extends Thread
{

private String fileName;
private FileWriter fw;
private Reader in;

public WriteFile(Reader r, String fn)
{

fileName = fn; in = r;
}

public void run()
 {

try
{ fw = new FileWriter(fileName);

int ch = in.read();
while (ch != -1)
{

if (fw!=null) fw.write(ch);
ch = in.read();

}
}
catch (IOException ioe)
{ System.out.println("Error7:" + ioe); }

Pipes Copyright 2007 by Ken Slonneger 15

finally
{ try

{ fw.write('\n');
if (in!=null) in.close();
if (fw!=null) fw.close();

}
catch (IOException ioe)
{ System.out.println("Error8:" + ioe); }

}
}

} // End of WriteFile Thread

Main Program
• Get names of source and target text files.
• Build three pipes.
• Create four threads and start them.
• Wait for threads to terminate.

public class CharStream
{

public static void main(String [] args)
{

String inFile = "", outFile = "";
try
{ BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));

System.out.print("Enter a source file name: ");
inFile = br.readLine().trim();

System.out.print("Enter a target file name: ");
outFile = br.readLine().trim();

PipedReader pin1 = new PipedReader();

16 Copyright 2007 by Ken Slonneger Pipes

PipedWriter pout1 = new PipedWriter();
pin1.connect(pout1);

PipedReader pin2 = new PipedReader();
PipedWriter pout2 = new PipedWriter();
pin2.connect(pout2);

 PipedReader pin3 = new PipedReader();
PipedWriter pout3 = new PipedWriter();
pin3.connect(pout3);

System.out.println("Formatting file " + inFile);

ReadFile rf = new ReadFile(inFile, pout1);
rf.start();

Tokenize tk = new Tokenize(pin1, pout2);
tk.start();

Format fm = new Format(pin2, pout3);
fm.start();

WriteFile wf = new WriteFile(pin3, outFile);
wf.start();

try // Wait for each thread to terminate
{

rf.join(); tk.join(); fm.join(); wf.join();
 }

catch (InterruptedException ie)
{ System.out.println("main interrupted!"); }

System.out.println("Done.");
}
catch (FileNotFoundException fnfe)
{ System.out.println("File not found: " + inFile); }

Pipes Copyright 2007 by Ken Slonneger 17

catch (IOException ioe)
{ System.out.println("Error9:" + ioe); }

}
} // End of CharStream

Overall View

18 Copyright 2007 by Ken Slonneger Pipes

Sample Execution

Enter a source file name: jeeves
Enter a target file name: jeeves.out
Formatting the file jeeves
Done.

File jeeves
Now, touching this business of old Jeeves--my man,
you know--how do we stand?
Lots of people think I'm much too dependent on him.
My Aunt Agatha, in fact, has even gone so
far as to call him my keeper.
Well, what I say is: Why not? The man's a genius.
From the collar upward he stands alone.
I gave up trying to run my own affairs
within a week of his coming to me.

File jeeves.out
Now, touching this business of
old Jeeves--my man, you
know--how do we stand? Lots of
people think I'm much too
dependent on him. My Aunt
Agatha, in fact, has even gone
so far as to call him my
keeper. Well, what I say is:
Why not? The man's a genius.
From the collar upward he
stands alone. I gave up trying
to run my own affairs within a
week of his coming to me.

