
Chapter 12 1

Algebraic Semantics

Algebraic semantics involves the algebraic
specification of data and language constructs.

Foundations based on abstract algebras.

Basic idea

• Name the sorts of objects and the operations
on the objects.

• Use algebraic axioms to describe their
characteristic properties.

An algebraic specification contains two parts:
signature and equations.

A signature # of an algebraic specification
is a pair <Sorts, Operations> where

• Sorts is a set containing names of sorts.

• Operations is a family of function symbols
indexed by the functionalities of the
operations represented by the function
symbols.

Chapter 12 2

Abstract type whose values are lists of
integers:

Sorts = { Integer, Boolean, List }.

Function symbols with their signatures:

zero : Integer

one : Integer

plus (_ , _) : Integer, Integer ! Integer

minus (_ , _) : Integer, Integer ! Integer

true : Boolean

false : Boolean

emptyList : List

cons (_ , _) : Integer, List ! List

head (_) : List ! Integer

tail (_) : List ! List

empty? (_) : List ! Boolean

length (_) : List ! Integer

Chapter 12 3

Family of operations decomposes:

OprBoolean = { true, false }

OprInteger,Integer!Integer = { plus, minus }

OprList!Integer = { head, length }

Equations constrain the operations to indicate
the appropriate behavior for the operations.

head (cons (m, s)) = m,

empty? (emptyList) = true

empty? (cons (m, s)) = false.

Each stands for a closed assertion:

"m:Integer, "s:List [head (cons (m, s)) = m].

empty? (emptyList) = true

"m:Integer, "s:List
[empty? (cons (m, s))= false].

Chapter 12 4

Module Representation

• Decompose definitions into relatively small
components.

• Import the signature and equations of one
module into another.

• Define sorts and functions to be either
exported or hidden.

• Modules can be parameterized to define
generic abstract data types.

Chapter 12 5

A Module for Truth Values

module Booleans

exports

sorts Boolean

operations

true : Boolean

false : Boolean

errorBoolean : Boolean

not (_) : Boolean ! Boolean

and (_ , _) :

Boolean, Boolean ! Boolean

or (_ , _) :

Boolean, Boolean ! Boolean

implies (_ , _) :

Boolean,Boolean ! Boolean

eq? (_ , _) :

Boolean, Boolean ! Boolean

end exports

operations
xor (_ , _) : Boolean, Boolean ! Boolean

Chapter 12 6

variables
b, b1, b2 : Boolean

equations

[B1] and (true, b) = b

[B2] and (false, true) = false

[B3] and (false, false) = false

[B4] not (true)= false

[B5] not (false) = true

[B6] or (b1, b2) = not (and (not (b1), not (b2)))

[B7] implies (b1, b2) = or (not (b1), b2)

[B8] xor (b1, b2) =

and (or(b1,b2),not(and(b1,b2)))

[B9] eq? (b1, b2) = not (xor (b1, b2))

end Booleans

Note module syntax

A conditional equation has the form

lhs=rhs
when lhs1=rhs1, lhs2=rhs2, ..., lhsn=rhsn.

Chapter 12 7

A Module for Natural Numbers

module Naturals

imports Booleans

exports
sorts Natural
operations

0 : Natural
1 : Natural
10 : Natural
errorNatural : Natural
succ (_) : Natural ! Natural
add (_ , _) : Natural, Natural ! Natural
sub (_ , _) : Natural, Natural ! Natural
mul (_ , _) : Natural, Natural ! Natural
div (_ , _) : Natural, Natural ! Natural
eq? (_ , _) : Natural, Natural ! Boolean
less? (_ , _) :

Natural, Natural ! Boolean
greater?(_ , _) :

Natural, Natural ! Boolean
end exports

Chapter 12 8

variables
m, n : Natural

equations
[N1] 1 = succ (0)

[N2] 10 = succ (succ (succ (succ (succ (
 succ (succ (succ (succ (succ (0))))))))))

[N3] add (m, 0) = m
[N4] add (m, succ (n)) = succ (add (m, n))

[N5] sub (0, succ(n)) = errorNatural
[N6] sub (m, 0) = m
[N7] sub(succ(m),succ(n)) =sub(m,n)

[N8] mul (m, 0) = 0 when m!errorNatural
[N9] mul (m, 1) = m
[N10] mul (m, succ(n)) = add (m, mul (m, n))

[N11] div (m, 0) = errorNatural
[N12] div (0, succ (n)) = 0 when n!errorNatural
[N13] div (m, succ (n)) =

if (less? (m, succ (n)),
0,
succ(div(sub(m,succ(n)),succ(n))))

Chapter 12 9

[N14] eq? (0, 0) = true
[N15] eq? (0, succ (n)) = false

when n!errorNatural
[N16] eq? (succ (m), 0) = false

when m!errorNatural
[N17] eq? (succ (m), succ (n)) = eq? (m, n)

[N18] less? (0, succ (m)) = true
when m!errorNatural

[N19] less? (m, 0) = false
when m!errorNatural

[N20] less? (succ (m), succ (n)) = less? (m, n)

[N21] greater? (m, n) = less? (n, m)

end Naturals

All operations propagate errors

succ (errorNatural) = errorNatural,

sub (div(0,0), succ(0)) = errorNatural,

not (errorBoolean) = errorBoolean, and

eq? (0, succ (errorNatural)) = errorBoolean.

Chapter 12 10

Conditions are Necessary

Use [N8] and ignore the condition:

0 = mul(succ(errorNatural),0)

= mul(errorNatural,0)

= errorNatural.

and

succ(0) = succ(errorNatural) = errorNatural,

succ(succ(0)) =
succ(errorNatural) = errorNatural,

and so on.

Conditions are needed when variable(s) on
the left disappear on the right.

Chapter 12 11

Constructors

• No equations for 0 and succ

• Terms 0, succ(0), succ(succ(0)), ... not equal

• These plus errorNatural can be viewed as
characterizing the natural numbers, the
individuals defined by the module.

• Initial algebraic semantics

• No confusion property

• No junk property

Chapter 12 12

A Module for Characters

module Characters

importsBooleans, Naturals

exports
sorts Char
operations

eq? (_ , _) : Char, Char ! Boolean
letter? (_) : Char ! Boolean
digit? (_) : Char ! Boolean
ord (_) : Char ! Natural
char-0 : Char
char-1 : Char
 : :
char-9 : Char
char-a : Char
 : :
char-z : Char
errorChar : Char

end exports

Chapter 12 13

variables
c, c1, c2 : Char

equations
[C1] ord (char-0) = 0
[C2] ord (char-1) = succ (ord (char-0))
[C3] ord (char-2) = succ (ord (char-1))
 : : :
[C11] ord (char-a) = succ (ord (char-9))
[C12] ord (char-b) = succ (ord (char-a))
 : : :
[C36] ord (char-z) = succ (ord (char-y))

[C37] eq? (c1, c2) = eq? (ord (c1), ord (c2))

[C38] letter? (c) =

and (not (greater? (ord (char-a), ord (c))),
not (greater? (ord (c), ord (char-z))))

[C39] digit? (c) =
and (not (greater? (ord (char-0), ord (c))),

not (greater? (ord (c) ord (char-9))))

end Characters

Chapter 12 14

Parameterized Module and Instantiations

module Lists

imports Booleans, Naturals

parameters Items
sorts Item
operations

errorItem : Item
eq? : Item, Item ! Boolean

variables
a, b, c : Item

equations
 eq? (a,a) = true when a!errorItem
 eq? (a,b) = eq? (b,a)
 implies(and(eq?(a,b),eq?(b,c)),
 eq?(a,c))=true

when a!errorItem,
b!errorItem,

c!errorItem
end Items

Chapter 12 15

exports

sorts List

operations
null : List
errorList : List
cons (_ , _) : Item, List ! List
concat (_ , _) : List, List ! List
length (_) : List ! Natural
equal? (_ , _): List, List ! Boolean
mkList (_) : Item ! List

end exports

variables
i, i1, i2 : Item
s, s1, s2 : List

Chapter 12 16

equations

[S1] concat (null, s) = s

[S2] concat(cons(i,s1),s2) =
cons(i,concat(s1, s2))

[S3] equal? (null, null) = true

[S4] equal? (null, cons (i, s)) = false
when s!errorList, i!errorItem

[S5] equal? (cons (i, s), null) = false
when s!errorList, i!errorItem

[S6] equal? (cons (i1, s1), cons (i2, s2)) =
and(eq?(i1, i2), equal?(s1, s2))

[S7] length (null) = 0

[S8] length (cons (i, s)) = succ (length (s))
when i!errorItem

[S9] mkList (i) = cons (i, null)

end Lists

Chapter 12 17

Instantiations

module Files
importsBooleans, Naturals,

instantiation of Lists
bind Items

using Natural for Item
using errorNatural for errorItem
using eq? for eq?

rename using File for List
using emptyFile for null
using mkFile for mkList
using errorFile for errorList

exports
sorts File
operations

empty? (_) : File ! Boolean
end exports

variables f : File

equations
[F1] empty? (f) = equal? (f, emptyFile)

end Files

Chapter 12 18

module Strings

imports Booleans, Naturals, Characters,
instantiation of Lists

bind Items using Char for Item
using errorChar for errorItem
using eq? for eq?

rename using String for List
using nullString for null
using mkString for mkList
using strEqual for equal?
using errorString for errorList

exports
sorts String
operations

 string-to-natural (_) :
String ! Boolean, Natural

end exports

Chapter 12 19

variables
c : Char b : Boolean
n : Natural s : String

equations

[Str1] string-to-natural (nullString) = <true,0>

[Str2] string-to-natural (cons (c, s)) =
if (and (digit? (c), b),

<true, add(mul(sub(ord(c),ord(char-0)),
exp(10, length(s))), n)>,

<false, 0>)
when <b,n> = string-to-natural (s)

end Strings

Expression in [Str2]:

((ord(c) – ord(char-0)) • 10length(s)) + n

Chapter 12 20

A Module for Finite Mappings

module Mappings

imports Booleans

parameters Entries
sorts Domain, Range
operations

equals (_ , _) :
Domain,Domain ! Boolean

errorDomain : Domain
errorRange : Range

variables
a,b,c : Domain

equations
equals (a,a) = true

when a!errorDomain
equals (a,b) = equals (b,a)
implies (and (equals (a,b), equals (b,c)),

equals (a,c)) = true
when a, b, and c ! errorDomain

end Entries

Chapter 12 21

exports
sorts Mapping
operations

emptyMap : Mapping
errorMapping : Mapping
update(_ , _ , _) :

Mapping,Domain,Range ! Mapping
apply (_ , _) :

Mapping, Domain ! Range
end exports

variables
m : Mapping
d, d1, d2 : Domain
r : Range

equations
[M1] apply (emptyMap, d) = errorRange

[M2] apply (update(m, d1, r), d2) = r
when equals(d1,d2) = true, m!errorMapping

[M3] apply (update(m, d1, r), d2) = apply(m, d2)
when equals(d1,d2)=false, r!errorRange

end Mappings

Chapter 12 22

A Store Structure

module Stores

imports Strings, Naturals,

instantiation of Mappings

bind Entries

using String for Domain

using Natural for Range

using strEqual for equals

using errorString for errorDomain

using errorNatural for errorRange

rename using Store for Mapping

using emptySto for emptyMap

using updateSto for update

using applySto for apply

end Stores

Chapter 12 23

Mathematical Foundations

Simplify modules.

module Bools
exports

sorts Boolean
operations

true : Boolean
false : Boolean
not (_) : Boolean ! Boolean

end exports

equations
[B1] not (true) = false
[B2] not (false) = true

end Bools

Chapter 12 24

module Nats
imports Bools

exports
sorts Natural
operations

0 : Natural
succ (_) : Natural ! Natural
add (_ , _) : Natural, Natural ! Natural

end exports

variables
m, n : Natural

equations
[N1] add (m, 0) = m
[N2] add (m, succ (n)) = succ (add (m, n))

end Nats

Chapter 12 25

Ground Terms

Function symbols used to construct terms
that stand for the objects of the sorts in the
signature.

Defn:
For a given signature # = <Sorts,Operations>,
the set of ground terms TS of sort S is
defined inductively:

1. All constants of sort S in Operations are
ground terms (in TS).

2. For every function symbol f : S1,…,Sn ! S
in Operations, if t1,…,tn are ground terms of
sorts S1,…,Sn, respectively,
then f(t1,…,tn) is a ground term of sort S
where S1,…,Sn,S$Sorts.

Chapter 12 26

Example: Ground terms of sort Boolean in
Bools

true, not(true),
not(not(true)), not(not(not(true))), ...

false, not(false), not(not(false)), …

Ground terms of sort Natural in Nats:

0, succ(0), succ(succ(0)), …

add(0,0), add(0,succ(0)),

add(succ(0),0), add(succ(0),succ(0)),

add(0,succ(succ(0))),

add(succ(succ(0)),0),

add(0,succ(succ(succ(0)))),

add(succ(succ(succ(0))),0),

add(succ(0),succ(succ(0)),

:

On the basis of the signature only (no
equations), the ground terms must be mutually
distinct.

Chapter 12 27

#-Algebras

Algebraic specifications deal with syntax.

Semantics is provided by defining algebras that
serve as models of the specifications.

Heterogeneous or Many-sorted Algebras:

A set of operations acting on a collection of
sets.

Defn: For a given signature #, an algebra A is
a #-algebra under the following circumstances:

• There is a one-to-one correspondence
between the carrier sets of A and the sorts
of #

• There is a one-to-one correspondence
between the constants and functions of A
and the operation symbols of # so that
those constants and functions are of the
appropriate sorts and functionalities.

Chapter 12 28

Let # = <Sorts, Operations> be a signature
where

• Sorts is a set of sort names and

• Operations is a set of function symbols of the
form f : S1, …, Sm ! Sm+1 where each Si $
Sorts.

A #-algebra A consists of:

1. A collection of sets { SA | S$Sorts },
the carrier sets

2. A collection of functions { fA | f$Operations }
with the functionality

fA : (S1) A, …, (Sm) A ! SA
for each f : S1, …, Sm ! S in Operations.

#-algebras are called heterogeneous or many-
sorted algebras because they may contain
objects of more than one sort.

Chapter 12 29

Defn: The term algebra T# for a signature
= <Sorts, Operations> is constructed as
follows. Carrier sets { ST# | S$Sorts } are

defined by:

1. For each constant c of sort S in # we have a
corresponding constant “c” in ST#.

2. For each function symbol f : S1,...,Sn ! S in
and any n elements t1$(S1) T#, … ,tn$(Sn)

T#, the term “f(t1, ..., tn)” belongs to the carrier

set ST#.

For each function symbol f : S1,...,Sn ! S in #
and any n elements t1$(S1)T#, … ,tn$(Sn) T#,

define fT# by fT#(t1, ..., tn) = “f(t1, ..., tn)”.

The elements of the carrier sets of T# consist
of strings of symbols chosen from a set
containing the constants and function symbols
of # together with the special symbols “(”, “)”,
and “,”.

Chapter 12 30

Example

The carrier set for the term algebra T#
constructed from the module Bools contains all
the ground terms from the signature, including

“true”, “not(true)”, “not(not(true))”, ...

“false”, “not(false)”, “not(not(false))”,

The function notT# maps “true” to “not(true)”,

maps “not(true)” to “not(not(true))”, and so forth.

The carrier set is infinite.

Also, “false” ! “not(true)”

We have not accounted for the equations
and what properties they enforce in an
algebra.

Chapter 12 31

Defn: For a signature # and a #-algebra A, the
evaluation function evalA : T# ! A from

ground terms to values in A is defined as:

evalA("c") = cA for constants c, and

evalA("f(t1,…,tn)") = fA(evalA(t1), …, evalA(tn))

where each term ti is of sort Si for the
symbol f : S1,…,Sm !S in Operations.

A Congruence from the Equations

The function symbols and constants create
a set of ground terms.

The equations of a specification generate
a congruence % on the ground terms.

A congruence is an equivalence relation with
an additional “substitution” property.

Chapter 12 32

Definition: Let Spec = <#,E> be a
specification with signature # and equations E.

The congruence %E determined by E on T#
is the smallest relation satisfying the properties:

1. Variable Assignment: Given an equation
lhs = rhs in E that contains variables v1,..,vn

and given any ground terms t1,..,tn from T#
of the same sorts as the respective
variables,

lhs[v1 | ! t1,…,vn | ! tn] %E

rhs[v1 | ! t1,...,vn | ! tn]

where vi | ! ti indicates substituting the
ground term ti for the variable vi.

If equation is conditional, the condition must
be valid after variable assignment is carried
out on it.

2. Reflexive: For every ground term t$T#,
t %E t.

3. Symmetric: For any ground terms t1, t2$T#,
t1 %E t2 implies t2 %E t1.

Chapter 12 33

4. Transitive: For any terms t1, t2, t3$T#,
(t1 %E t2 and t2 %E t3) implies t1 %E t3.

5. Substitution Property: If t1 %E t1',…,tn %E tn'
and f : S1,…,Sn ! S is any function symbol
in #, then f(t1,…,tn) %E f(t1',…,tn').

Generate an equivalence relation from
equations:

 • Take every ground instance of all the
equations as a basis.

• Allow any derivation using properties
reflexive, symmetric, and transitive and the
substitution rule that each function symbol
preserves equivalence when building ground
terms.

Chapter 12 34

Ground terms for Bools module:

true % not(false) % not(not(true))
% not(not(not(false))) % ...

false % not(true) % not(not(false))
% not(not(not(true))) % ...

Sample Proof

add(succ(0),succ(0))

% succ(add(succ(0),0)) using [N2] and
[m| !succ(0), n| !0]

% succ(succ(0)) using [N1] and
[m | ! succ(0)].

Defn: If Spec = <#,E>, a #-algebra A is a
model of Spec if for all ground terms t1 and t2,
t1 %E t2 implies evalA(t1) = evalA(t2).

Chapter 12 35

Example: A = <{ {off,on} }, {off, on, switch}>
where off and on are constants
and switch is defined by

switch(off) = on
switch(on) = off.

Let # be the signature of Bools.
A #-algebra A:

BooleanA = {off,on} is the carrier set

Operation of # Functions of A
true : Boolean trueA = on : BooleanA

false : Boolean falseA = off : BooleanA

not : Boolean ! Boolean
notA= switch : BooleanA!BooleanA

For example,
not(true) % false and

evalA("not(true)") = notA(evalA ("true"))

= notA(trueA) = switch(on) = off,

and evalA("false") = off.

Chapter 12 36

Construct a particular #-algebra, called the
initial algebra, that is guaranteed to exist,
and take it to be the meaning of the
specification Spec.

Quotient Algebra

Build the quotient algebra Q from the term
algebra T# of a specification <S,E> by factoring
out congruences.

Defn: Let <#,E> be a specification with
= <Sorts, Operations>.

If t is a term in T#, we represent its congruence
class as [t] = { t' | t %E t' }.

So [t] = [t'] if and only if t %E t'.

Carrier sets = { (S)T# | S$Sorts }.

Chapter 12 37

A constant c becomes congruence class [c].

Functions in the term algebra define functions
in the quotient algebra:

Given a function symbol f : S1,...,Sn ! S in #,
fQ([t1],…,[tn]) = [f(t1,..,tn)] for any terms ti : Si,
with 1"i"n, from the appropriate carrier sets.

The function fQ is well-defined:

 t1 %E t1', ..., tn %E tn'
implies fQ(t1,..,tn) %E fQ(t1',..,tn')

by the Substitution Property for congruences.

For Bools:

trueQ = [true] and falseQ = [false].

The congruence class [true] contains

“true”, “not(false)”,“not(not(true))”, ...

The congruence class [false] contains
“false”, “not(true)”, “not(not(false))”,

Chapter 12 38

The function notQ:

notQ ([false]) = [not(false)] = [true], and

notQ ([true]) = [not(true)] = [false].

This quotient algebra is an initial algebra for
Bools.

Initial algebras are not necessarily unique.

For example, the algebra
A = <{off, on}, {off, on, switch}>

is also an initial algebra for Bools.

An initial algebra is finest-grained: It equates
only those terms required to be equated, and
so its carrier sets contain as many elements
as possible.

Using this procedure for developing the term
algebra and then the quotient algebra, we
can always guarantee that at least one initial
algebra exists for any specification.

Chapter 12 39

Homomorphisms

Functions between #-algebras that preserve
the operations are called #-homomorphisms.

Used to compare and contrast algebras that
act as models of specifications.

Defn: Suppose that A and B are #-algebras
for a given signature # = <Sorts, Operations>.
 h is a #-homomorphism if it maps carrier
sets of A to carrier sets of B and constants and
functions of A to constants and functions of B,
so that the behavior of constants and functions
is preserved.

h consists of a collection { hS | S$Sorts } of
functions hS : SA ! SB for S$Sorts such that

hS(cA) = cB for each constant symbol c : S,

and

hS(fA (a1,…,an)) = fB (hS1(a1),…,hSn(an))
for each function symbol f : S1,...,Sn ! S in #
and any n elements a1$(S1)A,…,an$(Sn)A.

Chapter 12 40

h is an isomorphism

If h is a #-homomorphism from A to B and
the inverse of h is a #-homomorphism from
B to A.

Apart from renaming carrier sets, constants,
and functions, the two algebras are exactly
the same.

Defn: A #-algebra I in the class of all
#-algebras serving as models of a specification
with signature # is called initial if for any
#-algebra A in the class, there is a unique
homomorphism h : I ! A.

Chapter 12 41

The quotient algebra Q for a specification is
an initial algebra.

For any #-algebra A that acts as a model
of the specification, there is a unique
#-homomorphism from Q to A.

The function evalA : T# ! A induces a
#-homomorphism h from Q to A using the
definition:

h([t]) = evalA (t) for each t$T#.

Any algebra isomorphic to Q is also an initial
algebra.

So since the quotient algebra Q and the
algebra A = <{off, on}, {off, on, switch}> are
isomorphic, A is also an initial algebra for
Bools.

Chapter 12 42

Defn: Let <#,E> be a specification, let Q be
the quotient algebra for <#,E>, and let B be an
arbitrary model of the specification.

1. If homomorphism from Q to a #-algebra B is
not onto, then B contains junk (values that
do not correspond to terms constructed from
signature).

Q
B

h

h is not onto

Chapter 12 43

2. If homomorphism from Q to B is not one-
to-one, then B exhibits confusion (two
different values in quotient algebra
correspond to same term in B).

Q
B

h

h is not one-to-one

Example

Consider the quotient algebra for Nats with the
infinite carrier set

[0], [succ(0)], [succ(succ(0))], ….

Suppose that we have a 16-bit computer for
which the integers consist of the following set
of values:

{ -32768, -32767, ..., -1, 0, 1, 2, ..., 32766, 32767 }.

The negative integers are junk with respect to
Nats since they cannot be images of any of
the natural numbers.

Chapter 12 44

The positive integers above 32767 must be
confusion.

When mapping an infinite carrier set onto a
finite machine, confusion must occur.

Consistency and Completeness

Suppose we want to add a predecessor
operation to naturals by importing Naturals
(original version) and defining a predecessor
function pred.

module Predecessor1

imports Boolean, Naturals

exports
operations

pred (_) : Natural ! Natural
end exports

variables
n : Natural

equations
[P1] pred (succ (n)) = n

end Predecessor1

Naturals is a subspecification of Predecessor1

since the signature and equations of

Chapter 12 45

Predecessor1 include the signature and
equations of Naturals.

The new congruence class [pred(0)] is not
congruent to 0 or any of the successors of 0.

We say that [pred(0)] is junk and that
Predecessor1 is not a complete extension
of Naturals.

We can resolve this problem by adding the
equation [P2] pred(0) = 0 (or [P2] pred(0) =
errorNatural).

Suppose that we define another predecessor
module in the following way:

module Predecessor2

imports Boolean, Naturals

exports
operations

pred (_) : Natural ! Natural
end exports

variables
n : Natural

equations
[P1] pred (n) = sub (n, succ (0))
[P2] pred (0) = 0

end Predecessor2

Chapter 12 46

The first equation specifies the predecessor
by subtracting one, and the second equation
is carried over from the “fix” for Predecessor1.

In the module Naturals, we have the
congruence classes:

[errorNatural], [0], [succ(0)],

[succ(succ(0))],

With the new module Predecessor2,

pred(0) = sub(0,succ(0))
= errorNatural by [P1] and [N5], and

pred(0) = 0 by [P2].

So we have reduced the number of
congruence classes, since [0] = [errorNatural].

Because this has introduced confusion, we
say that Predecessor2 is not a consistent
extension of Naturals.

Chapter 12 47

Defn:

Let Spec be a specification with signature
= <Sorts, Operations> and equations E.

Suppose SubSpec is a subspecification of
Spec with sorts SubSorts (a subset of Sorts)
and equations SubE (a subset of E).

Let T and SubT represent the terms of Sorts
and SubSorts, respectively.

• Spec is a complete extension of SubSpec
if for every sort S in SubSorts and every
term t1 in T, there exists a term t2 in SubT
such that t1 and t2 are congruent with respect
to E.

• Spec is a consistent extension of
SubSpec if for every sort subS in SubSorts
and all terms t1 and t2 in T, t1 and t2 are
congruent with respect to E if and only if t1
and t2 are congruent with respect to SubE.

Chapter 12 48

Using Algebraic Specifications

Data Abstraction

1. Information Hiding: Compiler should
ensure that the user of an ADT does not
have access to the representation (of
values) and implementation (of operations)
of an ADT.

2. Encapsulation: All aspects of specification
and implementation of an ADT should be
contain in one or two syntactic unit(s) with a
well-defined interface to the users of the
ADT.

Examples: Ada package
Modula module
Classes in OOP

3. Generic types (parameterized modules):
A way of defining an ADT as a template
without specifying the nature of all its
components.

A generic type is instantiated when the
properties of its missing component values
are provided.

Chapter 12 49

A Module for Unbounded Queues

Start by giving the signature of a specification
of queues of natural numbers.

module Queues
imports Booleans, Naturals

exports
sorts Queue
operations

newQ : Queue
errorQueue : Queue
addQ (_ , _) : Queue, Natural ! Queue
deleteQ (_) : Queue ! Queue
frontQ (_) : Queue ! Natural
isEmptyQ (_) : Queue ! Boolean

end exports
end Queues

Cannot assume any properties of the
operations other than their basic syntax.

This module could be specifying stacks instead
of queues.

Chapter 12 50

Properties of Queues

Define the characteristic properties of the
queue ADT by describing informally what each
operation does, for example:

• The function isEmptyQ(q) returns true if and
only if the queue q is empty.

• The function frontQ(q) returns the natural
number in the queue that was added earliest
without being deleted yet.

• If q is an empty queue, frontQ(q) is an error
value.

The descriptions are ambiguous, depending on
terms that have not been defined—for
example, “empty” and “earliest”.

One may be tempted to define the meaning of
the operations in terms of an implementation,
but this defeats the whole intent of data
abstraction, which is to separate logical
properties of data objects from their concrete
realization.

Chapter 12 51

A more formal approach to specifying the
properties of an ADT is through a set of
axioms in the form of module equations that
relate the operations to each other.

variables
q : Queue
m : Natural

equations
[Q1] isEmptyQ (newQ) = true

[Q2] isEmptyQ (addQ (q,m)) = false
when q!errorQueue, m!errorNatural

[Q3] delete (newQ) = newQ

[Q4] deleteQ (addQ (q,m)) =
if (isEmptyQ (q),
 newQ, addQ (deleteQ (q),m))

when m!errorNatural

[Q5] frontQ (newQ) = errorNatural

[Q6] frontQ (addQ (q,m)) =
if (isEmptyQ (q), m, frontQ (q))

when m!errorNatural

Chapter 12 52

Implementing Queues
as Unbounded Arrays

Assuming that the axioms correctly specify the
concept of a queue, use them to verify that an
implementation is correct.

Realization of an abstract data type:

• a representation of the objects of the type

• implementations of the operations

• representation function & that maps terms
in the model onto the abstract objects so
that the axioms are satisfied.

Plan

Represent queues as arrays with two pointers,
one to the front of the queue and one to the
end.

Chapter 12 53

A Module for Unbounded Arrays

module Arrays
imports Booleans, Naturals

exports
sorts Array
operations

newArray : Array
errorArray : Array
assign(_,_,_) : Array,Natural,Natural!Array
access (_ , _) : Array, Natural ! Natural

end exports

variables
arr: Array
i, j, m : Natural

equations
[A1]access (newArray, i) = errorNatural
[A2]access (assign (arr, i, m), j) =

if (i = j, m, access (arr, j))
when m!errorNatural

end Arrays

Chapter 12 54

Implementation of the ADT Queue using the
ADT Array has the following set of triples as
its objects:

ArrayQ =
{ <arr,f,e> | arr:Array, f,e:Natural, and f"e }.

Operations over ArrayQ are defined as
follows:

[AQ1] newAQ= <newArray,0,0>

[AQ2] addAQ (<arr,f,e>, m) =
<assign(arr,e,m),f,e+1>

[AQ3] deleteAQ (<arr,f,e>) =
if (f = e, <arr,f,e>, <arr,f+1,e>)

[AQ4] frontAQ (<arr,f,e>) =
if (f = e, errorNatural,

access(arr,f))

[AQ5] isEmptyAQ (<arr,f,e>) = (f = e)
when arr!errorArray

Chapter 12 55

Array queues are related to the abstract
queues by a homomorphism

& : {ArrayQ,Natural,Boolean} !
{Queue,Natural,Boolean},

defined on the objects and operations of the
sorts.

Use symbolic terms “&(arr,f,e)” to represent
abstract queue objects in Queue.

For <arr,f,e> : ArrayQ, m : Natural,
and b : Boolean,

& (<arr,f,e>) = &(arr,f,e) when f"e

& (<arr,f,e>) = errorQueue when f>e

& (m) = m

& (b) = b

& (newAQ) = newQ

& (addAQ) = addQ

& (deleteAQ) = deleteQ

& (frontAQ) = frontQ

& (isEmptyAQ) = isEmptyQ

Chapter 12 56

Under the homomorphism, the five equations
that define operations for the array queues
map into five equations describing properties of
abstract queues.

[D1] newQ = &(newArray,0,0)

[D2] addQ (&(arr,f,e), m) =
&(assign(arr,e,m),f,e+1)

[D3] deleteQ (&(arr,f,e)) =
if (f = e, &(arr,f,e), &(arr,f+1,e))

[D4] frontQ (&(arr,f,e)) =
if (f = e, errorNatural, access(arr,f))

[D5] isEmptyQ (&(arr,f,e)) = (f = e)

Chapter 12 57

Consider the image of [AQ2] under &.

Assume [AQ2]
 addAQ (<arr,f,e>,m) =

<assign (arr,e,m),f,e+1>

Then addQ (&(arr,f,e),m)

= &(addAQ) (&(<arr,f,e>),&(m)>)

= &(addAQ (<arr,f,e>,m))

= &(assign(arr,e,m),f,e+1),

which is [D2].

The implementation is correct if its objects can
be shown to satisfy the queue axioms [Q1] to
[Q6] for arbitrary queues of the form q =
&(arr,f,e) with f"e and arbitrary elements m of
Natural, given the definitions [D1] to [D5] and
the equations for arrays.

Chapter 12 58

Lemma: For any queue &(a,f,e) constructed
using the operations of the implementation, f"e.

Proof: The only operations that produce
queues are newQ, addQ, and deleteQ, the
constructors in the signature. The proof is by
induction on the number of applications of
these operations.

Basis: Since newQ = &(newArray,0,0), f"e.

Induction Step: Suppose that &(a,f,e) has
been constructed with n applications of the
operations and that f"e.

Consider a queue constructed with one more
application of these functions, for a total of
n+1.

Case 1: The n+1st operation is addQ.
But addQ (&(a,f,e),m) = &(assign (a,f,m),f,e+1)
has f"e+1.

Case 2: The n+1st operation is deleteQ.
But deleteQ (&(a,f,e)) =

if (f = e, &(arr,f,e), &(arr,f+1,e)).
If f=e, then f"e, and if f<e, then f+1"e.

Chapter 12 59

The proof is an example of structural
induction, induction that covers all of the ways
in which the objects of the data type may be
constructed.

Structural Induction: Suppose f1, f2, …, fn
are the operations that act as constructors
for an abstract data type S, and P is a
property of values of sort S.

If the truth of P for all arguments of sort S for
each fi implies the truth of P for the results of
all applications of fi that satisfy the syntactic
specification of S, it follows that P is true of
all values of the data type.

The basis case results from those
constructors with no arguments.

For the verification of [Q4] as part of proving
the validity of this queue implementation,
extend & for the following values:

For any f : Natural and arr : Array,
&(arr,f,f) = newQ.

This extension is consistent with definition
[D1].

Chapter 12 60

Verification of Queue Axioms

Let q = &(a,f,e) be an arbitrary queue and let m
be an arbitrary element of Natural.

[Q1] isEmptyQ (newQ)
= isEmptyQ (&(newArray,f,f)) by [D1]
= (f = f) = true by [D5].

[Q2] isEmptyQ (addQ (&(arr,f,e),m))

= isEmptyQ (&(assign(arr,e,m),f,e+1)

by [D2]

= (f = e+1) = false, since f"e

by [D5] & lemma.

[Q3] deleteQ (newQ)

= deleteQ (&(newArray,f,f)) by [D1]

= &(newArray,f,f) = newQ

by [D3] and [D1].

Chapter 12 61

[Q4] deleteQ (addQ (&(arr,f,e), m))

= deleteQ (&(assign(arr,e,m),f,e+1)) by [D2]

= &(assign(arr,e,m),f+1,e+1) by [D4].

Case 1: f = e,

that is, isEmptyQ (&(arr,f,e)) = true.

Then &(assign(a,e,m),f+1,e+1) = newQ by [D1].

Case 2: f < e,

that is, isEmptyQ (&(arr,f,e)) = false.

Then &(assign(arr,e,m),f+1,e+1)

= addQ (&(arr,f+1,e), m) by [D2]

= addQ (deleteQ (&(arr,f,e)), m) by [D3].

[Q5] frontQ (newQ)

= frontQ (&(newArray,f,f) by [D1]

= errorNatural since f = f by [D4].

Chapter 12 62

[Q6] frontQ (addQ (&(arr,f,e), m))

= frontQ (&(assign(arr,e,m),f,e+1)) by
[D2]

= access (assign(arr,e,m), f) by [D4].

Case 1: f = e,
that is, isEmptyQ (&(arr,f,e)) = true.

Then access (assign(arr,e,m), f)

= access (assign (arr,e,m), e) =m by [A2].

Case 2: f < e,
that is, isEmptyQ (&(arr,f,e)) = false.

Then access (assign (arr,e,m), f)

= access (arr,f)

= frontQ (&(arr,f,e)) by [A2] and [D4].

Since the six axioms for the unbounded queue
ADT have been verified, the implementation
via the unbounded arrays is correct.

Chapter 12 63

ADTs As Algebras

Recall that any signature # defines a #-algebra
T# of all the terms over the signature, and that
by taking the quotient algebra Q defined by the
congruence based on the equations E of a
specification, we get an initial algebra that
serves as the finest-grained model of a
specification <#,E>.

Example: An instance of the Queue ADT has
operations involving three sorts of
objects—namely, Natural, Boolean, and the
type being defined, Queue. Some authors
designate the type being defined as the type
of interest. In this context, a graphical
notation has been suggested to define the
signature of the operations of the algebra.

Chapter 12 64

newQ

addQdeleteQ

frontQisEmptyQ

NaturalQueueBoolean

 Signature of Queues

The signature of the Queue ADT defines a
term algebra T#, sometimes called a free word
algebra, formed by taking all legal
combinations of operations that produce
Queue objects.

The values in the sort Queue are those
produced by the constructor operations.

Example of terms in T#:
newQ,
addQ (newQ,5), and
deleteQ (addQ (addQ (deleteQ (newQ),9),15)).

Chapter 12 65

The term free for such an algebra means that
the operations are combined in any way
satisfying the syntactic constraints, and that all
such terms are distinct objects in the algebra.

The properties of an ADT are given by a set E
of equations or axioms that define identities
among the terms of T#.

So the Queue ADT is not a free algebra, since
the axioms recognize certain terms as being
equal.

For example:
deleteQ (newQ) = newQ and
deleteQ(addQ(addQ(deleteQ(newQ),9),15))

= addQ (newQ, 15).

The equations define a congruence %E on the
free algebra of terms as described in section
12.2. That equivalence relation defines a set of
equivalence classes that partitions T#.

[t]E = { u$ T# | u %E t }

For example, [newQ]E = { newQ,
deleteQ(newQ), deleteQ(deleteQ(newQ)), … }.

The operations of the ADT can be defined on
these equivalence classes before:

Chapter 12 66

For an n-ary operation f$S

and t1,t2,…,tn$ T#,
let fQ([t1],[t2],…,[tn]) = [f(t1,t2,…,tn)].

The resulting (quotient) algebra, also called
T#,E, is the abstract data type being defined.
When manipulating the objects of the (quotient)
algebra T#,E the normal practice is to use
representatives from the equivalence classes.

Definition: A canonical or normal form for
the terms in a quotient algebra is a set of
distinct representatives, one from each
equivalence class.

Lemma: For the Queue ADT T#,E each term is
equivalent to the value newQ or a term of the
form
addQ(addQ(…addQ(addQ(newQ,m1),m2),…),

mn–1),mn) for some n#1
 where m1,m2,…,mn : Natural.

Proof: The proof is by structural induction.

Basis: The only constant in T# is newQ, which
is in normal form.

Chapter 12 67

Induction Step: Consider a queue term t with
more than one application of the constructors
(newQ, addQ, deleteQ), and assume that any
term with fewer applications of the
constructors can be put into normal form.

Case 1: t = addQ(q,m) will be in normal form
when q, which has fewer constructors than
t, is in normal form.

Case 2: Consider t = deleteQ(q) where q is in
normal form.

Subcase a: q = newQ. Then deleteQ(q) =
newQ is in normal form.

Subcase b: q = addQ(p,m) where p is in normal
form.
Then deleteQ(addQ(p,m)) = if (

isEmptyQ(p),
newQ,
addQ(deleteQ(p),m))

If p is empty, deleteQ(q) = newQ is in
normal form.

If p is not empty, deleteQ(q) =
addQ(deleteQ(p),m). Since deleteQ(p) has
fewer constructors than t, it can be put into
normal form, so that deleteQ(q) is in normal
form. !

Chapter 12 68

A canonical form for a ADT can be thought of
as an “abstract implementation” of the type.

John Guttag [Guttag78b] calls this a direct
implementation and represents it graphically
as shown below.

addQ (addQ (addQ (newQ, 3), 5), 8) =

newQ = newQ

addQ

3

5

8

newQ

addQ

addQ

The canonical form for an ADT provides an
effective tool for proving properties about the
type.

Chapter 12 69

Lemma: The representation function & that
implements queues as arrays is an onto
function.

Proof: Since any queue can be written as
newQ or as addQ(q,m), we need to handle
only these two forms.

By [D1], &(newArray,0,0) = newQ.
Assume as an induction hypothesis that q =
&(arr,f,e) for some array.

Then by [D2], &(assign(arr,e,m),f,e+1) = addQ
(&(arr,f,e),m).

Therefore, any queue is the image of some
triple under the representation function &. !

Given an ADT with signature S, operations in
S that produce element of the type of interest
have already been called constructors.
Those operations in S whose range is an
already defined type of “basic” values are
called selectors. The operations of S are
partitioned into two disjoint sets, Con the set of
constructors and Sel the set of selectors. The
selectors for Queues are frontQ and isEmptyQ.

Chapter 12 70

Definition: A set of equations for an ADT is
sufficiently complete if for each ground term
f(t1,t2,…,tn) where f$Sel, the set of selectors,
there is an element u of a predefined type such

that f(t1,t2,…,tn) %E u. This condition means

there are sufficient axioms to make the
derivation to u.

Theorem: The equations in the module
Queues are sufficiently complete.

Proof:

1. Every queue can be written in normal form
as newQ or as addQ(q,m).

2. isEmptyQ(newQ) = true,

isEmptyQ(addQ(q,m)) = false, frontQ(newQ)

= errorNatural, and frontQ(addQ(q,m))

= m or frontQ(q) (use induction). !

Chapter 12 71

Abstract Syntax
and Algebraic Specifications

Points about abstract syntax:

• Only need to specify the meaning of the
syntactic forms given by the abstract syntax,
since this formalism furnishes all the essential
syntactic constructs in the language.

• No harm arises from an ambiguous abstract
syntax since its purpose is not syntactic
analysis .

• The abstract syntax of a programming
language may take many different forms,
depending on the semantic techniques that
are applied to it.

These points raise questions concerning the
nature of abstract syntax and its relation to the
language defined by the concrete syntax.

Chapter 12 72

Example: Expressions

Concrete Syntax:

<expr> ::= <term>

<expr> ::= <expr> + <term>

<expr> ::= <expr> - <term>

<term> ::= <element>

<term> ::= <term> * <element>

<element> ::= <identifier>

<element> ::= (<expr>)

Define a signature # that corresponds exactly
to the BNF definition.

Each nonterminal becomes a sort in #, and
each production becomes a function symbol
whose syntax captures the essence of the
production.

Chapter 12 73

The signature of the concrete syntax is given
in the module Expressions.

module Expressions
exports

sorts Expression, Term, Element, Identifier
operations

expr (_) : Term ! Expression

add (_ , _) :

Expression, Term ! Expression

sub (_ , _) :

Expression, Term ! Expression

term (_) : Element ! Term

mul (_ , _) : Term, Element ! Term

elem (_) : Identifier ! Element

paren (_) : Expression ! Element

end exports

end Expressions

The terminal symbols in the grammar are
“forgotten” in the signature since they are
embodied in unique names of the function
symbols.

Chapter 12 74

Consider the collection of #-algebras following
this signature.

The term algebra T# is initial in the collection of
all #-algebras, meaning that for any #-algebra
A, there is a unique homomorphism h : T# ! A.

The elements of T# are terms constructed
using the function symbols in #.

Since this signature has no constants, assume
a set of constants of sort Identifier and
represent them as structures of the form ide(x)
containing atoms as the identifiers.

Think of these structures as the tokens
produced by a scanner.

The expression “x * (y + z)” corresponds to
the following term in T#:

t = expr (mul (term (elem (ide(x))),
paren (add (expr (term (elem (ide(y)))),

term (elem (ide(z))))))).

Chapter 12 75

Constructing such a term corresponds to
parsing the expression.

Concrete Syntax

Chapter 12 76

Abstract Syntax

expr

mul

term

add

paren

expr term

term

elem

ide

Chapter 12 77

The concrete syntax of a programming
language coincides with the initial term algebra
of a specification with signature #.

What does its abstract syntax correspond to?

Consider the following algebraic specification
of abstract syntax for the expression
language.

module AbstractExpressions
exports

sorts AbsExpr, Symbol
operations

plus (_ , _) :
AbsExpr, AbsExpr ! AbsExpr

minus (_ , _) :
AbsExpr, AbsExpr ! AbsExpr

times (_ , _) :

AbsExpr, AbsExpr ! AbsExpr

ide (_) : Symbol ! AbsExpr
end exports

end AbstractExpressions

Use set Symbol of symbolic atoms as identifiers.

Chapter 12 78

Construct terms with the constructor function
symbols in the AbstractExpressions module to
represent the abstract syntax trees.

These freely constructed terms form term
algebra A according to signature of
AbstractExpressions.

A also serves as a model of the specification
in the Expressions module; that is, A is a
#-algebra:

ExpressionA = TermA = ElementA = AbsExpr

IdentifierA = { ide(x) | x : Symbol }.

Operations:
exprA : AbsExpr ! AbsExpr

defined by exprA (e) = e

addA : AbsExpr, AbsExpr ! AbsExpr
defined by addA (e1,e2) = plus(e1,e2)

subA : AbsExpr, AbsExpr ! AbsExpr
defined by subA (e1,e2) = minus(e1,e2)

Chapter 12 79

termA : AbsExpr ! AbsExpr
defined by termA (e) = e

mulA : AbsExpr, AbsExpr ! AbsExpr
defined by mulA (e1,e2) = times(e1,e2)

elemA : Identifier ! AbsExpr
defined by elemA (e) = e

parenA : AbsExpr ! AbsExpr
defined by parenA (e) = e

Under this interpretation of the symbols in #,
this term t becomes a value in the #-algebra A:

tA = (expr (mul (term (elem (ide(x))),
paren (add (expr (term(elem (ide(y)))),

term (elem (ide(z))))))))A

= exprA (mulA (termA (elemA (ide(x))),
 parenA (addA

(exprA (termA (elemA (ide(y)))),
termA(elemA (ide(z)))))))

Chapter 12 80

= exprA (mulA (termA (ide(x)),
parenA (addA (exprA (termA (ide(y))),

termA (ide(z))))))

= exprA (mulA (ide(x), parenA
(addA (exprA (ide(y)),

ide(z)))))

= mulA (ide(x), addA (ide(y), ide(z)))

= times (ide(x), plus (ide(y), ide(z))),

which represents the abstract syntax tree in A
that corresponds to the original expression
“x * (y + z)”.

Each version of abstract syntax is a #-algebra
for the signature associated with the grammar
that forms the concrete syntax of the language.

Any #-algebra serving as an abstract syntax is
a homomorphic image of T#, the initial algebra
for the specification with signature #.

Chapter 12 81

Confusion

Generally, #-algebras acting as abstract
syntax will contain confusion; the
homomorphism from T# will not be one-to-one.

This confusion reflects the abstracting process:

By confusing elements in the algebra, we are
suppressing details in the syntax.

The expressions “x+y” and “(x+y)”, although
distinct in the concrete syntax and in T#, are
the same when mapped to plus(ide(x),ide(y))
in A.

Any #-algebra for the signature resulting from
the concrete syntax can serve as the abstract
syntax for some semantic specification of the
language, but many such algebras will be so
confused that the associated semantics will be
trivial or absurd.

The task of the semanticist is to choose an
appropriate #-algebra that captures the
organization of the language in such a way
that appropriate semantics can be attributed
to it.

Chapter 12 82

Algebraic Semantics for Wren
module WrenTypes

imports Booleans
exports

sorts WrenType
operations

naturalType, booleanType : WrenType
programType, errorType : WrenType
eq?(_ , _) :

WrenType,WrenType ! Boolean
end exports
variables

t1, t2 : WrenType
equations
[Wt1]eq? (t1,t1) = true when t1!errorType

[Wt2]eq? (t1, t2) = eq? (t2,t1)

[Wt3]eq? (naturalType, booleanType) = false

[Wt4]eq? (naturalType, programType) = false

[Wt5]eq? (naturalType, errorType) = false

[Wt6]eq? (booleanType, programType) = false

[Wt7]eq? (booleanType, errorType) = false

[Wt8]eq? (programType, errorType) = false
end WrenTypes

Chapter 12 83

module WrenValues
imports Booleans, Naturals

exports
sorts WrenValue
operations

wrenValue (_) : Natural ! WrenValue

wrenValue (_) : Boolean ! WrenValue

errorValue : WrenValue

eq?(_ , _) :
WrenValue,WrenValue!Boolean

end exports

variables

x, y : WrenValue

m, n : Natural

b, b1, b2 : Boolean

Chapter 12 84

equations

[Wv1] eq? (x, x) = true when x!errorValue

[Wv2] eq? (x, y) = eq? (y,x)

[Wv3] eq? (wrenValue(m), wrenValue(n))

= eq? (m,n)

[Wv4] eq? (wrenValue(b1), wrenValue(b2))

= eq? (b1,b2)

[Wv5] eq? (wrenValue(m), wrenValue(b)) = false

when m!errorNatural, b!errorBoolean

[Wv6] eq? (wrenValue(m), errorValue) = false

when m ! errorNatural

[Wv7] eq? (wrenValue(b), errorValue) = false

when b ! errorBoolean
end WrenValues

Chapter 12 85

Abstract Syntax for Wren

module WrenASTs
imports Naturals, Strings, WrenTypes

exports
sortsWrenProgram, Block, DecSeq,

Declaration, CmdSeq, Cmd, Expr, Ident

operations
astWrenProg (_ , _) : Ident, Block ! WrenProg

astBlock (_ , _) : DecSeq, CmdSeq ! Block

astDecs (_ , _) : Declaration, DecSeq ! DecSeq

astEmptyDecs : DecSeq

astDec (_ , _) : Ident, WrenType ! Declaration

astCmds (_ , _) : Cmd, CmdSeq ! CmdSeq

astOneCmd (_) : Command ! CmdSeq

astRead (_) : Ident ! Command

astWrite (_) : Expr ! Command

astAssign (_ , _) : Ident, Expr ! Command

astSkip : Command

astWhile (_ , _) : Expr, CmdSeq ! Command

Chapter 12 86

astIfThen (_ , _) : Expr, CmdSeq ! Command

astIfElse(_ , _ , _) : Expr,CmdS,CmdS ! Cmd

astAddition (_ , _) : Expr, Expr ! Expr

astSubtraction (_ , _) : Expr, Expr ! Expr

astMultiplication (_ , _) : Expr, Expr ! Expr

astDivision (_ , _) : Expr, Expr ! Expr

astEqual (_ , _) : Expr, Expr ! Expr

astNotEqual (_ , _) : Expr, Expr ! Expr

astLessThan (_ , _) : Expr, Expr ! Expr

astLessThanEqual (_ , _) : Expr, Expr ! Expr

astGreaterThan (_ , _) : Expr, Expr ! Expr

astGreaterThanEqual (_ , _) : Expr, Expr ! Expr

astVariable (_) : Ident ! Expr

astNaturalConstant (_) : Natural ! Expr

astIdent (_) : String ! Ident

end exports

end WrenASTs

Chapter 12 87

A Type Checker for Wren

module WrenTypeChecker
importsBooleans, WrenTypes, WrenASTs,

instantiation of Mappings
bind Entries

using String for Domain
using WrenType for Range
using eq? for equals
using errorString for errorDomain
using errorType for errorRange

rename using SymbolTable for Mapping
using nullSymTab for emptyMap

exports
operations

check (_) : WrenProgram ! Bool

check (_ , _) : Block, SymTab ! Bool

check (_ , _) :

DecSeq, SymTab ! Bool,SymTab

check(_ , _) :

Declaration,SymTab ! Bool,SymTab

check (_ , _) : CmdSeq, SymTab ! Bool

check (_ , _) : Command, SymTab ! Bool
end exports

Chapter 12 88

operations

typeExpr : Expr, SymTab ! WrenType

variables

block : Block

decs : DecSeq

dec : Declaration

cmds, cmds1, cmds2 : CmdSeq

cmd : Command

expr, expr1, expr2 : Expr

type:WrenType

symtab, symtab1 : SymbolTable

m : Natural

name : String

b, b1, b2 : Boolean

Chapter 12 89

equations
[Tc1]

check (astWrenProgram (astIdent (name), block))
= check(block,

update(nullSymTab,name,progType)

[Tc2]
check (astBlock (decs, cmds), symtab)

= and (b1,b2)
when <b1,symtab1>=check (decs, symtab)

 b2 = check (cmds, symtab1)

[Tc3]
check (astDecs (dec, decs), symtab)

= <and (b1,b2), symtab2>
when <b1,symtab1> = check (dec, symtab)

<b2,symtab2>=check(decs, symtab1)

[Tc4]
check (astEmptyDecs, symtab)

= <true, symtab>

[Tc5]
check (astDec (astIdent (name), type), symtab)

= if (apply (symtab, name) = errorType,
<true, update(symtab, name, type)>,
<false, symtab>)

Chapter 12 90

[Tc6]
check (astCmds (cmd, cmds), symtab)

= and (check (cmd, symtab),
check (cmds, symtab))

[Tc7]
check (astOneCmd (cmd), symtab)

= check (cmd, symtab)

[Tc8]
check (astRead (astIdent (name)), symtab)

= eq?(apply (symtab, name), naturalType)

[Tc9]
check (astWrite (expr, symtab)

= eq? (typeExpr (expr, symtab),
naturalType)

[Tc10]
check(astAssign (astIdent (name), expr), symtab)

= eq? (apply(symtab, name),
typeExpr (expr, symtab))

[Tc11]
check (astSkip, symtab)

= true

Chapter 12 91

[Tc12]
check (astWhile (expr, cmds), symtab)

= if (eq? (typeExpr (expr, symtab),
booleanType),

check (cmds, symtab),
false)

[Tc13]
check (astIfThen (expr, cmds), symtab)
= if (eq?(typeExpr(expr, symtab), booleanType),

check (cmds, symtab),
false)

[Tc14]
check (astIfElse (expr, cmds1, cmds2), symtab)

= if (eq? (typeExpr (expr, symtab), booleanType),
and (check (cmds1, symtab), check (cmds2,

symtab)),
false)

[Tc15]
typeExpr (astAddition (expr1, expr2), symtab)
= if (and(eq?(typeExpr(expr1,symtab),natType),

eq?(typeExpr (expr2, symtab), natType)),

naturalType,
errorType)

Chapter 12 92

[Tc19]
typeExpr (astEqual (expr1, expr2), symtab)

= if (and(eq?(typeExpr(expr1,symtab),natType),
eq?(typeExpr(expr2,symtab),natType)),

booleanType,
errorType)

[Tc21]
typeExpr (astLessThan (expr1, expr2), symtab)

= if (and(eq?(typeExpr(expr1,symtab),natType),
eq?(typeExpr(expr2,symtab),natType)),

booleanType,
errorType)

[Tc25]
typeExpr (astNaturalConstant (m), symtab)

= naturalType

[Tc26]
typeExpr (astVariable (astIdent(name)), symtab)

= apply (symtab, name)
end WrenTypeChecker

Chapter 12 93

The following equations perform the actual type
checking:

[Tc8] The variable in a read command has
naturalType

[Tc9] The expression in a write command has
naturalType

[Tc10] The assignment target variable and
expression have the same type

[Tc15-18] Arithmetic operations involve
expressions of naturalType

[Tc19-24] Comparisons involve expressions of
naturalType.

Chapter 12 94

An Interpreter for Wren

module WrenEvaluator
imports Booleans, Naturals, Strings, Files,

WrenValues, WrenASTs,
instantiation of Mappings

bind Entries
using String for Domain
using Wren-Value for Range
using eq? for equals
using errorString for errDomain
using errorValue for errorRange

rename
using Store for Mapping
using emptySto for emptyMap
using updateSto for update
using applySto for apply

exports
operations

meaning (_ , _) : WrenProgram, File ! File
perform (_ , _) : Block, File ! File
elaborate (_ , _) : DecSeq, Store ! Store
elaborate (_ , _) : Declaration, Store ! Store

Chapter 12 95

execute (_ , _ , _ , _) :
 CmdSeq, Store, File, File ! Store, File, File

execute (_ , _ , _ , _) :
 Cmd, Store, File, File ! Store, File, File

evaluate (_ , _) : Relation, Store ! Boolean
evaluate (_ , _) : Expr, Store ! WrenValue

end exports

variables

input, input1, input2 : File

output, output1, output2 : File

block : Block

decs : DecSeq

cmds, cmds1, cmds2: CmdSeq

cmd : Command

expr, expr1, expr2 : Expr

sto, sto1, sto2 : Store

value : WrenValue

m,n : Natural

name : String

b : Boolean

Chapter 12 96

equations
[Ev1]

meaning(astWrenProgram(astIdent(name),block),input)
= perform (block, input)

[Ev2]
perform (astBlock (decs,cmds), input)

= execute (cmds,
elaborate(decs,emptySto),

 input, emptyFile)

[Ev3]
elaborate (astDecs (dec, decs), sto)

= elaborate (decs,elaborate(dec, sto))

[Ev4]
elaborate (astEmptyDecs, sto)

= sto

[Ev5]
elaborate(astDec(astIdent(name),natType), sto)

= updateSto(sto, name, wrenValue(0))

[Ev6]
elaborate(astDec(astIdent(name),booleanType),sto)

= updateSto(sto, name, wrenValue(false))

[Ev7]
elaborate (astEmptyDecs, sto)

= sto

Chapter 12 97

[Ev8]
execute(astCmds(cmd,cmds),sto1, input1, output1)

= execute (cmds, sto2, input2, output2)
when <sto2, input2, output2> =

execute (cmd, sto1, input1, output1)

[Ev9]
execute (astOneCmd (cmd), sto, input, output)

= execute (cmd, sto, input, output)

[Ev10]
execute (astSkip, sto, input, output)

= <sto, input, output>

[Ev11]
execute(astRead(astIdent(name)),sto,input,output)

= if (empty? (input),
need error case here
<updateSto(sto,name,first), rest, output>)

when cons(first,rest) = input

[Ev12]
execute (astWrite (expr), sto, input, output)

= <sto,input,
concat(output,mkFile(evaluate(expr,sto)))>

[Ev13]
execute(astAssign(astIdent(name),expr),

sto,input,output)
= <updateSto(sto,name,evaluate(expr,sto)),

input,output>

Chapter 12 98

[Ev14]
execute(astWhile(expr,cmds), sto1, input1, output1)

= if (eq? (evaluate (expr, sto1), wrenVal(true))
execute(astWhile(expr,cmds), sto2, input2, output2)

when <sto2, input2, output2> =
 execute (cmds, sto1, input1, output1),

<sto, input, output>)

[Ev15]
execute (astIfThen (expr, cmds), sto, input, output)

= if (eq? (evaluate (expr, sto), wrenVal(true))
execute (cmds, sto, input, output),

<sto, input, output>)

[Ev16]
execute(astIfElse(expr,cmds1,cmds2),sto,input,output)

= if (eq? (evaluate (expr, sto), wrenVal(true))
execute (cmds1, sto, input, output)
execute (cmds2, sto, input, output))

[Ev17]
evaluate (astAddition (expr1, expr2), sto)

= wrenValue(add (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto

[Ev21]
evaluate (astEqual (expr1, expr2), sto)

= wrenValue(eq? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

Chapter 12 99

[Ev23]
evaluate (astLessThan (expr1, expr2), sto)

= wrenValue(less? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev27]
evaluate (astNaturalConstant (m), sto)

= wrenValue(m)

[Ev28]
evaluate (astVariable (astIdent (name)), sto)

= applySto (sto, name)

end WrenEvaluator

Chapter 12 100

 A Wren System

module WrenSystem
imports WrenTypeChecker, WrenEvaluator

exports
operations

runWren : WrenProgram, File ! File
end exports

variables
input : File
program : WrenProgram

equations
[Ws1] runWren (program, input)

= if (check (program),
eval (program, input),
emptyFile)

-- return an empty file if context violation,
otherwise run program

end WrenSystem

Chapter 12 101

Implementing Algebraic Semantics
We show the implementation of three modules:
Booleans, Naturals, and WrenEvaluator.

Expected behavior of the system:

>>> Interpreting Wren via Algebraic Semantics <<<
Enter name of source file: frombinary.wren
 program frombinary is
 var sum,n : integer;
 begin
 sum := 0; read n;
 while n<2 do
 sum := 2*sum+n; read n
 end while;
 write sum
 end
Scan successful
Parse successful
Enter an input list followed by a period:

[1,0,1,0,1,1,2].
Output = [43]
yes

Chapter 12 102

Module Booleans
boolean(true).
boolean(false).

bnot(true, false).
bnot(false, true).

and(true, P, P).
and(false, true, false).
and(false, false, false).

or(false,P,P).
or(true,P,true) :- boolean(P).

xor(P, Q, R) :- or(P,Q,PorQ), and(P,Q,PandQ),
bnot(PandQ,NotPandQ),
and(PorQ,NotPandQ, R).

beq(P, Q, R) :- xor(P,Q,PxorQ), bnot(PxorQ,R).

Module Naturals
The predicate natural succeeds with arguments
of the form

zero, succ(zero), succ(succ(zero)), ….

Calling this predicate with a variable, such as
natural(M), generates the natural numbers in
this form if repeated solutions are requested by
entering semicolons.

Chapter 12 103

natural(zero).
natural(succ(M)) :- natural(M).

The arithmetic functions follow the algebraic
specification closely.

Rather than return an error value for
subtraction of a larger number from a smaller
number or for division by zero, we print an
appropriate error message and abort the
program execution.

The comparison operations follow directly from
their definitions.

add(M, zero, M) :- natural(M).
add(M, succ(N), succ(R)) :- add(M,N,R).

sub(zero, succ(N), R) :-
write('Fatal Error: Result of subtraction is negative'),
nl, abort.

sub(M, zero, M) :- natural(M).
sub(succ(M), succ(N), R) :- sub(M,N,R).

mul(M, zero, zero) :- natural(M).
mul(M, succ(zero), M) :- natural(M).
mul(M, succ(succ(N)), R) :-

mul(M,succ(N),R1), add(M,R1,R).

Chapter 12 104

div(M, zero, R) :-
write('Fatal Error: Division by zero'),
nl, nl, abort.

div(M, succ(N), zero) :- less(M,succ(N),true).
div(M,succ(N),succ(Quotient)) :-

less(M,succ(N),false),
sub(M,succ(N),Dividend),
div(Dividend,succ(N),Quotient).

exp(M, zero, succ(zero)) :- natural(M).
exp(M, succ(N), R) :- exp(M,N,MexpN),

mul(M, MexpN, R).

eq(zero,zero,true).
eq(zero,succ(N),false) :- natural(N).
eq(succ(M),zero,false) :- natural(M).
eq(succ(M),succ(N),BoolValue) :-

eq(M,N,BoolValue).

less(zero,succ(N),true) :- natural(N).
less(M,zero,false) :- natural(M).
less(succ(M),succ(N),BoolValue) :-

less(M,N,BoolValue).

greater(M,N,BoolValue) :- less(N,M,BoolValue).

Chapter 12 105

lesseq(M,N,BoolValue) :-
less(M,N,B1), eq(M,N,B2),
or(B1,B2,BoolValue).

greatereq(M,N,BoolValue) :-
greater(M,N,B1), eq(M,N,B2),
or(B1,B2,BoolValue).

Two operations not specified in Naturals module.

toNat converts a numeral to natural notation

toNum converts a natural number to a base-ten
numeral.

toNat(4,Num) returns
Num = succ(succ(succ(succ(zero)))).

toNat(0,zero).
toNat(Num, succ(M)) :-

Num>0, NumMinus1 is Num-1,
toNat(NumMinus1, M).

toNum(zero,0).
toNum(succ(M),Num) :-

toNum(M,Num1), Num is Num1+1.

Chapter 12 106

Declarations

The clauses for elaborate are used to build a
store with numeric variables initialized to zero
and Boolean variables initialized to false.

elaborate([Dec|Decs],StoIn,StoOut) :- % Ev3
elaborate(Dec,StoIn,Sto),
elaborate(Decs,Sto,StoOut).

elaborate([],Sto,Sto). % Ev4

elaborate(dec(integer,[Var]),StoIn,StoOut) :-
updateSto(StoIn,Var,zero,StoOut). % Ev5

elaborate(dec(boolean,[Var]),StoIn,StoOut) :-
updateSto(StoIn,Var,false,StoOut). % Ev6

Commands
For a sequence of commands, the commands
following the first command are evaluated with
the store produced by the first command

execute([Cmd|Cmds],StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :- % Ev8

Chapter 12 107

execute(Cmd,StoIn,InputIn,OutputIn,
Sto,Input,Output),

execute(Cmds,Sto,Input,Output,
StoOut,InputOut,OutputOut).

execute([],Sto,Input,Output,Sto,Input,Output).
% Ev9

The read command removes the first item from
the input file, converts it to the natural number
notation, and places the result in the store.

execute(read(Var),StoIn,emptyFile,Output,
StoOut,_,Output) :- % Ev11
write('Fatal Error: Reading an empty file'),
nl, abort.

execute(read(Var),[FirstIn|RestIn],Output,
StoOut,RestIn,Output) :- % Ev11
toNat(FirstIn,Value),

updateSto(StoIn,Var,Value,StoOut).

Chapter 12 108

The write command evaluates the expression,
converts the resulting value from natural
number notation to a numeric value, and
appends the result to the end of the output file.

execute(write(Expr),Sto,Input,OutputIn,
Sto,Input,OutputOut) :- % Ev2

evaluate(Expr,StoIn,ExprValue),
toNum(ExprValue,Value),
mkFile(Value,ValueOut),
concat(OutputIn,ValueOut,OutputOut).

Assignment evaluates the expression using the
current store and then updates that store to reflect
the new binding. The skip command makes no
changes to the store or to the files.

execute(assign(Var,Expr),StoIn,Input,Output,
StoOut,Input,Output) :- % Ev13

evaluate(Expr,StoIn,Value).
updateSto(StoIn,Var,Value,StoOut).

execute(skip,Sto,Input,Output,Sto,Input,Output).
% Ev10

Chapter 12 109

Two forms of if test Boolean expressions and let
a predicate “select” perform actions.

execute(if(Expr,Cmds),StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :-

evaluate(Expr,StoIn,BoolVal), % Ev15
select(BoolVal,Cmds, [],

StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut).

execute(if(Expr,Cmds1,Cmds2),StoIn,InputIn,
OutputIn,StoOut,InputOut,OutputOut) :-

evaluate(Expr,StoIn,BoolVal), % Ev16
select(BoolVal,Cmds1,Cmds2,

StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut).

select(true,Cmds1,Cmds2,
StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :-

execute(Cmds1,StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut).

select(false,Cmds1,Cmds2,
StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :-

execute(Cmds2,StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut).

Chapter 12 110

If the comparison in the while command is false,
the store and files are returned unchanged.

If the comparison is true, the while command is
reevaluated with the store and files resulting from
the execution of the while loop body.

execute(while(Expr,Cmds),
StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :-

evaluate(Expr,StoIn,BoolVal), % Ev14
iterate(BoolVal,Expr,Cmds,

StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut).

iterate(false,Expr,Cmds,
Sto,Input,Output,Sto,Input,Output).

iterate(true,Expr,Cmds,
StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :-

execute(Cmds,StoIn,InputIn,OutputIn,
Sto,Input,Output),

execute(while(Expr,Cmds),
Sto,Input,Output,
StoOut,InputOut,OutputOut).

Chapter 12 111

Expressions

The evaluation of arithmetic expressions is
straightforward.

Evaluating a variable involves looking up the
value in the store.

A numeric constant is converted to natural
number notation and returned.

evaluate(exp(plus,Expr1,Expr2),Sto,Result) :-
evaluate(Expr1,Sto,Val1), % Ev17
evaluate(Expr2,Sto,Val2),
add(Val1,Val2,Result).

evaluate(num(Constant),Sto,Value) :-
toNat(Constant,Value). %Ev27

evaluate(ide(Var),Sto,Value) :-
applySto(Sto,Var,Value). % Ev28

Chapter 12 112

Evaluation of comparisons is similar to arithmetic
expressions; the equal comparison is given
below, and the five others are left as an exercise.

evaluate(exp(equal,Expr1,Expr2),Sto,Bool) :-
evaluate(Expr1,Sto,Val1), % Ev21
evaluate(Expr2,Sto,Val2),
eq(Val1,Val2,Bool).

Prolog implementation of algebraic semantics is
similar to the denotational interpreter with respect
to command and expression evaluation.

Biggest difference:

Ignore native arithmetic in Prolog

Naturals module performs arithmetic based
solely on a number system derived from
applying a successor operation to an initial
value zero.

