
Chapter 13 1

Action Semantics

Formal Specification of
Programming Languages

Advantages:
• Unambiguous definitions
• Basis for proving properties of programs and

languages
• Mechanical generation of language

processors

Disadvantages:
• Notationally dense
• Often cryptic
• Unlike the way programmers view languages
• Difficult to create and modify accurately

Chapter 13 2

Formal Syntax

BNF — In common use

Formal Semantics
Denotational semantics
Structural operational semantics
Axiomatic semantics
Algebraic semantics

Used only by specialists in prog. languages.

Action Semantics
• Developed by Peter Mosses and David Watt

• Based on ordinary computation concepts

• English-like notation (readable)

• Completely formal, but can be understood
informally

• Reflects the ordinary computational concepts
of programming languages

Chapter 13 3

Specifying a Programming Language

An action specification breaks into two parts:

Programming Language

Action Notation

Meaning of Actions

Upper level

Lower level

Definition of the constructs of a
language in terms of action notation.

Specification of the meaning
of action notation.

Meaning of a language is defined by
mapping program phrases to actions
whose performance describes the
execution of the program phrases.

Chapter 13 4

Introduction to Action Semantics

Three kinds of first-order entities:

• Data: Basic mathematical values

• Yielders: Expressions that evaluate to data
using current information

• Actions: Dynamic, computational entities
that model operational behavior

Data and Sorts

Data manipulated by a programming language

• integers • cells

• booleans • tuples

• maps

Chapter 13 5

Classification of Data
Data classified according to how far it tends to
be propagated during action performance.

Transient
Tuples of data given as the immediate results
of action performance. Use them or lose
them.

Scoped
Data consisting of bindings of tokens
(identifiers) to data as in environments.

Stable
Stable data model memory as values stored
in cells (locations); may be altered by explicit
actions only.

Actions are also classified this way.

Chapter 13 6

Data Specification
module TruthValues

exports
sort TruthValue
operations

true : TruthValue
false : TruthValue
not _ : TruthValue → TruthValue
both(_,_) : TruthValue,TruthValue → TruthValue
either(_,_) : TruthValue,TruthValue → TruthValue
_ is _ : TruthValue,TruthValue → TruthValue

end exports
equations
…

end TruthValues

module Integers
imports TruthValues
exports

sort Integer

Chapter 13 7

operations
0 : Integer
1 : Integer
10 : Integer
successor : Integer → Integer
predecessor : Integer → Integer
sum(_,_) : Integer, Integer → Integer
difference(_,_) : Integer, Integer → Integer
product(_,_) : Integer, Integer → Integer
integer-quotient(_,_) : Integer,Integer → Integer
_ is _ : Integer, Integer → TruthValue
_ is less than _ : Integer,Integer → TruthValue
_ is greater than _ : Integer, Integer →

TruthValue
end exports
equations
…

end Integers

Sort operations (a lattice)
Join (union) of two sorts S1 and S2: S1 | S2.
Meet (intersection) of sorts S1 and S2: S1 & S2.
Bottom element: nothing

Chapter 13 8

Yielders
Current information (maintained implicitly)

• the given transients,
• the received bindings, and
• the current state of the storage.

Yielders are terms that evaluate to data
dependent on the current information.

the given S : Data → Yielder

Yield the transient data given to an action,
provided it agrees with the sort S.

the given S # n : Datum, PosInteger → Yielder

Yield the nth item in tuple of transient data
given to action, provided it agrees with sort S.

the _ bound to _ : Data, Token → Yielder

Yield the object bound to an identifier
denoted by Token in current bindings, after
verifying that its type is sort specified as Data.

Chapter 13 9

the _ stored in _ : Data, Yielder → Yielder

Yield value of sort Data stored in memory
location denoted by the cell yielded by
second argument.

Precedence
Highest:Prefix (right-to-left)

Infix (left-to-right)
Lowest: Outfix

Actions
• When performed, actions accept the data

passed to them as the current information
the given transients,
the received bindings, and
the current state of storage

to give new transients, produce new bindings,
and/or update the state of the storage.

Chapter 13 10

An action performance may
complete (terminate normally),
fail (terminate abnormally), or
diverge (not terminate at all).

Facets of Action Semantics
Actions are classified into facets, depending on
the main type of information processed.

• Functional Facet: actions that process
transient information

• Imperative Facet: actions that affect memory

• Declarative Facet: actions that process
scoped information

• Basic Facet: actions that principally specify
flow of control

Chapter 13 11

Functional and Basic Facets
Primitive functional action

give Y Give value obtained by evaluating
the yielder Y

Action combinators are used to define control
flow as well as to manage the movement of
information between actions.

combinator : Action, Action → Action

A1 and then A2

Perform the first action and then perform
the second.

Dashed line shows control flow

A2

A1 com
plete

A1 and then A 2

Chapter 13 12

Flow lines from the top to the bottom of the
diagram show the behavior of the transients.

Concatenation: Join the data flow lines

A2

A1

transients

transients

com
pleteA1 and then A 2

A1 and A2

Allows the performance of the two actions
to be interleaved.

No control dependency in diagram,
so actions can be performed collaterally.

A2A1

transients

A1 and A2

transients

Chapter 13 13

A1 then A2

Perform the first action using the transients
given to the combined action and then
perform the second action using the
transients given by the first action.

The transients given by the combined
action are the transients given by the
second action.

A2

A1

transients

transients

com
plete

A1 then A2

Chapter 13 14

Example

give sum(the given Integer#1,
the given Integer#2)

and
give (the given Integer#1 is the given Integer#2

(3,5)

(8,false)

give sum (the given Integer#1,
 the given Integer#2)

give (the given Integer#1 is
 the given Integer#2)

Chapter 13 15

Imperative Facet

Imperative facet deals with storage

• allocating memory locations

• updating the contents of locations

• fetching values from memory

• deallocating memory locations

Any action may alter the state of a cell, and
such a modification remains in effect until
some other action modifies the cell again.

Current storage is a finite mapping from cells
to the sort (Storable | undefined).

Chapter 13 16

Imperative yielder

the S stored in Y : Data, Yielder → Yielder

Yield the value of sort S stored in the
cell yielded by Y.

Primitive Imperative Actions

allocate a cell

Find an unused cell, storing undefined in
it, and give cell as the transient of action.

store Y1 in Y2

Update the cell yielded by Y2 to
contain the Storable yielded by Y1.

The imperative facet has no special action
combinators, but any action has the potential of
altering storage.

Chapter 13 17

Suppose that one location, denoted by
cell1, has been allocated and currently
contains the value undefined.
Also assume that the next cell to be
allocated will be cell2.

 Initial storage:

 store 77 in cell1

 and then

 allocate a cell

 then

 store 15 in the given Cell

 and then

 store product (the Integer stored in cell1,

 the Integer stored in cell2)

 in cell1

cell1

cell2 15

77

cell1 undefined

cell1 77

cell1

cell2 undefined

77

cell1

cell2 15

1155

Chapter 13 18

Module for Imperative Features

module Imperative

imports Integers, Maps

exports
sort Storable = Integer
sort Storage =

map [Cell to (Storable | undefined)]
sort Cell

operations
cell1 : Cell
allocate a cell : Action
store _ in _ : Yielder, Yielder → Action
the _ stored in _ : Storable, Yielder → Yielder

end exports

equations
…

end Imperative

This module is defined to support the calculator
specification that comes next.

Chapter 13 19

Action Semantics of a Calculator

4

7

6

8

2

0

1 3

9

5

x

–

+

=

Clear

MR

M+

+/–

A Three-function Calculator

A “program” on this calculator consists of a
sequence of keystrokes generally alternating
between operands and operators.

6 + 33 x 2 = produces the value 78.

Outlaw unusual combinations such as:

5 + + 6 = and 88 x +/- 11 + MR MR

Chapter 13 20

Concrete Syntax

<program> ::= <expression sequence>

<expression sequence> ::= <expression>
| <expression> <expression

sequence>

<expression> ::= <term>
| <expression> <operator> <term>
| <expression> <answer>
| <expression> <answer> +/-

<term> ::= <numeral> | MR

| Clear | <term> +/-

<operator> ::= + | – | x

<answer> ::= M+ | =

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Chapter 13 21

Abstract Syntax

Abstract Syntactic Domains

P : Program E: Expression D:Digit

S : ExprSequence N : Numeral

Abstract Production Rules

Program ::= ExprSequence

ExprSequence ::= Expression
| Expression ExprSequence

Expression ::= Numeral | MR | Clear
| Expression + Expression
| Expression – Expression
| Expression x Expression
| Expression M+ | Expression =
| Expression +/-

Numeral ::= Digit | Numeral Digit

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Chapter 13 22

Example

Following the concrete syntax for the calculator
language, given the sequence of keystrokes,

10 M+ + 6 +/- = x MR =

a parser will construct the abstract syntax tree
shown below.

expr

=

x

610 +/–+M

RM

expr

expr

expr

expr

expr

=

+

An Abstract Syntax Tree

Chapter 13 23

Semantic Functions
Meaning is ascribed to the calculator language
via semantic functions, mostly mapping
syntactic domains to actions.

meaning _ : Program → Action

perform _ : ExprSequence → Action

evaluate _ : Expression → Action

value of _ : Numeral → Integer

digit value _ : Digit → Integer

Action [outcome] [income].
meaning : Program →

Action [completing | giving a Value | storing]
[using current storage]

perform_ : ExprSeq →
Action [completing | giving a Value | storing]

[using current storage]

evaluate_: Expr →
Action [completing | giving a Value | storing]

[using current storage]

Chapter 13 24

Semantic Equations

1. Numeral

To evaluate a numeral, we simply display its
integer value on the display.

evaluate N = give value of N

The value given as a transient by the action give is
the displayed integer. Prefix operations are
evaluated from right to left, so omit the parentheses
from “give (value of N)”.

2. Memory Recall

Display the value stored in the single memory
location that we assume has been allocated
initially and named cell1. The module Imperative
asserts the existence of a constant cell, cell1, to
serve this purpose.

evaluate MR =
give the Integer stored in cell1

Chapter 13 25

3. Clear

The clear operation resets the memory location to
zero and displays zero.

evaluate Clear =
store 0 in cell1

and
give 0

If interference were possible between the two
activities, we could use the combinator “and then”
to establish order.

4. Addition of Two Expressions

This binary operation gives the sum of the integers
that results from the two expressions. The left
expression must be carried out first since it may
involve a side effect by storing a value in the
calculator memory.

evaluate [E1 + E2] =
evaluate E1

and then
evaluate E2

then
give sum(the given Integer#1,

the given Integer#2)

Chapter 13 26

The first combinator forms a tuple (a pair)
consisting of the values of the two expressions,
which are evaluated from left to right. That tuple is
given to the sum operation, which adds the two
components.

5. Difference of Two Expressions

6. Product of Two Expressions

These operations are handled in the same way as
addition.

7. Add to Memory

Display the value of the current expression and
add it to the calculator memory.

evaluate [E M+] =
evaluate E

then
store sum(the Integer stored in cell1,

the given Integer) in cell1
and

give the given Integer

The second subaction to then must propagate the
transient from the first subaction so that it can be
given by the composite action.

Chapter 13 27

The and combinator forms a tuple, in this case a
singleton tuple, which action semantics does not
distinguish from a single datum.

The primitive action “store _ in _” yields no
transient, which is represented by an empty tuple.

Without the subaction “give the given Integer”, the
value from E will be lost.

8. Equal

The equal key just terminates an evaluation,
displaying the value from the current expression.

evaluate [E =] = evaluate E

9. Change Sign

The +/- key flips the sign of the integer produced by
the latest expression evaluation.

evaluate [E +/-] =
evaluate E

then
give difference(0, the given Integer)

Chapter 13 28

The semantic function “meaning” initializes the
calculator by storing zero in the memory location
cell1 and then evaluates the expression sequence.

meaning P =
store 0 in cell1

and then
perform P

“perform” evaluates the expressions in the sequence
one at a time, ignoring the given transients.

perform [E S] =
evaluate E

and then
perform S

perform E = evaluate E

“value of” and “digit value” define the meaning of
integers.

value of [N D] =
sum(product(10,value N), value of D)

value of D = digit value D

digit value 0 = 0
 :
digit value 9 = 9

Chapter 13 29

A Sample Calculation

Consider the following calculator program:

12 + 5 +/- = x 2 M+ 123 M+ MR +/- – 25 = + MR =

This sequence of calculator keystrokes parses into
three expressions, so that the overall structure of
the action semantics evaluation has the form:

meaning [12 + 5 +/- = x 2 M+ 123 M+ MR +/-
– 25 = + MR =]

= store 0 in cell1
and then

perform [12 + 5 +/- = x 2 M+ 123 M+
MR +/- – 25 = + MR =]

= store 0 in cell1
and then

evaluate [12 + 5 +/- = x 2 M+]
and then

evaluate [123 M+]
and then

evaluate [MR +/- – 25 = + MR =]

Chapter 13 30

The first expression begins with an empty transient
and with cell1 containing the value 0. We show the
transient given by each of the subactions as well as
the value stored in cell1.

Transient cell1

evaluate [12 + 5 +/- = x 2 M+] = () 0

give value of 12 (12) 0

and then

give value of 5 (5) 0

then

give difference (0, the given Integer) (-5) 0

then (12,-5) 0

give sum (the given Integer#1, the given Integer#2) (7) 0

and then

give value of 2 (2) 0

then (7,2) 0

give product (the given Integer#1, the given Integer#2) (14) 0

then

store sum (the Integer stored in cell1,

the given Integer) in cell1 () 14

and

give the given Integer (14) 14

This action gives the value 14, which is also the value in cell1.

Chapter 13 31

The second expression starts with 14 in memory, ignoring
the given transient, and results in the following action:

evaluate [123 M+] =

give value of 123 (123) 14

then
store sum (the Integer stored in cell1,

 the given Integer) in cell1 () 137

and

give the given Integer (123) 137

This action gives the value 123 and leaves 137 in cell1.

The third expression completes the evaluation, starting
with 137 in memory, as follows:

evaluate [MR +/- – 25 = + MR =] =
give the Integer stored in cell1 (137) 137

then

give difference (0, the given Integer) (-137) 137

and then

give value of 25 (25) 137

then (-137,25) 137

give difference (the given Integer#1,

 the given Integer#2) (-162) 137

and then
give the Integer stored in cell1 (137) 137

then (-162,137) 137

give sum (the given Integer#1, the given Integer#2) (-25) 137

This final action gives the value -25, leaving 137 in cell1.

Chapter 13 32

Wren and Pelican

For each syntactic construct, a brief informal
description of its semantics and a definition in
action semantics.

• Sequence of Commands
Execute the first command and then execute
the second.

execute [C1 ; C2] =
execute C1 and then execute C2

• Unary Minus
Evaluate the expression and give the negation
of the resulting value.

evaluate [– E] =
evaluate E

then
give difference (0, the given Integer)

Value given by evaluating expression is given
as a transient to the difference operation,

Chapter 13 33

whose value is given as the result of the
action.

Chapter 13 34

• Arithmetic on Two Expressions
Evaluate the two expressions and give
the sum of their values.

evaluate [E1 + E2] =
evaluate E1

and
evaluate E2

then
give sum(the given Integer#1,

the given Integer#2)

Wren has no side effects in expressions

• Assignment
Find the cell bound to the identifier and
evaluate the expression. Then store the value
of the expression in that cell.

execute [I := E] =
give the Cell bound to I and evaluate E

then
store the given Value#2 in the given Cell#1

Chapter 13 35

Basic Facet Actions

Deal primarily with control flow.

A1 or A2

Arbitrarily choose one of the subactions and
perform it with given transients and received
bindings.

If the chosen action fails, perform the other
subaction with original transients and
bindings.

A3-k

Ak

bindings

transients

fail

bindings

transients

bindings

transients

A1 or A2

Chapter 13 36

Primitive functional action:

check Y

where Y is a yielder that gives a TruthValue,
completes if Y yields true and fails if it yields
false.

Acts as a guard when combined with the
composite action “or”.

• If Commands
Evaluate a Boolean expression and then
perform then command or else command
depending on the test. If the else part is
missing, do nothing.

execute [if E then C1 else C2] =
evaluate E

then
check (the given TruthValue is true)

and then execute C1
or

check (the given TruthValue is false)
and then execute C2

Chapter 13 37

execute [if E then C] =
evaluate E

then
check (the given TruthValue is true)

and then execute C
or

check (the given TruthValue is false)
and then complete

Actions needed to define the while
command:
unfolding A

Perform the action A, but whenever the
dummy action “unfold” is encountered, the
action A is performed again in place of it.

unfold
A dummy action, standing for the argument
action of the innermost enclosing “unfolding”.

Chapter 13 38

A
bindings

transients

transients

bindings

unfold

unfold

unfolding A

• While Command

Evaluate the Boolean expression; if its value
is true, execute the body of the loop and then
start the while command again when the
execution of loop body completes; otherwise,
the command terminates.

execute [while E do C] =
unfolding

evaluate E
then

check (the given TruthValue is true)
and then execute C

and then unfold
or

check (the given TruthValue is false)
and then complete

Chapter 13 39

Declarative Facet

Deals primarily with scoped information in the
form of bindings between identifiers and
semantic entities such as constants, variables,
and procedures.

module Declarative
imports Imperative, Mappings
exports

sorts
Token,
Variable = Cell,
Bindable = Variable,
Bindings =

Mapping[Token to (Bindable | unbound)]
operations

empty bindings : Bindings
bind _ to _ : Token, Yielder → Action
the _ bound to _ : Data, Token → Yielder
produce _ : Yielder → Action
…

end exports
equations

:
end Declarative

Chapter 13 40

Primitive declarative action
bind T to Y

produces a singleton binding mapping that we
represent informally by [T | → B] .

Declarative yielder
the S bound to T: Data, Token → Yielder

evaluates to the entity bound to the Token T
provided it agrees with the sort S.

All action combinators process bindings as well
as transients.

Combining bindings
merge (bindings1, bindings2):

Form the (disjoint) union of the bindings so
that if any identifier has bindings in both sets,
the operation fails, producing nothing.
Shown by having the lines for scoped
information connected by a small circle

Chapter 13 41

overlay (bindings1, bindings2):

Combine bindings so that the associations
in bindings1 take precedence over those in
bindings2.

Lines show a break suggesting which set of
bindings takes precedence.

In diagrams, scoped information flows from left
to right whereas transients flow from top to
bottom.

transients

A1

bindings

transients

A2

A1 and A2

bindings

Chapter 13 42

A2

A1

transients

com
plete

bindings

transients

A1 and then A2

bindings

A2

A1

transients

transients

com
plete

bindings

A1 then A2

bindings

Chapter 13 43

Declarative Facet Actions

Manipulate environments.

rebind

This primitive declarative action reproduces all
of the received bindings.

A1 hence A2

This combinator sequences the bindings and
concatenaties the transients.

A2

A1

bindings

bindings

transients

A1 hence A2

transients

com
plete

Chapter 13 44

• Program
Elaborate the declarations and execute the
body of the program with the resulting
bindings.

run [program I is D begin C end] =
elaborate D hence execute C

A1 moreover A2

Allows the performance of the two actions
to be interleaved.

Both actions use the transients and bindings
passed to the combined action.

The bindings produced by the combined
action are the bindings produced by the
first action overlaid by those produced by
the second.

Transients are concatenated.

Chapter 13 45

A2

A1

transients

bindings

A1 moreover A2

transients

bindings

•Anonymous Block (declare)
Elaborate the declarations in the block
producing bindings that overlay the bindings
received from the enclosing block and
execute the body of the block with the
resulting bindings.

The bindings created by the local declaration
are lost after the block is executed.

execute [declare D begin C end] =
rebind moreover elaborate D

hence
execute C

“rebind moreover elaborate D” overlays the
received bindings with the local bindings from
D to provide the environment for C.

Chapter 13 46

A1 before A2

Perform first action using transients and
bindings passed to the combined action, and
then perform second action using transients
given to the combined action and the bindings
received by the combined action overlaid by
those produced by first action.

Produces the bindings produced by first action
overlaid with those produced by second.

Transients are concatenated.

A2

transients

transients

A1 before A2

A1

com
plete

bindings

bindings

Chapter 13 47

• Sequence of Declarations
Elaborate the declarations sequentially.

elaborate [D1 ; D2] =
elaborate D1 before elaborate D2

“before” combines the bindings from the two
declarations so that D1 overlays the enclosing
environment and D2 overlays D1, producing
the combined bindings.

Each declaration has access to the identifiers
that were defined earlier in the same block as
well as those in any enclosing block.

• Constant Declaration

Evaluate the expression and then bind its
value to the identifier.

elaborate [const I = E] =
evaluate E

then
bind I to the given Value

Chapter 13 48

• Variable Declaration

Allocate a cell from storage and then bind
the identifier to that cell.

elaborate [var I : T] =
allocate a cell

then
bind I to the given Cell

• Variable Name or Constant Identifier

An identifier can be bound to a constant value
or to a variable. Evaluating an identifier gives
the constant or the value assigned to the
variable.

evaluate I =
give the Value stored in the Cell bound to I

or
give the Value bound to I

Chapter 13 49

Visualizing Action Semantics

program scope is
const c = 5;
var n : integer;

begin
declare

const m = c+8; -- D1
const n = 2*m; -- D2

begin
 : -- C
end;

 :
end

Assume that the first cell allocated is cell1.

The action that elaborates the first two
declarations produces the bindings

[c | → 5, n | → cell1].

These bindings are received by the body of the
program and by the declare command.

Chapter 13 50

Chapter 13 51

Following action models the declare command:

execute [declare D1 ; D2 begin C end] =
rebind moreover elaborate [D1 ; D2]

hence
execute C

First elaborate the declarations

elaborate [D1 ; D2] =
elaborate D1 before elaborate D2.

Following diagram with empty transients
omitted illustrates the activities carried out by
the before combinator.

[m |→13, c |→5, n |→cell1]

[m |→13]

[n |→26, m |→13]

[n |→26]

elaborate D1

elaborate D2

[c |→5, n |→cell1]
com

plete

Chapter 13 52

The action elaborate [D1 ; D2] serves as the
second subaction in

rebind moreover elaborate [D1 ; D2],
which is depicted in the next diagram.

rebind

elaborate [D1 D2]

[c |→5, n |→cell1]

[n |→26, m |→13]

[n |→26, m |→13, c |→5][c |→5, n |→cell1]

The body of the anonymous block will execute
in an environment containing three bindings,
[n | → 26, m | → 13, c | → 5].

Chapter 13 53

Reflective Facet and Procedures
• Subprogram declaration and invocation.

• Activity of a procedure modeled by the
performance of an action.

sorts Procedure = Abstraction
Bindable = Variable | Value | Procedure

Abstraction datum is an entity with three
components: the action itself and the transients
and bindings, if any, that will be given to the
action when it is performed.

Action
Transients

Bindings
Abstraction =

Creating an Abstraction
abstraction of _ : Action → Yielder

The yielder “abstraction of A” encapsulates the
action A into an abstraction together with no
transients and no bindings.

A
—

—

Chapter 13 54

Transients and bindings can be supplied after
the abstraction is constructed.

The current bindings are inserted into an
abstraction using an operation on yielders.

closure of _ : Yielder → Yielder

Attaching the declaration-time bindings provides
static scoping for resolving references to
nonlocal variables.

A
—

StaticBindings

A later performance of “closure of _” will have
no effect.

Dynamic scoping ensues if bindings are
attached at enaction-time (when the action in
the abstraction is performed).

Execute of a procedure using a reflective action
that takes as its parameter a yielder giving an
abstraction.

enact _ : Yielder → Action

Chapter 13 55

The action “enact Y” activates the action
encapsulated in the abstraction yielded by Y,
using the transients and bindings that are
included in the abstraction.

If no transients or bindings have been
incorporated into the abstraction, the enclosed
action is given empty transients or empty
bindings.

• Procedure Declaration (no parameter)
Bind the identifier of the declaration to a
procedure object that incorporates the body of
the procedure, so that it will be executed in
the declaration-time environment.

elaborate [procedure I is D begin C end] =
bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

Chapter 13 56

• Procedure Call (no parameter)
Execute the procedure object bound to the
identifier.

execute I = enact the Procedure bound to I

The procedure object, an abstraction, brings
along its static environment.

An operation on yielders constructs an
unevaluated term that incorporates the current
transient into the abstraction.

application of _ to _ : Yielder, Yielder → Yielder

The yielder “application of Y1 to Y2” attaches
the argument value yielded by Y2 as the
transient that will be given to the action
encapsulated in the abstraction yielded by Y1
when that action is enacted.

As with bindings, a second supply of transients
is ignored.

Chapter 13 57

• Procedure Call (one parameter)
Evaluate the actual parameter, an expression,
and then execute the procedure bound to the
identifier with the value of the expression.

execute [I (E)] =
evaluate E

then
enact application of (Procedure bound to I)

to the given Value

Assuming that Abs, the abstraction bound to I,
incorporates the action A and the bindings
StaticBindings, and that Val is the value of the
expression E, “application of Abs to the given
Value” creates the abstraction that will be
enacted.

A
(Val)

StaticBindings

Chapter 13 58

The combinator thence joins the behavior of
then for transients and hence for bindings.

A2

A1

bindings

bindings

transients

transients

com
plete

A1 thence A2

Declaration of Procedure (One Parameter)
The action encapsulated in an abstraction
expects a value, the actual parameter, to be
given to it as a transient.

This value is stored in a new memory location
allocated by the action.

The command that constitutes the body of the
procedure is executed in an environment that
consists of the original static environment
overlaid by the binding of the formal parameter
to a local variable, and then overlaid by local
declarations.

Chapter 13 59

• Procedure Declaration (one parameter)
Bind procedure identifier in the declaration to a
procedure object that incorporates the body of
the procedure, so that when it is called, it will
be executed in declaration-time environment
and will allocate a local variable for the actual
parameter passed to procedure.

elaborate [procedure I1 (I2) is D begin C end] =
bind I1 to

closure of
abstraction of

allocate a cell
and give the given Value

and rebind
thence

rebind
moreover

bind I2 to the given Cell#1
and

store the given Value#2 in
the given Cell#1

hence
rebind moreover elaborate D

hence
execute C

Chapter 13 60

Recursive Definitions
The specifications of procedure declarations
above do not allow recursive calls of
procedures, since identifiers being declared are
not included in bindings in abstractions created
by declarations.

A hybrid action for establishing recursive
bindings that is defined in terms of more
primitive actions.

recursively bind _ to _ : Token, Bindable → Action

“recursively bind T to abstraction of A”
produces the binding of T to an abstraction Abs
so that the bindings attached to the action A
incorporated in Abs include the binding being
produced.

A
—

Abs =
[T |→Abs]

Therefore the action “recursively bind _ to _”
permits the construction of a circular binding.

Chapter 13 61

elaborate [procedure I is D begin C end] =
recursively bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

Example
program example is

const c = 5;
var b : boolean;
procedure p is

:
begin … end;

begin
 :
end

Let A denote the action corresponding to the
body of the procedure.

Chapter 13 62

Action “closure of abstraction of A” creates the
abstraction Abs, which does not allow a
recursive call of procedure.

A
—

Abs =
[c |→5, b |→cell1]

Action “bind p to closure of abstraction of A”
produces the binding [p|→Abs].

Any reference to procedure identifier p inside
the procedure is an illegal reference, yielding
nothing.

Action “recursively bind p to closure of
abstraction of A” changes abstraction Abs into a
new abstraction Abs' whose attached bindings
include the association of procedure abstraction
with p.

A
—

Abs' =
[c |→5, b |→cell1, p |→Abs']

The recursive action produces the binding
[p|→Abs'], which when overlaid on the previous
bindings, produces the bindings [c|→5,

Chapter 13 63

b|→cell1, p|→Abs'] to be received by the
procedure p and the body of the program.

Chapter 13 64

Translating to Action Notation
Action notation can be viewed as a
metalanguage for the semantic specification of
programming languages.

Semantic equations define a translator from
Pelican programs into action notation.

Consider interpreting or compiling action
notation.

The metalanguage of action semantics can also
be used to verify semantic equivalence
between language phrases.

Translate a Pelican program into its equivalent
action notation.

Task is aided by the property of
compositionality:
Each phrase is define solely in terms of the
meaning of its immediate subphrases.

Chapter 13 65

program action is
const max = 50; -- D1
var acc : integer; -- D2
var switch : boolean; -- D3
var n : integer; -- D4
procedure change is -- D5

begin
n := n+3;
switch := not(switch)

end;
begin

acc := 0; -- C1
n := 1; -- C2
switch := true; -- C3
while n<=max do -- C4

if switch then acc := acc+n end if;
change

end while
end

Chapter 13 66

The overall structure of the translation takes the
form

run [program I is D1 D2 D3 D4 D5
begin C1; C2; C3; C4 end]

= elaborate [D1 D2 D3 D4 D4]
hence execute [C1; C2; C3; C4]

= elaborate D1
before elaborate D2

before elaborate D3
before elaborate D4

before elaborate D5
hence

execute C1 and then execute C2
and then execute C3
and then execute C4
and then execute C5

The combinators and then and before are
associative.

Chapter 13 67

The five declarations:

elaborate [const max = 50] =
give value of 50

then
bind max to the given Value

elaborate [var acc : integer] =
allocate a cell

then
bind acc to the given Cell

elaborate [var switch : boolean] =
 allocate a cell

then
bind switch to the given Cell

elaborate [var n : integer] =
allocate a cell

then
bind acc to the given Cell

Chapter 13 68

elaborate [procedure change is
begin n := n+3;

switch := not(switch) end] =
recursively bind change to closure of abstraction of

rebind
moreover

produce empty bindings
hence

give Cell bound to n
and

give Value stored in Cell bound to n
or

give Value bound to n
and

give value of 3
then

give sum(the given Int#1,the given Int#2)
then

store the given Value#2 in the given Cell#1
and then

give Cell bound to switch
and

give Value stored in
Cell bound to switch

or
give Value bound to switch

then
give not(the given Truthvalue)

then
store the given Value#2 in the given Cell#1

Chapter 13 69

The four commands:

execute [acc := 0] =
give Cell bound to acc

and
give value of 0

then
store given Value#2 in the given Cell#1

execute [n := 1] =
give Cell bound to n

and
give value of 1

then
store the given Value#2 in

the given Cell#1

execute [switch := true]=
give Cell bound to switch

and
give true

then
store the given Value#2 in

the given Cell#1

Chapter 13 70

execute [while n<=max do
if switch then acc := acc+n end if;

change end while] =
unfolding

give Value stored in Cell bound to n
or

give Value bound to n
and

give Value stored in Cell bound to max
or

give Value bound to max
 then

give not(greaterthan(the given Integer#1,
the given Integer#2))

then
check given Truthvalue is true

and then
give Value stored in Cell bound to switch

or
give Value bound to switch

then
check given Truthvalue is true

 and then
give Cell bound to acc

 and
give Value stored in

Cell bound to acc
 or

give Value bound to acc
 and

Chapter 13 71

give Value stored in Cell bound to
 or

give Value bound to n
then
 give sum(the given Int#1,

the given Int#2)
 then

 store the given Value#2 in
the given Cell#1

 or
check given Truthvalue is false

 and then
complete

 and then
 enact Procedure bound to change

 and then unfold
 or

check given Truthvalue is false
and then complete

Chapter 13 72

LABORATORY
Translator from Pelican to action notation using
Prolog.

The compositional definitions of the meaning of
Pelican convert to Prolog clauses directly.

The resulting action can be represented as a
Prolog structure by viewing actions, yielders,
and auxilliary opertions with prefix syntax.
>>> Translating Pelican into Action Semantics <<<

Enter name of source file: small.wren

 program small is
 const c = 34;
 var n : integer;
 begin
 n := c+21
 end

Translated Action:
hence(
 before(
 then(give(valueof(34)),bind(c,given(Value))),
 before(
 then(allocateacell,bind(n,given(Value))),
 produce(emptybindings))),
 andthen(
 then(
 and(give(boundto(Cell,n)),
 then(
 and(or(give(storedin(Value,boundto(Cell,c))),
 give(boundto(Value,c))),give(valueof(21))),
 give(sum(given(Integer,1),given(Integer,2))))),
 storein(given(Value,2),given(Cell,1))),
 complete))
yes

Chapter 13 73

Translation is a static operation

Need not be concerned with stores and
environments—these are handled when
action notation is interpreted or compiled.

We have dispensed with the syntactic category
of blocks to match the specification in Figure
13.6.

run(prog(Decs,Cmds),
hence(ElaborateD,ExecuteC)) :-

elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

Build Prolog structures that represent the
resulting action using calls to the predicates
elaborate and execute to construct pieces of
the structure.

Chapter 13 74

Declarations
elaborate([],produce(emptybindings)).

elaborate([Dec|Decs],
before(ElaborateDec,ElaborateDecs)) :-

elaborate(Dec,ElaborateDec),
elaborate(Decs,ElaborateDecs).

elaborate(var(T,var(Ide)),
then(allocateacell,bind(Ide,given('Value')))).

elaborate(con(Ide,E),
then(EvaluateE,bind(Ide,given('Value')))) :-

evaluate(E,EvaluateE).

elaborate(proc(Ide,param(Formal),Decs,Cmds),
 recursivelybind(Ide,

closureof(abstractionof(hence(hence(
thence(and(allocateacell,

and(give(given('Value')), rebind)),
moreover(rebind,

and(bindto(Formal,given('Cell',1)),
storein(given('Value',2),given('Cell',1))))),

moreover(rebind,ElaborateD)),

Chapter 13 75

ExecuteC))))) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

Commands
execute([Cmd|Cmds],

andthen(ExecuteCmd,ExecuteCmds)) :-
execute(Cmd,ExecuteCmd),
execute(Cmds,ExecuteCmds).

execute([],complete).

execute(declare(Decs,Cmds),
hence(moreover(rebind,ElaborateD),

ExecuteC)) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

execute(skip,complete).

Chapter 13 76

execute(assign(Ide,Exp),
then(and(give(boundto('Cell',Ide)),EvaluateE),

storein(given('Value',2),given('Cell',1))))
evaluate(Exp,EvaluateE).

execute(if(Test,Then),
 then(EvaluteE,

or(andthen(check(
is(given('Truthvalue'),true)),

ExecuteC),
andthen(check(

is(given('Truthvalue'),false)),
complete)))) :-

evaluate(Test,EvaluteE),
execute(Then,ExecuteC).

execute(call(Ide,E),
then(EvaluateE,

enact(application(
boundto(procedure,Ide),

given('Value'))))) :-
evaluate(E,EvaluateE).

Chapter 13 77

execute(while(Test,Body),
unfolding(

then(EvaluteE,
or(andthen(check(

is(given('Truthvalue'),true)),
andthen(ExecuteC,unfold)),

 andthen(check(
is(given('Truthvalue'),false)),

complete))))) :-
evaluate(Test,EvaluteE),
execute(Body,ExecuteC).

Expressions
evaluate(ide(Ide),

or(give(storedin('Value',boundto('Cell',Ide)))
give(boundto('Value',Ide)))).

evaluate(num(N),give(valueof(N))).

evaluate(minus(E),
then(EvaluteE,

give(sum(given('Integer',1),
given('Integer',2))))) :-

evaluate(E,EvaluateE).

Chapter 13 78

evaluate(plus(E1,E2),
then(and(EvaluateE1,EvaluateE2),

give(sum(given('Integer',1),
given('Integer',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(neq(E1,E2),
then(and(EvaluateE1,EvaluateE2),

give(not(is(given('Integer',1),
given('Integer',2)))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(and(E1,E2),
then(and(EvaluateE1,EvaluateE2),

give(both(given('Truthvalue',1),
given('Truthvalue',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

