Algebraic Semantics

Algebraic semantics involves the algebraic specification of data and language constructs.

Foundations based on abstract algebras.

Basic idea

• Name the sorts of objects and the operations on the objects.
• Use algebraic axioms to describe their characteristic properties.

An algebraic specification contains two parts:

- **signature** and **equations**.

A signature Σ of an algebraic specification is a pair $<\text{Sorts}, \text{Operations}>$ where

- Sorts is a set containing names of sorts.
- Operations is a family of function symbols indexed by the functionalities of the operations represented by the function symbols.

Family of operations decomposes:

- $\text{Opr}_\text{Boolean} = \{ \text{true, false} \}$
- $\text{Opr}_\text{Integer,Integer}!\text{Integer} = \{ \text{plus, minus} \}$
- $\text{Opr}_\text{List}!\text{Integer} = \{ \text{head, length} \}$

Equations constrain the operations to indicate the appropriate behavior for the operations.

- head (cons (m, s)) = m,
- empty? (emptyList) = true
- empty? (cons (m, s)) = false.

Each stands for a closed assertion:

- $\forall m: \text{Integer}, \forall s: \text{List} \ [\text{head (cons (m, s)) = m}].$
- empty? (emptyList) = true
- $\forall m: \text{Integer}, \forall s: \text{List} \ [\text{empty? (cons (m, s))= false}]$.

Module Representation

- Decompose definitions into relatively small components.

- Import the signature and equations of one module into another.

- Define sorts and functions to be either exported or hidden.

- Modules can be parameterized to define generic abstract data types.
A Module for Truth Values

module Booleans
exports
sorts Boolean
operations
true : Boolean
false : Boolean
errorBoolean : Boolean
not (_) : Boolean → Boolean
and (_ , _) :
 Boolean, Boolean → Boolean
or (_ , _) :
 Boolean, Boolean → Boolean
implies (_ , _) :
 Boolean, Boolean → Boolean
eq? (_ , _) :
 Boolean, Boolean → Boolean
end exports

variables
b, b1, b2 : Boolean

equations
[B1] and (true, b) = b
[B2] and (false, true) = false
[B3] and (false, false) = false
[B4] not (true) = false
[B5] not (false) = true
[B6] or (b1, b2) = not (and (not (b1), not (b2)))
[B7] implies (b1, b2) = or (not (b1), b2)
[B8] xor (b1, b2) = and (or(b1,b2),not(and(b1,b2)))
[B9] eq? (b1, b2) = not (xor (b1, b2))

Note module syntax
A conditional equation has the form
lhs=rhs
when lhs1=rhs1, lhs2=rhs2, ..., lhsn=rhsn.

A Module for Natural Numbers

module Naturals
imports Booleans
exports
sorts Natural
operations
0 : Natural
1 : Natural
10 : Natural
errorNatural : Natural
succ (_) : Natural → Natural
add (_ , _) : Natural, Natural → Natural
sub (_ , _) : Natural, Natural → Natural
mul (_ , _) : Natural, Natural → Natural
div (_ , _) : Natural, Natural → Natural
eq? (_ , _) :
 Natural, Natural → Boolean
less? (_ , _) :
 Natural, Natural → Boolean
greater?(_ , _) :
 Natural, Natural → Boolean
der greater?(_ , _) :
 Natural, Natural → Boolean
div (m, 0) = errorNatural
div (0, succ (n)) = add (m, mul (m, n))
div (m, succ (n)) = div (m, succ(n)) = sub(m,n)
div (m, 0) = 0 when m#errorNatural
mul (m, 1) = m
mul (m, succ(n)) = add (m, mul (m, n))
div (m, 0) = errorNatural
div (0, succ (n)) = 0 when n#errorNatural
div (m, succ (n)) =
 if (less? (m, succ (n)),
 0,
 succ(div(sub(m,succ(n)),succ(n))))
Conditions are Necessary

Use [N8] and ignore the condition:

\[0 = \text{mul}(\text{succ}(\text{errorNatural}), 0) \]
\[= \text{mul}(\text{errorNatural}, 0) \]
\[= \text{errorNatural}. \]

and

\[\text{succ}(0) = \text{succ}(\text{errorNatural}) = \text{errorNatural}, \]
\[\text{succ}(\text{succ}(0)) = \text{errorNatural}, \]
and so on.

Conditions are needed when variable(s) on the left disappear on the right.

Constructors

- No equations for 0 and succ
- Terms 0, succ(0), succ(succ(0)), ... not equal
- These plus errorNatural can be viewed as characterizing the natural numbers, the individuals defined by the module.
- Initial algebraic semantics
- No confusion property
- No junk property

A Module for Characters

```
module Characters
imports Booleans, Naturals
exports
sorts Char
operations
   eq? (__, __) : Char, Char -> Boolean
   letter? __ : Char -> Boolean
   digit? __ : Char -> Boolean
   ord __ : Char -> Natural
char-0 : Char
char-1 : Char
char-9 : Char
char-a : Char
char-z : Char
errorChar : Char
end exports
```
variables
c, c_1, c_2 : Char

equations
[C1] ord (char-0) = 0
[C2] ord (char-1) = succ (ord (char-0))
[C3] ord (char-2) = succ (ord (char-1))
[C11] ord (char-a) = succ (ord (char-9))
[C12] ord (char-b) = succ (ord (char-a))
[C36] ord (char-z) = succ (ord (char-y))
[C37] eq? (c_1, c_2) = eq? (ord (c_1), ord (c_2))
[C38] letter? (c) = and (not (greater? (ord (char-a), ord (c))),
 not (greater? (ord (c), ord (char-z))))
[C39] digit? (c) = and (not (greater? (ord (char-0), ord (c))),
 not (greater? (ord (c) ord (char-9))))

end Characters

Parameterized Module and Instantiations

module Lists
imports Booleans, Naturals
parameters Items
sorts Item
operations
 errorItem : Item
 eq? : Item, Item → Boolean
variables
 a, b, c : Item

equations
 eq? (a,a) = true when a!errorItem
 eq? (a,b) = eq? (b,a) implies(and(eq?(a,b),eq?(b,c)),
 eq?(a,c))=true when a!errorItem,
b!errorItem,
c!errorItem

end Items

exports
 sorts List
 operations
 null : List
 errorList : List
 cons (_ , _) : Item, List → List
 concat (_ , _) : List, List → List
 length (_) : List → Natural
 equal? (_ , _) : List, List → Boolean
 mkList (_) : Item → List

end exports

variables
 i, i_1, i_2 : Item
 s, s_1, s_2 : List

equations
[S1] concat (null, s) = s
[S2] concat(cons(i,s_1),s_2) = cons(i,concat(s_1, s_2))
[S3] equal? (null, null) = true
[S4] equal? (null, cons (i, s)) = false when s!errorList, i!errorItem
[S5] equal? (cons (i, s), null) = false when s!errorList, i!errorItem
[S6] equal? (cons (i_1, s_1), cons (i_2, s_2)) =
 and(eq?(i_1, i_2), equal?(s_1, s_2))
[S7] length (null) = 0
[S8] length (cons (i, s)) = succ (length (s)) when i!errorItem
[S9] mkList (i) = cons (i, null)
end Lists
Instantiations

module Files
imports Booleans, Naturals, instantiation of Lists
bind Items
using Natural for Item
using errorNatural for errorItem
using eq? for eq?
rename using File for List
using emptyFile for null
using mkFile for mkList
using errorFile for errorList

exports
sorts File
operations
empty? (_) : File → Boolean
end exports
variables f : File
equations
[F1] empty? (f) = equal? (f, emptyFile)
end Files

module Strings
imports Booleans, Naturals, Characters, instantiation of Lists
bind Items using Char for Item
using errorChar for errorItem
using eq? for eq?
rename using String for List
using nullString for null
using mkString for mkList
using strEqual for equal?
using errorString for errorList

exports
sorts String
operations
string-to-natural (_) :
String → Boolean, Natural
end exports

variables c : Char b : Boolean
n : Natural s : String
equations
[Str1] string-to-natural (nullString) = <true,0>
[Str2] string-to-natural (cons (c, s)) =
 if (and (digit? (c), b),
 <true, add(mul(sub(ord(c),ord(char-0)),
 exp(10, length(s))), n)>,
 <false, 0>)
 when <b,n> = string-to-natural (s)
end Strings

Expression in [Str2]:
((ord(c) – ord(char-0)) • 10^{length(s)}) + n

module Mappings
imports Booleans
parameters Entries
sorts Domain, Range
operations
equals (_ , _) :
Domain,Domain → Boolean
errorDomain : Domain
errorRange : Range
variables a,b,c : Domain
equations
equals (a,a) = true
when a≠errorDomain
equals (a,b) = equals (b,a)
implies (and (equals (a,b), equals (b,c)),
equals (a,c)) = true
when a, b, and c ≠ errorDomain
end Entries

A Module for Finite Mappings

module Mappings
imports Booleans
parameters Entries
sorts Domain, Range
operations
equals (_ , _) :
Domain,Domain → Boolean
errorDomain : Domain
errorRange : Range
variables a,b,c : Domain
equations
equals (a,a) = true
when a≠errorDomain
equals (a,b) = equals (b,a)
implies (and (equals (a,b), equals (b,c)),
equals (a,c)) = true
when a, b, and c ≠ errorDomain
end Entries
exports
 sorts Mapping
operations
 emptyMap : Mapping
 errorMapping : Mapping
 update(_ , _ , _) :
 Mapping,Domain,Range → Mapping
 apply (_ , _) :
 Mapping, Domain → Range
end exports
variables
 m : Mapping
d, d1, d2 : Domain
r : Range
equations
 [M1] apply (emptyMap, d) = errorRange
 [M2] apply (update(m, d1, r), d2) = r
 when equals(d1,d2) = true, m!errorMapping
 [M3] apply (update(m, d1, r), d2) = apply(m, d2)
 when equals(d1,d2)=false, r!errorRange
end Mappings

A Store Structure

module Stores
imports Strings, Naturals,
 instantiation of Mappings
bind Entries
 using String for Domain
 using Natural for Range
 using strEqual for equals
 using errorString for errorDomain
 using errorNatural for errorRange
rename using Store for Mapping
 using emptySto for emptyMap
 using updateSto for update
 using applySto for apply
end Stores

Mathematical Foundations

Simplify modules.

module Bools
exports
 sorts Boolean
operations
 true : Boolean
 false : Boolean
 not (_) : Boolean → Boolean
end exports
equations
 [B1] not (true) = false
 [B2] not (false) = true
end Bools

module Nats
imports Bools
exports
 sorts Natural
operations
 0 : Natural
 succ (_) : Natural → Natural
 add (_ , _) : Natural, Natural → Natural
end exports
variables
 m, n : Natural
equations
 [N1] add (m, 0) = m
 [N2] add (m, succ (n)) = succ (add (m, n))
end Nats
Ground Terms

Function symbols used to construct terms that stand for the objects of the sorts in the signature.

Defn: For a given signature $\Sigma = \langle \text{Sorts}, \text{Operations} \rangle$, the set of ground terms T_S of sort S is defined inductively:

1. All constants of sort S in Operations are ground terms (in T_S).
2. For every function symbol $f : S_1, \ldots, S_n \rightarrow S$ in Operations, if t_1, \ldots, t_n are ground terms of sorts S_1, \ldots, S_n, respectively, then $f(t_1, \ldots, t_n)$ is a ground term of sort S where $S_1, \ldots, S_n, S \in \text{Sorts}$.

Example: Ground terms of sort Boolean in Bools

- true, not(true), not(not(true)), not(not(not(true))), ...
- false, not(false), not(not(false)), ...

Ground terms of sort Natural in Nats:

- 0, succ(0), succ(succ(0)), ...
- add(0,0), add(0,succ(0)), add(succ(0),0), add(succ(0),succ(0)), ...
- add(succ(succ(0))), add(succ(succ(succ(0)))), ...

On the basis of the signature only (no equations), the ground terms must be mutually distinct.

Σ-Algebras

Algebraic specifications deal with syntax.

Semantics is provided by defining algebras that serve as models of the specifications.

Heterogeneous or Many-sorted Algebras:

A set of operations acting on a collection of sets.

Defn: For a given signature Σ, an algebra A is a Σ-algebra under the following circumstances:

- There is a one-to-one correspondence between the carrier sets of A and the sorts of Σ.
- There is a one-to-one correspondence between the constants and functions of A and the operation symbols of Σ so that those constants and functions are of the appropriate sorts and functionalities.

Let $\Sigma = \langle \text{Sorts}, \text{Operations} \rangle$ be a signature where

- Sorts is a set of sort names and
- Operations is a set of function symbols of the form $f : S_1, \ldots, S_m \rightarrow S_{m+1}$ where each $S_i \in \text{Sorts}$.

A Σ-algebra A consists of:

1. A collection of sets $\{ S_A \mid S \in \text{Sorts} \}$, the carrier sets
2. A collection of functions $\{ f_A \mid f \in \text{Operations} \}$ with the functionality $f_A : (S_1)_A, \ldots, (S_m)_A \rightarrow S_A$ for each $f : S_1, \ldots, S_m \rightarrow S$ in Operations.

Σ-algebras are called heterogeneous or many-sorted algebras because they may contain objects of more than one sort.
Defn: The term algebra T_Σ for a signature $\Sigma = \langle \text{Sorts}, \text{Operations} \rangle$ is constructed as follows. Carrier sets $\{ S_{T_\Sigma} \mid S \in \text{Sorts} \}$ are defined by:

1. For each constant c of sort S in Σ we have a corresponding constant “c” in S_{T_Σ}.
2. For each function symbol $f : S_1, \ldots, S_n \rightarrow S$ in Σ and any n elements $t_1 \in (S_1)_{T_\Sigma}, \ldots, t_n \in (S_n)_{T_\Sigma}$, the term “$f(t_1, \ldots, t_n)$” belongs to the carrier set S_{T_Σ}.

For each function symbol $f : S_1, \ldots, S_n \rightarrow S$ in Σ and any n elements $t_1 \in (S_1)_{T_\Sigma}, \ldots, t_n \in (S_n)_{T_\Sigma}$ define f_{T_Σ} by $f_{T_\Sigma}(t_1, \ldots, t_n) = "f(t_1, \ldots, t_n)"$.

The elements of the carrier sets of T_Σ consist of strings of symbols chosen from a set containing the constants and function symbols of Σ together with the special symbols “(”, “)”, and “,”.

Example

The carrier set for the term algebra T_Σ constructed from the module Bools contains all the ground terms from the signature, including “true”, “not(true)”, “not(not(true))”, ...

“false”, “not(false)”, “not(not(false))”,

The function not_{T_Σ} maps “true” to “not(true)”, maps “not(true)” to “not(not(true))”, and so forth.

The carrier set is infinite.

Also, “false” \neq “not(true)”

We have not accounted for the equations and what properties they enforce in an algebra.

Defn: For a signature Σ and a Σ-algebra A, the evaluation function $\text{eval}_A : T_\Sigma \rightarrow A$ from ground terms to values in A is defined as:

$\text{eval}_A("c") = c_A$ for constants c, and

$\text{eval}_A("f(t_1, \ldots, t_n)") = f_A(\text{eval}_A(t_1), \ldots, \text{eval}_A(t_n))$ where each term t_i is of sort S_i for the symbol $f : S_1, \ldots, S_m \rightarrow S$ in Operations.

A Congruence from the Equations

The function symbols and constants create a set of ground terms.

The equations of a specification generate a congruence \equiv on the ground terms.

A congruence is an equivalence relation with an additional “substitution” property.

Definition: Let Spec $= \langle \Sigma, E \rangle$ be a specification with signature Σ and equations E.

The congruence \equiv_E determined by E on T_Σ is the smallest relation satisfying the properties:

1. **Variable Assignment:** Given an equation $\text{lhs} = \text{rhs} \in E$ that contains variables v_1, \ldots, v_n and given any ground terms t_1, \ldots, t_n from T_Σ of the same sorts as the respective variables,

 $\text{lhs}[\forall v_i \rightarrow t_i, \ldots, v_n \rightarrow t_n] \equiv_E \text{rhs}[\forall v_1 \rightarrow t_1, \ldots, v_n \rightarrow t_n]$

 where $v_i \rightarrow t_i$ indicates substituting the ground term t_i for the variable v_i.

 If equation is conditional, the condition must be valid after variable assignment is carried out on it.

2. **Reflexive:** For every ground term $t \in T_\Sigma$, $t \equiv_E t$.

3. **Symmetric:** For any ground terms $t_1, t_2 \in T_\Sigma$, $t_1 \equiv_E t_2$ implies $t_2 \equiv_E t_1$.

4. **Transitive:** For any terms $t_1, t_2, t_3 \in T_{\Sigma}$, $(t_1 \equiv_E t_2 \text{ and } t_2 \equiv_E t_3)$ implies $t_1 \equiv_E t_3$.

5. **Substitution Property:** If $t_1 \equiv_E t'_1, \ldots, t_n \equiv_E t'_n$ and $f : S_1, \ldots, S_n \rightarrow S$ is any function symbol in Σ, then $f(t_1, \ldots, t_n) \equiv_E f(t'_1, \ldots, t'_n)$.

Generate an equivalence relation from equations:

- Take every ground instance of all the equations as a basis.
- Allow any derivation using properties reflexive, symmetric, and transitive and the substitution rule that each function symbol preserves equivalence when building ground terms.

Example: $A = \langle \{ \text{off, on} \} \rangle$, $\{ \text{off, on, switch} \}$ where off and on are constants and switch is defined by

\[
\begin{align*}
\text{switch}(\text{off}) &= \text{on} \\
\text{switch}(\text{on}) &= \text{off}.
\end{align*}
\]

Let Σ be the signature of Bools.
A Σ-algebra A:

- $\text{Boolean}_A = \{ \text{off, on} \}$ is the carrier set

Operation of Σ

- **Functions of A**

 - $\text{true} : \text{Boolean} \rightarrow \text{Boolean}_A$
 - $\text{false} : \text{Boolean} \rightarrow \text{Boolean}_A$
 - $\text{not} : \text{Boolean} \rightarrow \text{Boolean}_A$
 - $\text{switch} : \text{Boolean}_A \rightarrow \text{Boolean}_A$

For example,

\[
\begin{align*}
\text{not}(\text{true}) &= \text{false} \\
\text{eval}_A(\text{not}(\text{true})) &= \text{not}_A(\text{eval}_A(\text{true})) \\
&= \text{not}_A(\text{true}_A) = \text{switch}(\text{on}) = \text{off},
\end{align*}
\]

and $\text{eval}_A(\text{false}) = \text{off}$.

Ground terms for Bools module:

\[
\begin{align*}
\text{true} &= \text{not}(\text{false}) = \text{not}(\text{not}(\text{true})) \\
&= \text{not}(\text{not}(\text{not}(\text{false}))) = \ldots \\
\text{false} &= \text{not}(\text{true}) = \text{not}(\text{false}) \\
&= \text{not}(\text{not}(\text{true})) = \ldots
\end{align*}
\]

Sample Proof

\[
\begin{align*}
\text{add}(\text{succ}(0),\text{succ}(0)) &= \text{succ}(\text{add}(\text{succ}(0),0)) \text{ using } [N2] \text{ and } [m \rightarrow \text{succ}(0), n \rightarrow 0] \\
&= \text{succ}(\text{succ}(0)) \text{ using } [N1] \text{ and } [m \rightarrow \text{succ}(0)].
\end{align*}
\]

Defn: If $\text{Spec} = <\Sigma, E>$, a Σ-algebra A is a model of Spec if for all ground terms t_1 and t_2, $t_1 \equiv_E t_2$ implies $\text{eval}_A(t_1) = \text{eval}_A(t_2)$.

Construct a particular Σ-algebra, called the **initial algebra**, that is guaranteed to exist, and take it to *be* the meaning of the specification Spec.

Quotient Algebra

Build the quotient algebra Q from the term algebra T_{Σ} of a specification $<S, E>$ by factoring out congruences.

Defn: Let $<\Sigma, E>$ be a specification with $\Sigma = <\text{Sorts}, \text{Operations}>$.

If t is a term in T_{Σ}, we represent its congruence class as $[t] = \{ t' \mid t \equiv_E t' \}$.

So $[t] = [t']$ if and only if $t \equiv_E t'$.

Carrier sets $= \{ (S)_{T_{\Sigma}} \mid S \in \text{Sorts} \}$.
A constant \(c \) becomes congruence class \([c]\).
Functions in the term algebra define functions in the quotient algebra:
Given a function symbol \(f : S_1, \ldots, S_n \to S \) in \(\Sigma \),
\[f_Q([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)] \]
for any terms \(t_i : S_i \),
with \(1 \leq i \leq n \), from the appropriate carrier sets.

The function \(f_Q \) is well-defined:
\[t_1 \equiv_E t_1', \ldots, t_n \equiv_E t_n' \]
implies \(f_Q(t_1, \ldots, t_n) \equiv_E f_Q(t_1', \ldots, t_n') \)
by the Substitution Property for congruences.

For Bools:
\[\text{true}_Q = [\text{true}] \text{ and } \text{false}_Q = [\text{false}] \]
The congruence class \([\text{true}]\) contains
"true", "not(false)", "not(not(true))", ...
The congruence class \([\text{false}]\) contains
"false", "not(true)", "not(not(false))",

The function \(\text{not}_Q \) is well-defined:
\[\text{true}_Q = [\text{true}] \text{ and } \text{false}_Q = [\text{false}] \]
The congruence class \([\text{true}]\) contains
"true", "not(false)", "not(not(true))", ...
The congruence class \([\text{false}]\) contains
"false", "not(true)", "not(not(false))",

The function \(\text{not}_Q \):
\[\text{not}_Q([\text{false}]) = [\text{not(false)}] = [\text{true}] \text{, and} \]
\[\text{not}_Q([\text{true}]) = [\text{not(true)}] = [\text{false}] \]
This quotient algebra is an initial algebra for Bools.
Initial algebras are not necessarily unique.
For example, the algebra
\[A = \langle \text{off, on}, \{\text{off, on, switch}\} \rangle \]
is also an initial algebra for Bools.

An initial algebra is finest-grained: It equates only those terms required to be equated, and so its carrier sets contain as many elements as possible.

Using this procedure for developing the term algebra and then the quotient algebra, we can always guarantee that at least one initial algebra exists for any specification.

Homomorphisms

Functions between \(\Sigma \)-algebras that preserve the operations are called \(\Sigma \)-homomorphisms.
Used to compare and contrast algebras that act as models of specifications.

Defn: Suppose that \(A \) and \(B \) are \(\Sigma \)-algebras for a given signature \(\Sigma = \langle \text{Sorts, Operations} \rangle \).
\(h \) is a \(\Sigma \)-homomorphism if it maps carrier sets of \(A \) to carrier sets of \(B \) and constants and functions of \(A \) to constants and functions of \(B \), so that the behavior of constants and functions is preserved.

\(h \) consists of a collection \(\{ h_S : S \ subseteq \text{Sorts} \} \) of functions \(h_S : S_A \to S_B \) for \(S \subseteq \text{Sorts} \) such that
\[h_S(c_A) = c_B \]
for each constant symbol \(c : S \),
and
\[h_S(f_A (a_1, \ldots, a_n)) = f_B (h_{S_1}(a_1), \ldots, h_{S_n}(a_n)) \]
for each function symbol \(f : S_1, \ldots, S_n \to S \) in \(\Sigma \)
and any \(n \) elements \(a_1 \in (S_1)_A, \ldots, a_n \in (S_n)_A \).

\(h \) is an isomorphism

If \(h \) is a \(\Sigma \)-homomorphism from \(A \) to \(B \) and the inverse of \(h \) is a \(\Sigma \)-homomorphism from \(B \) to \(A \).

Apart from renaming carrier sets, constants, and functions, the two algebras are exactly the same.

Defn: A \(\Sigma \)-algebra \(I \) in the class of all \(\Sigma \)-algebras serving as models of a specification with signature \(\Sigma \) is called initial if for any \(\Sigma \)-algebra \(A \) in the class, there is a unique homomorphism \(h : I \to A \).
The quotient algebra Q for a specification is an initial algebra.

For any Σ-algebra A that acts as a model of the specification, there is a unique Σ-homomorphism from Q to A.

The function $\text{eval}_A : T_\Sigma \rightarrow A$ induces a Σ-homomorphism h from Q to A using the definition:

$$h([t]) = \text{eval}_A(t) \text{ for each } t \in T_\Sigma.$$

Any algebra isomorphic to Q is also an initial algebra.

So since the quotient algebra Q and the algebra $A = \langle \text{off, on} \rangle, \langle \text{off, on, switch} \rangle$ are isomorphic, A is also an initial algebra for Bools.

Defn: Let $\langle \Sigma, E \rangle$ be a specification, let Q be the quotient algebra for $\langle \Sigma, E \rangle$, and let B be an arbitrary model of the specification.

1. If homomorphism from Q to a Σ-algebra B is not onto, then B contains junk (values that do not correspond to terms constructed from signature).

2. If homomorphism from Q to B is not one-to-one, then B exhibits confusion (two different values in quotient algebra correspond to same term in B).

Example

Consider the quotient algebra for Nats with the infinite carrier set $\{0, \text{succ}(0), \text{succ(succ}(0)), \ldots\}$. Suppose that we have a 16-bit computer for which the integers consist of the following set of values:

$$\{-32768, -32767, \ldots, -1, 0, 1, 2, \ldots, 32766, 32767\}.$$

The negative integers are junk with respect to Nats since they cannot be images of any of the natural numbers.

The positive integers above 32767 must be confusion.

When mapping an infinite carrier set onto a finite machine, confusion must occur.

Consistency and Completeness

Suppose we want to add a predecessor operation to naturals by importing Naturals (original version) and defining a predecessor function pred.

```
module Predecessor1
  imports Boolean, Naturals
  exports operations
    pred (_ ) : Natural \rightarrow Natural
  end exports
  variables
    n : Natural
  equations
    [P1] \text{pred} (\text{succ}(n)) = n
  end Predecessor1
```

Naturals is a subspecification of Predecessor$_1$ since the signature and equations of...
Predecessor\(_1\) include the signature and equations of Naturals.

The new congruence class \([\text{pred}(0)]\) is not congruent to 0 or any of the successors of 0.

We say that \([\text{pred}(0)]\) is junk and that Predecessor\(_1\) is not a complete extension of Naturals.

We can resolve this problem by adding the equation [P2] \(\text{pred}(0) = 0\) (or [P2] \(\text{pred}(0) = \text{errorNatural}\)).

Suppose that we define another predecessor module in the following way:

\[
\text{module Predecessor}_2
\]
\[
\text{imports Boolean, Naturals}
\]
\[
\text{exports operations}
\]
\[
\text{pred} (_): \text{Natural} \rightarrow \text{Natural}
\]
\[
\text{end exports}
\]
\[
\text{variables}
\]
\[
n : \text{Natural}
\]
\[
\text{equations}
\]
\[
[\text{P1}] \text{pred}(n) = \sub(n, \text{succ}(0))
\]
\[
[\text{P2}] \text{pred}(0) = 0
\]
\[
\text{end Predecessor}_2
\]

The first equation specifies the predecessor by subtracting one, and the second equation is carried over from the “fix” for Predecessor\(_1\).

In the module Naturals, we have the congruence classes:

\[
[\text{errorNatural}], [0], [\text{succ}(0)], [\text{succ}(\text{succ}(0))], \ldots
\]

With the new module Predecessor\(_2\),

\[
\text{pred}(0) = \sub(0, \text{succ}(0))
\]
\[
= \text{errorNatural} \text{ by [P1] and [N5]}, \text{ and}
\]
\[
\text{pred}(0) = 0 \text{ by [P2].}
\]

So we have reduced the number of congruence classes, since \([0] = [\text{errorNatural}]\).

Because this has introduced confusion, we say that Predecessor\(_2\) is not a consistent extension of Naturals.

\[
\text{Defn:}
\]
Let Spec be a specification with signature \(\Sigma = <\text{Sorts}, \text{Operations}>\) and equations E.
Suppose SubSpec is a subspecification of Spec with sorts SubSorts (a subset of Sorts) and equations SubE (a subset of E).

Let T and SubT represent the terms of Sorts and SubSorts, respectively.

- Spec is a complete extension of SubSpec if for every sort S in SubSorts and every term \(t_1\) in T, there exists a term \(t_2\) in SubT such that \(t_1\) and \(t_2\) are congruent with respect to E.

- Spec is a consistent extension of SubSpec if for every sort subS in SubSorts and all terms \(t_1\) and \(t_2\) in T, \(t_1\) and \(t_2\) are congruent with respect to E if and only if \(t_1\) and \(t_2\) are congruent with respect to SubE.

Using Algebraic Specifications

Data Abstraction

1. Information Hiding: Compiler should ensure that the user of an ADT does not have access to the representation (of values) and implementation (of operations) of an ADT.

2. Encapsulation: All aspects of specification and implementation of an ADT should be contained in one or two syntactic unit(s) with a well-defined interface to the users of the ADT.

Examples:
- Ada package
- Modula module
- Classes in OOP

3. Generic types (parameterized modules):
A way of defining an ADT as a template without specifying the nature of all its components.

A generic type is instantiated when the properties of its missing component values are provided.
A Module for Unbounded Queues

Start by giving the signature of a specification of queues of natural numbers.

```plaintext
module Queues
  imports Booleans, Naturals
  exports
    sorts Queue
    operations
      newQ : Queue
      errorQueue : Queue
      addQ (_, _) : Queue, Natural → Queue
      deleteQ (_, ) : Queue → Queue
      frontQ (_, ) : Queue → Natural
      isEmptyQ (_, ) : Queue → Boolean
  end exports
end Queues
```

Cannot assume any properties of the operations other than their basic syntax. This module could be specifying stacks instead of queues.

Properties of Queues

Define the characteristic properties of the queue ADT by describing informally what each operation does, for example:

- The function isEmptyQ(q) returns true if and only if the queue q is empty.
- The function frontQ(q) returns the natural number in the queue that was added earliest without being deleted yet.
- If q is an empty queue, frontQ(q) is an error value.

The descriptions are ambiguous, depending on terms that have not been defined—for example, “empty” and “earliest”.

One may be tempted to define the meaning of the operations in terms of an implementation, but this defeats the whole intent of data abstraction, which is to separate logical properties of data objects from their concrete realization.

A more formal approach to specifying the properties of an ADT is through a set of axioms in the form of module equations that relate the operations to each other.

```plaintext
variables
  q : Queue
  m : Natural

equations
  [Q1] isEmptyQ (newQ) = true
  [Q2] isEmptyQ (addQ (q, m)) = false when q≠errorQueue, m≠errorNatural
  [Q3] delete (newQ) = newQ
  [Q4] deleteQ (addQ (q, m)) =
    if ( isEmptyQ (q),
        newQ, addQ (deleteQ (q), m)) when m≠errorNatural
  [Q5] frontQ (newQ) = errorNatural
  [Q6] frontQ (addQ (q, m)) =
    if ( isEmptyQ (q), m, frontQ (q) ) when m≠errorNatural
```

Implementing Queues as Unbounded Arrays

Assuming that the axioms correctly specify the concept of a queue, use them to verify that an implementation is correct.

Realization of an abstract data type:

- a representation of the objects of the type
- implementations of the operations
- representation function \(\Phi \) that maps terms in the model onto the abstract objects so that the axioms are satisfied.

Plan

Represent queues as arrays with two pointers, one to the front of the queue and one to the end.
A Module for Unbounded Arrays

module Arrays
imports Booleans, Naturals
exports
sorts Array
operations
newArray : Array
errorArray : Array
assign(_,_,_): Array,Natural,Natural⇒ Array
access(_,_,_): Array,Natural⇒ Natural
end exports
variables
arr: Array
i, j, m : Natural
equations
[A1] access (newArray, i) = errorNatural
[A2] access (assign (arr, i, m), j) = if (i = j, m, access (arr, j))
when m≠errorNatural
end Arrays

Implementation of the ADT Queue using the ADT Array has the following set of triples as its objects:
ArrayQ = { <arr,f,e> | arr:Array, f,e:Natural, and f≤e }.

Operations over ArrayQ are defined as follows:
[AQ1] newAQ= <newArray,0,0>
[AQ2] addAQ (<arr,f,e>, m) = <assign(arr,e,m),f,e+1>
[AQ3] deleteAQ (<arr,f,e>) = if (f = e, <arr,f,e>, <arr,f+1,e>)
[AQ4] frontAQ (<arr,f,e>) = if (f = e, errorNatural, access(arr,f))
[AQ5] isEmptyAQ (<arr,f,e>) = (f = e)
when arr≠errorArray

Array queues are related to the abstract queues by a homomorphism
Φ : {ArrayQ,Natural,Boolean} → {Queue,Natural,Boolean},
defined on the objects and operations of the sorts.
Use symbolic terms “Φ(arr,f,e)” to represent abstract queue objects in Queue.
For <arr,f,e> : ArrayQ, m : Natural, and b : Boolean,
Φ (<arr,f,e>) = Φ(arr,f,e) when f≤e
Φ (<arr,f,e>) = errorQueue when f>e
Φ (m) = m
Φ (b) = b
Φ (newAQ) = newQ
Φ (addAQ) = addQ
Φ (deleteAQ) = deleteQ
Φ (frontAQ) = frontQ
Φ (isEmptyAQ) = isEmptyQ

Under the homomorphism, the five equations that define operations for the array queues map into five equations describing properties of abstract queues.
[D1] newQ = Φ(newArray,0,0)
[D2] addQ (Φ(arr,f,e), m) = Φ(assign(arr,e,m),f,e+1)
[D3] deleteQ (Φ(arr,f,e)) = if (f = e, Φ(arr,f,e), Φ(arr,f+1,e))
[D4] frontQ (Φ(arr,f,e)) = if (f = e, errorNatural, access(arr,f))
[D5] isEmptyQ (Φ(arr,f,e)) = (f = e)
Consider the image of [AQ2] under \(\Phi \).
Assume [AQ2]
\[
\text{addAQ} (<\text{arr},f,e>,m) = \langle \text{assign} (\text{arr},e,m),f,e+1 \rangle
\]
Then addQ (\(\Phi(\text{arr},f,e),m \))
\[
= \Phi(\text{addAQ}) (\Phi(<\text{arr},f,e>),\Phi(m))
\]
\[
= \Phi(\text{addAQ} (<\text{arr},f,e>,m))
\]
\[
= \Phi(\text{assign}(\text{arr},e,m),f,e+1),
\]
which is [D2].

The implementation is correct if its objects can be shown to satisfy the queue axioms [Q1] to [Q6] for arbitrary queues of the form \(q = \Phi(\text{arr},f,e) \) with \(f \leq e \) and arbitrary elements \(m \) of Natural, given the definitions [D1] to [D5] and the equations for arrays.

Lemma: For any queue \(\Phi(a,f,e) \) constructed using the operations of the implementation, \(f \leq e \).
Proof: The only operations that produce queues are newQ, addQ, and deleteQ, the constructors in the signature. The proof is by induction on the number of applications of these operations.

Basis: Since newQ = \(\Phi(\text{newArray},0,0) \), \(f \leq e \).

Induction Step: Suppose that \(\Phi(a,f,e) \) has been constructed with \(n \) applications of the operations and that \(f \leq e \).
Consider a queue constructed with one more application of these functions, for a total of \(n+1 \).

Case 1: The \(n+1 \)th operation is addQ.
But addQ (\(\Phi(a,f,e),m \)) = \(\Phi(\text{assign}(a,f,m),f,e+1) \) has \(f \leq e+1 \).

Case 2: The \(n+1 \)th operation is deleteQ.
But deleteQ (\(\Phi(a,f,e) \)) =
\[
\text{if } (f = e, \Phi(\text{arr},f,e), \Phi(\text{arr},f+1,e))
\]
If \(f = e \), then \(f \leq e \), and if \(f < e \), then \(f+1 \leq e \).

The proof is an example of **structural induction**, induction that covers all of the ways in which the objects of the data type may be constructed.

Structural Induction: Suppose \(f_1, f_2, \ldots, f_n \) are the operations that act as constructors for an abstract data type \(S \), and \(P \) is a property of values of sort \(S \).

If the truth of \(P \) for all arguments of sort \(S \) for each \(f_i \) implies the truth of \(P \) for the results of all applications of \(f_i \) that satisfy the syntactic specification of \(S \), it follows that \(P \) is true of all values of the data type.

The basis case results from those constructors with no arguments.

For the verification of [Q4] as part of proving the validity of this queue implementation, extend \(\Phi \) for the following values:
For any \(f : \text{Natural} \) and \(\text{arr} : \text{Array} \),
\[
\Phi(\text{arr},f,f) = \text{newQ}.
\]
This extension is consistent with definition [D1].

Verification of Queue Axioms
Let \(q = \Phi(a,f,e) \) be an arbitrary queue and let \(m \) be an arbitrary element of Natural.

\[Q1\] isEmptyQ (newQ) = isEmptyQ (\(\Phi(\text{newArray},f,f) \)) by [D1] = (\(f = f \)) = true by [D5].

\[Q2\] isEmptyQ (addQ (\(\Phi(\text{arr},f,e),m \))) = isEmptyQ (\(\Phi(\text{assign}(\text{arr},e,m),f,e+1) \)) by [D2] = (\(f = e+1 \)) = false, since \(f \leq e \) by [D5] & lemma.

\[Q3\] deleteQ (newQ) = deleteQ (\(\Phi(\text{newArray},f,f) \)) by [D1] = \(\Phi(\text{newArray},f,f) = \text{newQ} \) by [D3] and [D1].
ADTs As Algebras

Recall that any signature Σ defines a Σ-algebra T_Σ of all the terms over the signature, and that by taking the quotient algebra Q defined by the congruence based on the equations E of a specification, we get an initial algebra that serves as the finest-grained model of a specification $<\Sigma,E>$.

Example: An instance of the Queue ADT has operations involving three sorts of objects—namely, Natural, Boolean, and the type being defined, Queue. Some authors designate the type being defined as the type of interest. In this context, a graphical notation has been suggested to define the signature of the operations of the algebra.

The signature of the Queue ADT defines a term algebra T_Σ, sometimes called a free word algebra, formed by taking all legal combinations of operations that produce Queue objects.

The values in the sort Queue are those produced by the constructor operations.

Example of terms in T_Σ:
- newQ,
- addQ (newQ,5), and
- deleteQ (addQ (addQ (deleteQ (newQ),9),15)).
The term **free** for such an algebra means that the operations are combined in any way satisfying the syntactic constraints, and that all such terms are distinct objects in the algebra.

The properties of an ADT are given by a set E of equations or axioms that define identities among the terms of T_Σ.

So the Queue ADT is not a free algebra, since the axioms recognize certain terms as being equal.

For example:
\begin{align*}
deleteQ(newQ) &= newQ \quad \text{and} \\
deleteQ(addQ(deleteQ(newQ),9),15)) &= addQ(newQ,15).
\end{align*}

The equations define a congruence $=_E$ on the free algebra of terms as described in section 12.2. That equivalence relation defines a set of equivalence classes that partitions T_Σ.

$$[\, t \,]_E = \{ u \in T_\Sigma \mid u =_E t \}$$

For example, $[\, newQ \,]_E = \{ newQ, deleteQ(newQ), deleteQ(deleteQ(newQ)), \ldots \}$.

The operations of the ADT can be defined on these equivalence classes before:

Induction Step: Consider a queue term t with more than one application of the constructors (`newQ`, `addQ`, `deleteQ`), and assume that any term with fewer applications of the constructors can be put into normal form.

Case 1: $t = addQ(q,m)$ will be in normal form when q, which has fewer constructors than t, is in normal form.

Case 2: Consider $t = deleteQ(q)$ where q is in normal form.

Subcase a: $q = newQ$. Then $deleteQ(q) = newQ$ is in normal form.

Subcase b: $q = addQ(p,m)$ where p is in normal form. Then $deleteQ(addQ(p,m)) = if (\quad isEmptyQ(p), \\
\quad newQ, \\
\quad addQ(deleteQ(p),m))$

If p is empty, $deleteQ(q) = newQ$ is in normal form.

If p is not empty, $deleteQ(q) = addQ(deleteQ(p),m)$. Since $deleteQ(p)$ has fewer constructors than t, it can be put into normal form, so that $deleteQ(q)$ is in normal form.

For an n-ary operation $f \in S$ and $t_1, t_2, \ldots, t_n \in T_\Sigma$, let $f_Q([t_1],[t_2],\ldots,[t_n]) = [f(t_1,t_2,\ldots,t_n)]$.

The resulting (quotient) algebra, also called $T_{\Sigma,E}$, is the abstract data type being defined. When manipulating the objects of the (quotient) algebra $T_{\Sigma,E}$ the normal practice is to use representatives from the equivalence classes.

Definition: A **canonical** or **normal form** for the terms in a quotient algebra is a set of distinct representatives, one from each equivalence class.

Lemma: For the Queue ADT $T_{\Sigma,E}$ each term is equivalent to the value $newQ$ or a term of the form $addQ(addQ(\ldots addQ(addQ(newQ,m_1),m_2),\ldots),m_{n-1},m_n)$ for some $n \geq 1$
where $m_1,m_2,\ldots,m_n : \text{Natural.}$

Proof: The proof is by structural induction.

Basis: The only constant in T_Σ is $newQ$, which is in normal form.

A canonical form for a ADT can be thought of as an “abstract implementation” of the type.

John Guttag [Guttag78b] calls this a **direct implementation** and represents it graphically as shown below.

![Canonical Form Diagram](image-url)

The canonical form for an ADT provides an effective tool for proving properties about the type.
Lemma: The representation function \(\Phi \) that implements queues as arrays is an onto function.
Proof: Since any queue can be written as \(\text{newQ} \) or as \(\text{addQ}(q,m) \), we need to handle only these two forms.
By [D1], \(\Phi(\text{newArray},0,0) = \text{newQ} \).
Assume as an induction hypothesis that \(q = \Phi(\text{arr},f,e) \) for some array.
Then by [D2], \(\Phi(\text{assign}(\text{arr},e,m),f,e+1) = \text{addQ} \)
(\(\Phi(\text{arr},f,e),m \)).
Therefore, any queue is the image of some triple under the representation function \(\Phi \).

Definition: A set of equations for an ADT is **sufficiently complete** if for each ground term \(f(t_1,t_2,\ldots,t_n) \) where \(f \in \text{Sel} \), the set of selectors, there is an element \(u \) of a predefined type such that \(f(t_1,t_2,\ldots,t_n) \equiv_E u \). This condition means there are sufficient axioms to make the derivation to \(u \).

Theorem: The equations in the module Queues are sufficiently complete.
Proof:
1. Every queue can be written in normal form as \(\text{newQ} \) or as \(\text{addQ}(q,m) \).
2. \(\text{isEmptyQ}(\text{newQ}) = \text{true} \),
 \(\text{isEmptyQ}(\text{addQ}(q,m)) = \text{false} \), \(\text{frontQ}(\text{newQ}) = \text{errorNatural} \), and \(\text{frontQ}(\text{addQ}(q,m)) = m \) or \(\text{frontQ}(q) \) (use induction).

Abstract Syntax and Algebraic Specifications

Points about abstract syntax:

- Only need to specify the meaning of the syntactic forms given by the abstract syntax, since this formalism furnishes all the essential syntactic constructs in the language.
- No harm arises from an ambiguous abstract syntax since its purpose is not syntactic analysis.
- The abstract syntax of a programming language may take many different forms, depending on the semantic techniques that are applied to it.

These points raise questions concerning the nature of abstract syntax and its relation to the language defined by the concrete syntax.

Example: Expressions
Concrete Syntax:

\[
\begin{align*}
\langle \text{expr} \rangle & ::= \langle \text{term} \rangle \\
\langle \text{expr} \rangle & ::= \langle \text{expr} \rangle + \langle \text{term} \rangle \\
\langle \text{expr} \rangle & ::= \langle \text{expr} \rangle - \langle \text{term} \rangle \\
\langle \text{term} \rangle & ::= \langle \text{element} \rangle \\
\langle \text{term} \rangle & ::= \langle \text{term} \rangle \ast \langle \text{element} \rangle \\
\langle \text{element} \rangle & ::= \langle \text{identifier} \rangle \\
\langle \text{element} \rangle & ::= (\langle \text{expr} \rangle)
\end{align*}
\]

Define a signature \(\Sigma \) that corresponds exactly to the BNF definition.

Each nonterminal becomes a sort in \(\Sigma \), and each production becomes a function symbol whose syntax captures the essence of the production.
The signature of the concrete syntax is given in the module Expressions.

```plaintext
module Expressions
  exports
    sorts Expression, Term, Element, Identifier
    operations
      expr (_,_) : Term → Expression
      add (_,_,) : Expression, Term → Expression
      sub (_,_,) : Expression, Term → Expression
      term (_,_) : Element
      mul (_,_,) : Term, Element → Term
      elem (_,_) : Identifier → Element
      paren (_,_) : Expression → Element
end exports
end Expressions
```

The terminal symbols in the grammar are "forgotten" in the signature since they are embodied in unique names of the function symbols.

Consider the collection of Σ-algebras following this signature.

The term algebra T_Σ is initial in the collection of all Σ-algebras, meaning that for any Σ-algebra A, there is a unique homomorphism $h : T_\Sigma \rightarrow A$.

The elements of T_Σ are terms constructed using the function symbols in Σ.

Since this signature has no constants, assume a set of constants of sort Identifier and represent them as structures of the form $\text{ide}(x)$ containing atoms as the identifiers.

Think of these structures as the tokens produced by a scanner.

The expression "$x \ast (y + z)$" corresponds to the following term in T_Σ:

$$t = \text{expr} (\text{mul} (\text{term} (\text{elem} (\text{ide}(x))), \text{paren} (\text{add} (\text{expr} (\text{term} (\text{elem} (\text{ide}(y)))), \text{term} (\text{elem} (\text{ide}(z))))))).$$

Constructing such a term corresponds to parsing the expression.

Concrete Syntax

```
<expression> |<term> |<element> |<identifier> |<expression> |<term> |<element> |<identifier>
```

```
x |<expression> + |<term> |<element> |<identifier> |<expression> * |<element> |<identifier>
```

```
<identifier> |<expression> |<term> |<element> |<identifier> |<expression> |<term> |<element> |<identifier>
```

```
<y> |<expression> |<term> |<element> |<identifier>
```

Abstract Syntax

```
expr
   /\mul
  /\term
 |\paren
 |  /\add
 |    /\ide
   /\expr
```

```
   /\term
  /\elem
```

```
  /\elem
```

```
  /\elem
```
The concrete syntax of a programming language coincides with the initial term algebra of a specification with signature Σ.

What does its abstract syntax correspond to?

Consider the following algebraic specification of abstract syntax for the expression language.

```
module AbstractExpressions
exports
  sorts AbsExpr, Symbol
  operations
    plus (_,_): AbsExpr, AbsExpr -> AbsExpr
    minus (_,_): AbsExpr, AbsExpr -> AbsExpr
    times (_,_): AbsExpr, AbsExpr -> AbsExpr
    ide (_): Symbol -> AbsExpr
end exports
end AbstractExpressions
```

Use set Symbol of symbolic atoms as identifiers.

Construct terms with the constructor function symbols in the AbstractExpressions module to represent the abstract syntax trees.

These freely constructed terms form term algebra A according to signature of AbstractExpressions.

A also serves as a model of the specification in the Expressions module; that is, A is a Σ-algebra:

$\text{Expression}_A = \text{Term}_A = \text{Element}_A = \text{AbsExpr}$

Identifier$_A = \{ \text{ide}(x) \mid x : \text{Symbol} \}$.

Operations:

$\text{expr}_A : \text{AbsExpr} \rightarrow \text{AbsExpr}
\text{defined by} \text{expr}_A(e) = e$

$\text{add}_A : \text{AbsExpr}, \text{AbsExpr} \rightarrow \text{AbsExpr}
\text{defined by} \text{add}_A(e_1,e_2) = \text{plus}(e_1,e_2)$

$\text{sub}_A : \text{AbsExpr}, \text{AbsExpr} \rightarrow \text{AbsExpr}
\text{defined by} \text{sub}_A(e_1,e_2) = \text{minus}(e_1,e_2)$

Under this interpretation of the symbols in Σ, this term t becomes a value in the Σ-algebra A:

$\begin{align*}
t_A &= (\text{expr} (\text{mul} (\text{term} (\text{elem} (\text{ide}(x))))) \\
 &\qquad \text{paren} (\text{add} (\text{expr} (\text{term} (\text{elem} (\text{ide}(y)))))))
\end{align*}$

$\begin{align*}
\text{term}_A &\rightarrow \text{AbsExpr} \\
\text{mul}_A : \text{AbsExpr}, \text{AbsExpr} \rightarrow \text{AbsExpr} &\text{defined by} \text{mul}_A(e_1,e_2) = \text{times}(e_1,e_2)
\text{elem}_A : \text{Identifier} \rightarrow \text{AbsExpr} &\text{defined by} \text{elem}_A(e) = e
\text{paren}_A : \text{AbsExpr} \rightarrow \text{AbsExpr} &\text{defined by} \text{paren}_A(e) = e
\end{align*}$

which represents the abstract syntax tree in A that corresponds to the original expression “$x \ast (y + z)$”.

Each version of abstract syntax is a Σ-algebra for the signature associated with the grammar that forms the concrete syntax of the language.

Any Σ-algebra serving as an abstract syntax is a homomorphic image of T_{Σ}, the initial algebra for the specification with signature Σ.

= $\text{expr}_A (\text{mul}_A (\text{term}_A (\text{ide}(x))),$
$\text{paren}_A (\text{add}_A (\text{expr}_A (\text{term}_A (\text{ide}(y)))),$
$\text{term}_A (\text{ide}(z))))$
Confusion
Generally, Σ-algebras acting as abstract syntax will contain confusion; the homomorphism from T_{Σ} will not be one-to-one. This confusion reflects the abstracting process: By confusing elements in the algebra, we are suppressing details in the syntax.

The expressions “x+y” and “(x+y)”, although distinct in the concrete syntax and in T_{Σ}, are the same when mapped to $\text{plus}(\text{ide}(x),\text{ide}(y))$ in A.

Any Σ-algebra for the signature resulting from the concrete syntax can serve as the abstract syntax for some semantic specification of the language, but many such algebras will be so confused that the associated semantics will be trivial or absurd.

The task of the semanticist is to choose an appropriate Σ-algebra that captures the organization of the language in such a way that appropriate semantics can be attributed to it.

Algebraic Semantics for Wren
module WrenTypes
imports Booleans
exports
sorts WrenType
operations
naturalType, booleanType : WrenType
programType, errorType : WrenType
\text{eq?}(_ , _) : WrenType,WrenType \rightarrow \text{Boolean}
end exports
variables
t_1, t_2 : WrenType
equations
\[\text{Wt1}\text{eq?}(t_1,t_1) = \text{true}\quad \text{when } t_1 \neq \text{errorType} \]
\[\text{Wt2}\text{eq?}(t_1, t_2) = \text{eq?}(t_2, t_1) \]
\[\text{Wt3}\text{eq?}(\text{naturalType}, \text{booleanType}) = \text{false} \]
\[\text{Wt4}\text{eq?}(\text{naturalType}, \text{programType}) = \text{false} \]
\[\text{Wt5}\text{eq?}(\text{naturalType}, \text{errorType}) = \text{false} \]
\[\text{Wt6}\text{eq?}(\text{booleanType}, \text{programType}) = \text{false} \]
\[\text{Wt7}\text{eq?}(\text{booleanType}, \text{errorType}) = \text{false} \]
\[\text{Wt8}\text{eq?}(\text{programType}, \text{errorType}) = \text{false} \]
end WrenTypes

module WrenValues
imports Booleans, Naturals
exports
sorts WrenValue
operations
\text{wrenValue}(_) : \text{Natural} \rightarrow \text{WrenValue}
\text{wrenValue}(_) : \text{Boolean} \rightarrow \text{WrenValue}
\text{errorValue} : \text{WrenValue}
\text{eq?}(_ , _) : \text{WrenValue, WrenValue} \rightarrow \text{Boolean}
end exports
variables
x, y : WrenValue
m, n : Natural
b, b_1, b_2 : Boolean

equations
\[\text{Wv1}\text{eq?}(x, x) = \text{true}\quad \text{when } x \neq \text{errorValue} \]
\[\text{Wv2}\text{eq?}(x, y) = \text{eq?}(y, x) \]
\[\text{Wv3}\text{eq?}(\text{wrenValue}(m), \text{wrenValue}(n)) = \text{eq?}(m,n) \]
\[\text{Wv4}\text{eq?}(\text{wrenValue}(b_1), \text{wrenValue}(b_2)) = \text{eq?}(b_1,b_2) \]
\[\text{Wv5}\text{eq?}(\text{wrenValue}(m), \text{wrenValue}(b)) = \text{false}\quad \text{when } m \neq \text{errorNatural}, b \neq \text{errorBoolean} \]
\[\text{Wv6}\text{eq?}(\text{wrenValue}(m), \text{errorValue}) = \text{false}\quad \text{when } m \neq \text{errorNatural} \]
\[\text{Wv7}\text{eq?}(\text{wrenValue}(b), \text{errorValue}) = \text{false}\quad \text{when } b \neq \text{errorBoolean} \]
end WrenValues
Abstract Syntax for Wren

module WrenASTs
imports Naturals, Strings, WrenTypes
exports
sorts WrenProgram, Block, DecSeq, Declaration, CmdSeq, Cmd, Expr, Ident
operations
astWrenProg (_ , _) : Ident, Block → WrenProg
astBlock (_ , _) : DecSeq, CmdSeq → Block
astDecs (_ , _) : Declaration, DecSeq → DecSeq
astEmptyDecs : DecSeq
astDec (_ , _) : Ident, WrenType → Declaration
astCmds (_ , _) : Cmd, CmdSeq → CmdSeq
astOneCmd (_) : Command → CmdSeq
astRead (_) : Ident → Command
astAssign (_ , _) : Ident, Expr → Command
astSkip : Command
astWhile (_ , _) : Expr, CmdSeq → Command
end exports
end WrenASTs

A Type Checker for Wren

module WrenTypeChecker
imports Booleans, WrenTypes, WrenASTs,
instantiation of Mappings
bind Entries
 using String for Domain
 using WrenType for Range
 using eq? for equals
 using errorString for errorDomain
 using elementType for errorRange
rename using SymbolTable for Mapping
 using nullSymTab for emptyMap
exports
operations
check (_) : WrenProgram → Bool
check (_ , _) : Block, SymTab → Bool
check (_ , _) :
 DecSeq, SymTab → Bool,SymTab
check(_ , _) :
 Declaration,SymTab → Bool,SymTab
check (_ , _) : CmdSeq, SymTab → Bool
check (_ , _) : Command, SymTab → Bool
end exports
equations

[Tc1]
check (astWrenProgram (astIdent (name), block))
 = check(block,
 update(nullSymTab, name, progType))

[Tc2]
check (astBlock (decs,cmds), symtab)
 = and (b₁,b₂)
when <b₁,symtab₁> = check (decs, symtab)
 b₂ = check (cmds, symtab₁)

[Tc3]
check (astDecs (dec, deCS), symtab)
 = <and (b₁,b₂), symtab₂>
when <b₁,symtab₁> = check (dec, symtab)
 <b₂,symtab₂> = check (decs, symtab₁)

[Tc4]
check (astEmptyDecs, symtab)
 = <true, symtab>

[Tc5]
check (astDec (astIdent (name), type), symtab)
 = if (apply (symtab,name) = errorType,
 <true, update (symtab, name, type)>,
 <false, symtab>)

[Tc6]
check (astCmds (cmd, cmds), symtab)
 = and (check (cmd, symtab),
 check (cmds, symtab))

[Tc7]
check (astOneCmd (cmd), symtab)
 = check (cmd, symtab)

[Tc8]
check (astIfThen (expr, cmds), symtab)
 = if (eq? (typeExpr(expr, symtab),
 naturalType),
 check (cmds, symtab))

[Tc9]
check (astIfElse (expr, cmds₁, cmds₂), symtab)
 = if (eq? (typeExpr(expr, symtab),
 booleanType),
 check (cmds₁, symtab),
 check (cmds₂, symtab),
 false)

[Tc10]
typeExpr (astAssign (astIdent (name), expr), symtab)
 = eq? (apply (symtab, name),
 typeExpr (expr, symtab))

[Tc11]
check (astSkip, symtab)
 = true

[Tc12]
check (astWhile (expr, cmds), symtab)
 = if (eq? (typeExpr(expr, symtab),
 booleanType),
 check (cmds, symtab),
 false)

[Tc13]
check (astIfThen (expr, cmds), symtab)
 = if (eq? (typeExpr(expr, symtab), booleanType),
 check (cmds, symtab),
 false)

[Tc14]
check (astIfElse (expr, cmds₁, cmds₂), symtab)
 = if (eq? (typeExpr(expr, symtab), booleanType),
 and (check (cmds₁, symtab), check (cmds₂, symtab)),
 false)

[Tc15]
typeExpr (astAddition (expr₁, expr₂), symtab)
 = if (and(eq?(typeExpr(expr₁, symtab), natType),
 eq?(typeExpr (expr₂, symtab), natType)),
 naturalType,
 errorType)

[Tc19]
typeExpr (astEqual (expr₁, expr₂), symtab)
 = if (and(eq?(typeExpr(expr₁, symtab), natType),
 eq?(typeExpr(expr₂, symtab), natType)),
 booleanType,
 errorType)

[Tc21]
typeExpr (astLessThan (expr₁, expr₂), symtab)
 = if (and(eq?(typeExpr(expr₁, symtab), natType),
 eq?(typeExpr(expr₂, symtab), natType)),
 booleanType,
 errorType)

[Tc25]
typeExpr (astNaturalConstant (m), symtab)
 = naturalType

[Tc26]
typeExpr (astVariable (astIdent(name)), symtab)
 = apply (symtab, name)

end WrenTypeChecker
The following equations perform the actual type checking:

[Tc8] The variable in a read command has naturalType

[Tc9] The expression in a write command has naturalType

[Tc10] The assignment target variable and expression have the same type

[Tc15-18] Arithmetic operations involve expressions of naturalType

[Tc19-24] Comparisons involve expressions of naturalType.

An Interpreter for Wren

module WrenEvaluator
imports Booleans, Naturals, Strings, Files, WrenValues, WrenASTs, instantiation of Mappings
bind Entries
 using String for Domain
 using Wren-Value for Range
 using eq? for equals
 using errorString for errDomain
 using errorValue for errorRange
rename
 using Store for Mapping
 using emptySto for emptyMap
 using updateSto for update
 using applySto for apply
exports operations
 meaning (_ , _) : WrenProgram, File → File
 perform (_ , _) : Block, File → File
 elaborate (_ , _) : DecSeq, Store → Store
 elaborate (_ , _) : Declaration, Store → Store

execute (_ , _ , _ , _) :
 CmdSeq, Store, File, File ! Store, File, File
execute (_ , _ , _ , _) ...
expressions of naturalType

variables
input, input₁, input₂ : File
output, output₁, output₂ : File
block : Block
decs : DecSeq
cmds, cmds₁, cmds₂ : CmdSeq
cmd : Command
epr, epr₁, epr₂ : Expr
sto, sto₁, sto₂ : Store
tvalue : WrenValue
m,n : Natural
name : String
b : Boolean

equations
[Ev1]
meaning(astWrenProgram(astIdent(name),block),input) = perform (block, input)
[Ev2]
perform (astBlock (decs,cmds), input) = execute (cmds,
 elaborate(decs,emptySto),
 input, emptyFile)
[Ev3]
elaborate (astDecs (dec, decs), sto) = elaborate (decs,elaborate(dec, sto))
[Ev4]
elaborate (astEmptyDecs, sto) = sto
[Ev5]
elaborate(astDec(astIdent(name),natType), sto) = updateSto(sto, name, wrenValue(0))
[Ev6]
elaborate(astDec(astIdent(name),booleanType),sto) = updateSto(sto, name, wrenValue(false))
[Ev7]
elaborate (astEmptyDecs, sto) = sto
Chapter 12

A Wren System

module WrenSystem
imports WrenTypeChecker, WrenEvaluator
exports
operations
runWren : WrenProgram, File → File
end exports
variables
input : File
program : WrenProgram
equations
[Ws1] runWren (program, input) = if (check (program),
 eval (program, input),
 emptyFile)
 -- return an empty file if context violation,
 otherwise run program
end WrenSystem

Chapter 12

[Ev8]
execute(astcmds(cmd,cmds),sto1, input1, output1) = execute (cmds, sto2, input2, output2) when <sto2, input2, output2> = execute (cmd, sto1, input1, output1)

[Ev9]
evaluate (astOneCmd (cmd), sto, input, output) = execute (cmd, sto, input, output)

[Ev10]
evaluate (astSkip, sto, input, output) = <sto, input, output>

[Ev11]
evaluate (astRead(astIdent(name)),sto,input,output) = if (empty? (input),
 need error case here
 <updateSto(sto,name,first), rest, output>) when cons(first,rest) = input

[Ev12]
evaluate (astWrite (expr), sto, input, output) = <sto,input,
 concat(output,mkFile(evaluate(expr,sto))))>

[Ev13]
evaluate(astAssign(astIdent(name),expr),
sto,input,output) = <updateSto(sto,name,evaluate(expr,sto)),
 input,output>

[Ev23]
evaluate (astLessThan (expr1, expr2), sto) = wrenValue(less? (m,n)) when wrenValue(m) = evaluate (expr1, sto),
 wrenValue(n) = evaluate (expr2, sto)

[Ev27]
evaluate (astNaturalConstant (m), sto) = wrenValue(m)

[Ev28]
evaluate (astVariable (astIdent (name)), sto) = applySto (sto, name)

end WrenEvaluator
Implementing Algebraic Semantics

We show the implementation of three modules: Booleans, Naturals, and WrenEvaluator.

Expected behavior of the system:

>>> Interpreting Wren via Algebraic Semantics <<<
Enter name of source file: frombinary.wren
program frombinary is
 var sum, n : integer;
 begin
 sum := 0; read n;
 while n<2 do
 sum := 2*sum+n; read n
 end while;
 write sum
 end
Scan successful
Parse successful
Enter an input list followed by a period:
[1,0,1,0,1,1,2].
Output = [43]

Module Booleans
boolean(true).
boolean(false).
bnot(true, false).
bnot(false, true).
and(true, P, P).
and(false, true, false).
and(false, false, false).
or(false, P, P).
or(true, P, true) :- boolean(P).
xor(P, Q, R) :- or(P, Q, PorQ), and(P, Q, PandQ), bnot(PandQ, NotPandQ), and(NotPandQ, R).
beq(P, Q, R) :- xor(P, Q, PxorQ), bnot(PxorQ, R).

Module Naturals

The predicate natural succeeds with arguments of the form

zero, succ(zero), succ(succ(zero)),

Calling this predicate with a variable, such as natural(M), generates the natural numbers in this form if repeated solutions are requested by entering semicolons.

natural(zero).
natural(succ(M)) :- natural(M).
The arithmetic functions follow the algebraic specification closely.

Rather than return an error value for subtraction of a larger number from a smaller number or for division by zero, we print an appropriate error message and abort the program execution.

The comparison operations follow directly from their definitions.

add(M, zero, M) :- natural(M).
add(M, succ(N), succ(R)) :- add(M, N, R).
sub(zero, succ(N), R) :-
 write('Fatal Error: Result of subtraction is negative'),
 nl, nl, abort.
sub(M, zero, M) :- natural(M).
sub(succ(M), succ(N), R) :- sub(M, N, R).
mul(M, zero, zero) :- natural(M).
mul(M, succ(zero), M) :- natural(M).
mul(M, succ(succ(N)), R) :-
 mul(M, succ(N), R1), add(M, R1, R).
div(M, zero, R) :-
 write('Fatal Error: Division by zero'),
 nl, nl, abort.
div(M, succ(N), zero) :- less(M, succ(N), true).
div(M, succ(N), succ(Quotient)) :-
 less(M, succ(N), false),
 sub(M, succ(N), Dividend),
 div(Dividend, succ(N), Quotient).
exp(M, zero, succ(zero)) :- natural(M).
exp(M, succ(N), R) :-
 exp(M, N, MexpN),
 mul(M, MexpN, R).
eq(zero, zero, true).
eq(zero, succ(N), false) :- natural(N).
eq(succ(M), zero, false) :- natural(M).
eq(succ(M), succ(N), BoolValue) :-
 eq(M, N, BoolValue).
less(zero, succ(N), true) :- natural(N).
less(M, zero, false) :- natural(M).
less(succ(M), succ(N), BoolValue) :-
 less(M, N, BoolValue).
greater(M, N, BoolValue) :- less(N, M, BoolValue).
lesseq(M,N,BoolValue) :-
less(M,N,B1), eq(M,N,B2),
or(B1,B2,BoolValue).
greatereq(M,N,BoolValue) :-
greater(M,N,B1), eq(M,N,B2),
or(B1,B2,BoolValue).

Two operations not specified in Naturals module.
toNat converts a numeral to natural notation
toNum converts a natural number to a base-ten numeral.

toNat(4,Num) returns
Num = succ(succ(succ(succ(zero)))).
toNat(0,zero).
toNat(Num, succ(M)) :- Num>0, NumMinus1 is Num-1,
toNat(NumMinus1, M).
toNum(zero,0).
toNum(succ(M),Num) :- toNum(M,Num1), Num is Num1+1.

Declarations

The clauses for elaborate are used to build a
store with numeric variables initialized to zero and
Boolean variables initialized to false.

elaborate([DeclDecs],StoIn,StoOut) :- % Ev3
 elaborate(Dec,StoIn,Sto),
elaborate(Decs,Sto,StoOut).
elaborate([],Sto,Sto). % Ev4

elaborate(dec(integer,[Var]),StoIn,StoOut) :-
 updateSto(StoIn,Var,zero,StoOut). % Ev5
elaborate(dec(boolean,[Var]),StoIn,StoOut) :-
 updateSto(StoIn,Var,false,StoOut). % Ev6

Commands

For a sequence of commands, the commands
following the first command are evaluated with the
store produced by the first command

execute([Cmd|Cmds],StoIn,InputIn,OutputIn,
StoOut,InputOut,OutputOut) :- % Ev8

The **write** command evaluates the expression,
converts the resulting value from natural
number notation to a numeric value, and
appends the result to the end of the output file.

execute(write(Expr),Sto,Input,OutputIn,
Sto,Input,OutputOut) :- % Ev2
 evaluate(Expr,StoIn,ExprValue),
toNum(ExprValue,Value),
mkFile(Value,ValueOut),
concat(OutputIn,ValueOut,OutputOut).

Assignment evaluates the expression using the
current store and then updates that store to reflect
the new binding. The **skip** command makes no
changes to the store or to the files.

execute(assign(Var,Expr),StoIn,Input,Output,
StoOut,Input,Output) :- % Ev13
 evaluate(Expr,StoIn,Value),
 updateSto(StoIn,Var,Value,StoOut).
exeexecute(skip,Sto,Input,Output,Sto,Input,Output). % Ev10
Two forms of if test Boolean expressions and let a predicate “select” perform actions.

execute(if(Expr, Cmds), StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 evaluate(Expr, StoIn, BoolVal), % Ev15
 select(BoolVal, Cmds, [], StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut).
execute(if(Expr, Cmds1, Cmds2), StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 evaluate(Expr, StoIn, BoolVal), % Ev16
 select(BoolVal, Cmds1, Cmds2, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut).
select(true, Cmds1, Cmds2, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 execute(Cmds1, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut).
select(false, Cmds1, Cmds2, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 execute(Cmds2, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut).

If the comparison in the while command is false, the store and files are returned unchanged.
If the comparison is true, the while command is reevaluated with the store and files resulting from the execution of the while loop body.

execute(while(Expr, Cmds), StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 evaluate(Expr, StoIn, BoolVal), % Ev14
 iterate(BoolVal, Expr, Cmds, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut).
iterate(false, Expr, Cmds, StoIn, Input, Output, StoOut, InputOut, OutputOut).
iterate(true, Expr, Cmds, StoIn, InputIn, OutputIn, StoOut, InputOut, OutputOut) :-
 execute(Cmds, StoIn, InputIn, OutputIn, StoOut, Input, Output),
 execute(while(Expr, Cmds), Sto, Input, Output, StoOut, InputOut, OutputOut).

Expressions
The evaluation of arithmetic expressions is straightforward.
Evaluating a variable involves looking up the value in the store.
A numeric constant is converted to natural number notation and returned.

evaluate(exp(plus, Expr1, Expr2), Sto, Result) :-
 evaluate(Expr1, Sto, Val1), % Ev17
 evaluate(Expr2, Sto, Val2),
 add(Val1, Val2, Result).

evaluate(num(Constant), Sto, Value) :-
 toNat(Constant, Value). % Ev27
evaluate(ide(Var), Sto, Value) :-
 applySto(Sto, Var, Value). % Ev28

Evaluation of comparisons is similar to arithmetic expressions; the equal comparison is given below, and the five others are left as an exercise.

evaluate(exp(equal, Expr1, Expr2), Sto, Bool) :-
 evaluate(Expr1, Sto, Val1), % Ev21
 evaluate(Expr2, Sto, Val2),
 eq(Val1, Val2, Bool).

Prolog implementation of algebraic semantics is similar to the denotational interpreter with respect to command and expression evaluation.

Biggest difference:
Ignore native arithmetic in Prolog
Naturals module performs arithmetic based solely on a number system derived from applying a successor operation to an initial value zero.