
Callbacks Copyright 2007 by Ken Slonneger 1

Callbacks

Callbacks refer to a mechanism in which a library or utility
class provides a service to clients that are unknown to
it when it is defined.

• Suppose, for example, that a server class creates a
window and recognizes events in that window.

• Suppose, in addition, that various clients need to be
informed of these events so that they can perform
actions of their own.

When such an event occurs, the server class needs to
invoke methods in one or more of the clients associated
with the server, but the server has no prior knowledge of
which clients will be attached and the names of the
methods that need to be called.

In C and C++, this situation is handled by having the
clients register with the server by sending it function
pointers that refer to the methods that need to be
executed when an event occurs.
These functions are called callback functions.

When an appropriate event happens, the server calls
the methods in the appropriate clients by invoking the
formal parameters that denote the function pointers that
were register by the clients.
But Java has no user-defined function pointers.

Java provides the callback mechanism with interfaces
using the following steps:
1. An interface is defined with an abstract method

whose name is known to the server.

2 Copyright 2007 by Ken Slonneger Callbacks

2. Each client that has actions to be performed when a
server event occurs implements the interface, thereby
giving code for the abstract method.

3. When a client registers with the server, the server
holds an instance variable that refers to the client
and whose type is the interface type.

4. The server class invokes the client action by calling
the interface method for that client.

Example
We define a server that creates a window with four buttons.

The server maintains a list that can hold references to any
number of clients.

When any of the first three buttons is clicked, an action in
one of the first three clients will be performed.

When the fourth button is pressed, the actions in all of
the clients will be executed.

The connection between the server and the clients is
provided by an interface called Callback.

interface Callback
{

void performCallback(String str);
}

The entire program is controlled by a class that creates
the server and three clients.

Callbacks Copyright 2007 by Ken Slonneger 3

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Callbacks
{

public static void main(String [] args)
{

WindowServer ws = new WindowServer();
ws.setSize(300,200);
ws.setVisible(true);
ClientOne client1 = new ClientOne(ws);
ClientTwo client2 = new ClientTwo(ws);
ClientThree client3 = new ClientThree(ws);

}
}

Note that the clients are made aware of the server by
passing a reference to the server to their constructors.

The server class WindowServer contains:
• An instance variable of type List that contains

references to the clients that register.
• A constructor that creates the window with the

four buttons.
• An inner class ButtonHandler for handling the

button clicks.
• A method for registering clients, adding them to

the List.

4 Copyright 2007 by Ken Slonneger Callbacks

• A method for unregistering clients, deleting them
from the List.

Note that all references to clients are as instances
of the interface Callback.

class WindowServer extends JFrame
{

private java.util.List clientObjs = new ArrayList();
private JButton button1, button2, button3, button123;
WindowServer()
{

super("Callback Window");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
button1 = new JButton("Button 1");
button1.addActionListener(new ButtonHandler(1));
button2 = new JButton("Button 2");
button2.addActionListener(new ButtonHandler(2));
button3 = new JButton("Button 3");
button3.addActionListener(new ButtonHandler(3));
button123 = new JButton("Button 123");
button123.addActionListener(new ButtonHandler(123));
cp.add(button1); cp.add(button2);
cp.add(button3); cp.add(button123);

}

Callbacks Copyright 2007 by Ken Slonneger 5

class ButtonHandler implements ActionListener
{

private int value;

ButtonHandler(int n)
{

value = n;
}

public void actionPerformed(ActionEvent evt)
{

if (value>100)
{

System.out.println("Button 123 pressed.");

notifyClients("Button 123");
 }
 else

{
 System.out.println("Button " + value + " pressed.");

((Callback)clientObjs.get(value-1)).
performCallback("says Hello");

}
}

}

void registerCallback(Callback client)
{

clientObjs.add(client);
}

6 Copyright 2007 by Ken Slonneger Callbacks

void unregisterCallback(Callback client)
{

clientObjs.remove(client);
}

void notifyClients(String str)
{

for (Iterator it = clientObjs.iterator(); it.hasNext();)
((Callback)(it.next())).performCallback(str);

}
}

Observe that Objects in the List need to be cast into Callback
objects before the interface method performCallback can be
called.

Window Server

Callbacks Copyright 2007 by Ken Slonneger 7

One client is defined below.
The other two clients can be defined in an analogous
manner.

class ClientOne implements Callback
{

private WindowServer server;

ClientOne(WindowServer ws)
{

System.out.println("Creating Client One");
server = ws;
server.registerCallback(this);

}

public void performCallback(String str)
{

System.out.println("Client One " + str);
}

}

8 Copyright 2007 by Ken Slonneger Callbacks

Sample Output
Creating Client One
Creating Client Two
Creating Client Three

Button 1 pressed.
Client One says Hello
Button 2 pressed.
Client Two says Hello
Button 3 pressed.
Client Three says Hello
Button 123 pressed.
Client One Button 123
Client Two Button 123
Client Three Button 123

Note: The event handling mechanism in Java works
in a similar manner.

Objects that implement "listener" interfaces
are registered with the objects that generate
events (buttons, text fields, and so on) so
that they can be notified when the particular
events occur.

