
Chapter 4
TWO-LEVEL GRAMMARS

We used attributes in Chapter 3 to augment a context-free grammar
in order to verify context sensitivity. This chapter will focus on two-
level grammars, another formal technique that starts with a con-

text-free grammar, augmenting it with a higher-level grammar to test con-
text-sensitive properties.

A BNF grammar involves a finite number of terminal symbols and produc-
tion rules. We think of BNF as a “one-level grammar”. The new approach of
introducing “rules about rules” is called a “two-level grammar”. Although we
still have a finite number of terminal symbols, adding a second level to the
grammar can be used to generate an infinite number of production rules.
Consequently, a two-level grammar is inherently more powerful than a BNF
grammar. Two-level grammars are sometimes called W-grammars, named
after Aad van Wijngaarden, the researcher who developed this approach. The
programming language Algol68 was defined using a two-level grammar to
specify its complete syntax, including context-sensitive conditions.

This chapter begins with a brief introduction to two-level grammars; then in
section 4.2, we develop a context-sensitive grammar for Wren. Two-level gram-
mars can also be extended into the realm of operational semantics by building
a programming language interpreter into the grammar, but this extension is
beyond the scope of this text. Interested readers can consult the references
described in the further reading section of this chapter. We end the chapter by
showing how small two-level grammars can be implemented in Prolog. We also
discuss the relationship of two-level grammars and logic programming.

4.1 CONCEPTS AND EXAMPLES

We begin by looking at the part of a two-level grammar that is equivalent to
BNF. Protonotions correspond to nonterminals and terminals in a BNF gram-
mar. We use a sequence of lowercase, boldface characters to represent
protonotions. Terminals are distinguished by the final word symbol . Spaces
can occur anywhere in a protonotion and do not change its meaning. Ex-
amples of protonotions are

program is equivalent to the nonterminal <program>.

program symbol is equivalent to the keyword program . 105

106 CHAPTER 4 TWO-LEVEL GRAMMARS

The correspondence between the protonotions ending in symbol and the
actual terminal symbols is presented in a representation table.

A grammar rule for defining protonotions is called a hyper -rule. The follow-
ing conventions are used in hyper-rules:

• A colon separates the left- and right-hand side of a rule.

• A comma indicates the juxtaposition of protonotions.

• A semicolon indicates alternatives on the right-hand side of a rule.

• A period terminates a hyper-rule.

For example, the following hyper-rule corresponds to the productions for
 <element> in Wren.

element : numeral;
variable;
left par en symbol, integer expr , right par en symbol;
negation symbol, element.

A complete (context-free) grammar for Wren using two-level grammar nota-
tion is shown in Figure 4.1, with the corresponding representation table given
in Figure 4.2.

Next we look at the terms and notation associated with the “second level” of
two-level grammars. A metanotion can stand for any number of protonotions.
Metanotions are written in boldface, uppercase letters with no embedded
spaces. The allowed protonotions are specified in the form of metarules ,
which use the following notational conventions:

program : pr ogram symbol, identifier , is symbol, block.

block : declaration seq, begin symbol, command seq, end symbol.

declaration seq : empty;
declaration, declaration seq.

empty : .

declaration : var symbol, variable list, colon symbol,
type, semicolon symbol.

type : integer symbol;
boolean symbol.

variable list : variable;
variable, comma symbol, variable list.

command seq : command;
command, semicolon symbol, command seq.

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 1)

1074.1 CONCEPTS AND EXAMPLES

command : variable, assign symbol, expr ession;

read symbol, variable;

write symbol, integer expr;

skip symbol;

while symbol, boolean expr , do symbol,

command seq, end while symbol;

if symbol, boolean expr , then symbol,

command seq, end if symbol;

if symbol, boolean expr , then symbol, command seq,

else symbol, command seq, end if symbol.
expression : integer expr;

boolean expr .

integer expr : term;
integer expr , weak op, ter m.

term : element;
term, strong op, element.

element : numeral;
variable;
left par en symbol, integer expr , right par en symbol;
negation symbol, element.

boolean expr : boolean ter m;
boolean expr , or symbol, boolean ter m.

boolean ter m : boolean element;
boolean ter m, and symbol, boolean element.

boolean element : true symbol;
false symbol;
variable;
comparison;
left par en symbol, Boolean expr , right par en symbol;
not symbol, left par en symbol,

boolean expr , right par en symbol.

comparison : integer expr , relation, integer expr .

variable : identifier .

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 2)

• A double colon (::) separates the left- and right-hand sides of a metarule.

• A space indicates the juxtaposition of items.

• A semicolon indicates alternatives on the right-hand side of a metarule.

• A period terminates a metarule.

108 CHAPTER 4 TWO-LEVEL GRAMMARS

relation : less or equal symbol;

less symbol;

equal symbol;

greater symbol;

greater or equal symbol;

not equal symbol.

weak op : plus symbol;
minus symbol.

strong op : multiply symbol;
divide symbol.

identifier : letter;
letter, identifier;
letter, digit.

letter : a symbol; b symbol; c symbol; d symbol; e symbol; f symbol;
g symbol; h symbol; i symbol; j symbol; k symbol; l symbol;
m symbol; n symbol; o symbol; p symbol; q symbol; r symbol;
s symbol; t symbol; u symbol; v symbol; w symbol; x symbol;
y symbol; z symbol.

numeral : digit;
digit, numeral.

digit : zero symbol; one symbol; two symbol; three symbol;
four symbol; five symbol; six symbol; seven symbol;
eight symbol; nine symbol.

Figure 4.1: Grammar for Wren Using Two-level Notation (Part 3)

The following metarule specifies that the metanotion ALPHA stands for 26
alternative protonotions.

ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

A metarule can also contain metanotions on the right-hand side.

NOTION :: ALPHA; NOTION ALPHA.

In this case a NOTION is any sequence of bold, lowercase letters—in other
words, a protonotion. Metanotions can also appear anywhere in a hyper-
rule. For example, the following hyper-rule for Wren

109

program symbol program colon symbol :

is symbol is semicolon symbol ;

begin symbol begin comma symbol ,

end symbol end assign symbol :=

var symbol var plus symbol +

integer symbol integer minus symbol -

boolean symbol boolean multiply symbol *

skip symbol skip divide symbol /

read symbol read negation symbol -

write symbol write left par en symbol (

while symbol while right par en symbol)

do symbol do less or equal symbol <=

end while symbol end while less symbol <

if symbol if equal symbol =

then symbol then greater symbol >

else symbol else greater or equal symbol >=

end if symbol end if not equal symbol <>

or symbol or a symbol a

and symbol and : : :

not symbol not z symbol z

true symbol true zero symbol 0

false symbol false : : :

nine symbol 9

Figure 4.2: Representation Table for Wren

 letter : a symbol; b symbol; c symbol; d symbol; e symbol; f symbol;

g symbol; h symbol; i symbol; j symbol; k symbol; l symbol;

m symbol; n symbol; o symbol; p symbol; q symbol; r symbol;

s symbol; t symbol; u symbol; v symbol; w symbol;

x symbol; y symbol; z symbol.

can now be written simply as

letter: ALPHA symbol.

By introducing a metanotion, we have one hyper-rule that stands for 26
possible rules: letter : a symbol. , letter : b symbol. , and so on.

Traditionally, two-level grammars are printed in boldface. The basic terms
introduced so far can be summarized as follows:

4.1 CONCEPTS AND EXAMPLES

110 CHAPTER 4 TWO-LEVEL GRAMMARS

• A protonotion is a sequence of lowercase, boldface characters that define
a nonterminal; however, if the nonterminal is followed by the protonotion
symbol , then protonotion corresponds to a terminal in the target language
as given in a representation table.

• A metanotion is a sequence of uppercase characters, used to represent
any number of protonotions.

• A hyper -rule is a production rule that define a protonotion or a class of
protonotions; it may contain protonotions and metanotions on the left-
and right-hand sides, and substitutions of protonotions for metanotions
must be consistent.

• A metarule is a production rule that defines the single metanotion on its
left-hand side using protonotions or metanotions on its right-hand side.

As indicated at the start of this chapter, it is possible to generate an infinite
number of production rules. Suppose that we want to specify a nonempty list
structure as a sequence of one or more items separated by commas. Wren
uses a list structure to define lists of variables:

variable list : variable; variable, comma symbol, variable list.

We can generalize this list concept by introducing the metanotion NOTION to
provide a template for list construction:

NOTION list : NOTION; NOTION, comma symbol, NOTION list.

If NOTION has the value variable , this hyper-rule specifies our metarule
from Wren. If NOTION takes other values, say integer or character , then we
are specifying a list of integers or a list of characters. We do require consis-
tent substitution of protonotions for a metanotion within a hyper-rule, thus
guaranteeing that our list contains elements of the same type. It will not be
possible to produce a hyper-rule such as

 integer list : character; integer , comma symbol, variable list. (illegal!)

Since NOTION can match any protonotion (without embedded spaces), we
have given a single hyper-rule that can match an infinite number of produc-
tions specifying nonempty lists containing items of the same kind.

We now introduce some notational conveniences. The metanotion EMPTY
can stand for the empty protonotion:

EMPTY :: .

Suppose that we want to use a tally notation to define the concept of number.
For example, the tally iiiiiiii represents the number 8. We can specify a tally
by the metarule

TALLY :: i ; T ALLY i.

111

We cannot represent the number zero by using TALLY, so we use the EMPTY
protonotion

TALLETY :: EMPTY ; TALLY.

A conventional notation in two-level grammars is to have the suffix -ETY
allow the EMPTY protonotion as one of the alternatives.

A second notational convenience allows us to relax (at least notationally) the
consistent substitution principle. Consider the nonempty list example again.
Initially assume lists can contain integers or characters, but not both.

LISTITEM list :
 LISTITEM; LISTITEM, comma symbol, LISTITEM list.

LISTITEM :: integer; character .

Now suppose we want to mix integers and characters in a single list. A pos-
sible specification is

mixed list : LISTITEM; LISTITEM1, comma symbol, mixed list.
LISTITEM1 :: LISTITEM.

The hyper-rule mixed list has four different possibilities:

1. mixed list : integer; integer , comma symbol, mixed list.
2. mixed list : integer; character , comma symbol, mixed list.
3. mixed list : character; character , comma symbol, mixed list.
4. mixed list : character; integer , comma symbol, mixed list.

We adopt the convention that a metanotion ending in a digit stands for the
same set of protonotions as the metanotion without the digit, so we do not
have to specify metarules such as LISTITEM1 :: LISTITEM. given above. (It
should be noted that LISTITEM1 was not strictly required to produce the
mixed list since LISTITEM and LISTITEM1 appear only once in different
alternatives; however, the intent of this example should be clear.)

Fortran String Literals

In older versions of Fortran having no character data type, character string
literals were expressed in the following format:

<string literal> ::= <numeral> H <string>

where the <numeral> is a base-ten integer (≥ 1), H is a keyword (named after
Herman Hollerith), and <string> is a sequence of characters. The (context-
sensitive) syntax of this string literal will be correct if the numeric value of
the base-ten numeral matches the length of the string. A two-level grammar
is developed for a Fortran string literal. The initial version assumes that the

4.1 CONCEPTS AND EXAMPLES

112 CHAPTER 4 TWO-LEVEL GRAMMARS

numeral is a single digit from 1 to 9. The hyper-rules for the digit symbols
are as follows:

i digit : digit one symbol.
ii digit : digit two symbol.
iii digit : digit thr ee symbol.
iiii digit : digit four symbol.
iiiii digit : digit five symbol.
iiiiii digit : digit six symbol.
iiiiiii digit : digit seven symbol.
iiiiiiii digit : digit eight symbol.
iiiiiiiii digit : digit nine symbol.

The string literal is a sequence of lowercase letters, which we call LETTERSEQ ,
as specified by the following metarules:

APLHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

LETTER :: letter ALPHA.
LETTERSEQ :: LETTER; LETTERSEQ LETTER.

The string literal, called hollerith , is specified by the following hyper-rule.
Notice that the consistent substitution for TALLY, defined previously, pro-
vides the desired context sensitivity.

hollerith : T ALLY digit, hollerith symbol, T ALLY LETTERSEQ.

Finally, we need to show how a TALLY LETTERSEQ decomposes. The basic
idea is that every time we remove an i from TALLY we also remove a LETTER
from LETTERSEQ . We must eventually reach a single i followed by a single
LETTER . The following two hyper-rules express these ideas.

TALLY i LETTER LETTERSEQ : i LETTER, T ALLY LETTERSEQ.
i LETTER : LETTER symbol.

The representation table for this two-level grammar involves symbols for low-
ercase letters, digits, and the separator H.

Representation Table

letter a symbol a digit one symbol 1

 : : : : : : : :

letter z symbol z digit nine symbol 9

hollerith symbol H

113

Derivation Trees

Since two-level grammars are simply a variant of BNF, they support the idea
of a derivation tree to exhibit the structure of a string of symbols.

Definition : A derivation tr ee of a string in a two-level grammar displays a
derivation of a sentence in the grammar. The nodes in the tree are labeled
with protonotions, and the protonotions for all leaf nodes end with symbol ,
indicating terminal symbols. Traversing the leaf nodes from left to right (a
preorder traversal) and replacing the protonotion symbols with the corre-
sponding tokens in the Representation Table produces the string being parsed.
Empty leaves just disappear. ❚

The derivation tree for “3Habc” is shown in Figure 4.3.

hollerith

iii digit hollerith symbol iii letter a letter b letter c

digit three symbol ii letter b letter ci letter a

i letter b i letter cletter a symbol

letter c symbolletter b symbol

Figure 4.3: Derivation Tree for “3Habc”

When a string does not obey the context-sensitive conditions, no derivation
is possible. Figure 4.4 shows an attempt to draw a derivation tree for “4Habc”,
but, as indicated, it is not possible to complete the tree.

If an arbitrary numeral is allowed to the left of the hollerith symbol in the
previous example, a mechanism is needed to transform the base-ten nu-
meral into a tally representation. For example, if the leaves of the subtree for
a numeral are digit two symbol followed by digit thr ee symbol , the TALLY
will be iiiiiiiiiiiiiiiiiiiiiii , a sequence of 23 i’s. We need to allow for a zero digit
at any position, other than the leading digit, and for the corresponding empty
tally.

EMPTY digit : digit zer o symbol.

TALLETY :: T ALLY; EMPTY.

4.1 CONCEPTS AND EXAMPLES

114 CHAPTER 4 TWO-LEVEL GRAMMARS

ii letter c

hollerith

iiii digit hollerith symbol iiii letter a letter b letter c

digit four symbol iii letter b letter ci letter a

i letter bletter a symbol

?letter b symbol

Figure 4.4: Attempted Derivation Tree for “4Habc”

We develop a hyper-rule for TALLY constant that captures the semantics of
base-ten numerals. For a multiple digit numeral d1d2 ... dn-1dn, we know
that

value(d1d2 ... dn-1dn) is 10•value(d1d2…dn-1) + value(dn).

In a tally numeration system, multiplying by 10 is accomplished by concat-
enating ten copies of the tally together. So we rewrite our equation as

tally(d1d2 ... dn-1dn) is ten copies of tally(d1d2…dn-1)

followed by one copy of tally(dn).

A where clause gives us a mechanism for expressing this equality, as evi-
denced by the following hyper-rule that includes both the base case and the
general case:

TALLETY constant :

TALLETY digit;

TALLETY2 constant, T ALLETY3 digit, wher e TALLETY is

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2

TALLETY3.

where TALLETY is T ALLETY : EMPTY .

The where clause is similar to condition checking in attribute grammars. If
the condition holds, the EMPTY protonotion is the leaf on the tree; other-
wise, the parse fails. This where clause is best illustrated by drawing the
complete derivation tree, as shown for the numeral 23 in Figure 4.5. Notice
that we rely on the fact that spaces in a protonotion do not change the
protonotion.

115

iiiiiiiiiiiiiiiiiiiiiii constant

ii constant

ii digit

digit two symbol

iii digit

digit three symbol

where iiiiiiiiiiiiiiiiiiiiiii
 is ii ii ii ii ii ii ii ii ii ii iii

EMPTY

Figure 4.5: Derivation Tree for the Numeral 23

Exercises

1. Suppose that we have a programming language that allows mixed types
for the arithmetic operations. Setting aside issues of precedence for the
moment, we can describe expressions by the following two-level grammar:

EXPRTYPE :: integer expr ession;
real expr ession; complex expr ession.

OPERATION :: addition; subtraction; multiplication; division.

expression : EXPR TYPE, OPERA TION, EXPR TYPE.

How many different hyper-rules are possible for expression?

2. Suppose we have the following productions:

TYPE :: integer; r eal; complex; character; string.

assignment : TYPE1 name, assign symbol, TYPE2 expr ession,
where TYPE1 is assignment compatible with TYPE2.

Write the hyper-rules for this where condition assuming success if the
types are the same, an integer expression can be assigned to a real or
complex variable, a real expression can be assigned to a complex vari-
able, and a character can be assigned to a string variable.

3. Develop a two-level grammar that parses only strings of the form anbncn.
Use the consistent substitution of a metanotion into a hyper-rule to
guarantee that the values of n are the same. Test the grammar by draw-
ing the derivation tree for “aaabbbccc ”. Also show why there is no valid
derivation tree for “aabbbcc ”.

4. Some implementations of Pascal limit the size of identifiers to eight or
fewer characters. The following hyper-rule expresses this constraint:

identifier : letter , upto iiiiiii alphanum.

4.1 CONCEPTS AND EXAMPLES

116 CHAPTER 4 TWO-LEVEL GRAMMARS

Develop a general hyper-rule to express the meaning of
upto TALLY NOTION

Draw the derivation tree for the identifier “count”.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

The two-level grammar that we construct for Wren performs all necessary
context checking. The primary focus is on ensuring that identifiers are not
multiply declared, that variables used in the program have been declared,
and that their usage is consistent with their types (see Figure 1.11). All dec-
laration information is present in a metanotion called DECLSEQ, which is
associated with the context-sensitive portions of commands. We use the fol-
lowing Wren program for illustration as we develop the two-level grammar:

program p is
var x, y : integer;
var a : boolean;

begin
read x; read y;
a := x < y;
if a then write x else write y end if

end

The program is syntactically correct if we can build a complete derivation
tree for it. Recall that a tree is complete if every leaf is a terminal symbol or
empty and that a preorder traversal of the leaf nodes matches the target
program once the symbols have been replaced with the corresponding to-
kens from the representation table. We introduce metarules and hyper-rules
on an “as needed” basis while discussing the sample program. The complete
two-level grammar, with all rules identified by number, will appear later in
this chapter in Figures 4.12 and 4.13. The representation table for Wren has
already been presented in Figure 4.2.

We first introduce the metanotions that serve as some of the basic building
blocks in Wren.

(m1) ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

(m2) NUM :: zer o; one; two; thr ee; four; five; six; seven; eight; nine.

(m3) ALPHANUM :: ALPHA; NUM.

(m4) LETTER :: letter ALPHA.

(m5) DIGIT :: digit NUM.

117

(m6) LETTERDIGIT :: LETTER; DIGIT .

A NAME starts with a letter followed by any sequence of letters or digits. One
possible NAME is

letter r digit two letter d digit two

A NUMERAL is a sequence of digits.

(m7) NAME :: LETTER; NAME LETTERDIGIT .

(m8) NUMERAL :: DIGIT ; NUMERAL DIGIT .

Declarations

A declaration associates a name with a type. Suppose that a Wren program
contains the following declarations:

var sum1 : integer ;
var done : boolean ;

These declarations will be represented in our two-level grammar derivation
tree as

letter s letter u letter m digit 1 type integer
letter d letter o letter n letter e type boolean

The following metanotions define a declaration and a declaration sequence.
Since a valid Wren program may have no declarations—for example, it may
be a program that writes only constant values—we need to allow for an empty
declaration sequence.

(m9) DECL :: NAME type TYPE.

(m10)TYPE :: integer; boolean; pr ogram.

(m11)DECLSEQ :: DECL; DECLSEQ DECL.

(m12)DECLSEQETY :: DECLSEQ; EMPTY .

(m13)EMPTY :: .

These metanotions are sufficient to begin construction of the declaration
information for a Wren program. The most difficult aspect of gathering to-
gether the declaration information is the use of variable lists, such as

var w, x, y, z : integer;

which should produce the following DECLSEQ :

letter w type integer letter x type integer
letter y type integer letter z type integer

4.2 A TWO-LEVEL GRAMMAR FOR WREN

118 CHAPTER 4 TWO-LEVEL GRAMMARS

The difficulty is that integer appears only once as a terminal symbol and has
to be “shared” with all the variables in the list. The following program frag-
ments should produce this same DECLSEQ , despite the different syntactic
form:

var w : integer;
var x : integer;
var y : integer;
var z : integer;

and
var w, x : integer;
var y, z : integer;

A DECLSEQ permits three alternatives: (1) a sequence followed by a single
declaration, (2) a single declaration, or (3) an empty declaration.

(h3) DECLSEQ DECL declaration seq :
DECLSEQ declaration seq, DECL declaration.

(h4) DECLSEQ declaration seq : DECLSEQ declaration.

(h5) EMPTY declaration seq : EMPTY .

It should be noted that these three hyper-rules can be expressed as two
rules (h4 is redundant), but we retain the three alternatives for the sake of
clarity. If all variables are declared in a separate declaration, we will require
a single hyper-rule for a declaration:

(h6) NAME type TYPE declaration : var symbol, NAME symbol,
colon symbol, TYPE symbol, semicolon symbol.

Figure 4.6 shows how h6, in combination with h3 and h4, can parse the
definition of w, x, y, and z in separate declarations. For pedagogical empha-
sis, the corresponding metanotions are shown in italics to the left of the
nodes in the tree, but these metanotions are not part of the tree itself. Ob-
serve that the specification of NAME symbol restricts identifier names to
single characters. Since this makes the derivation tree more manageable
with regard to depth, the example programs use only single letter identifiers.
An exercise at the end of this section asks what modifications are needed in
the grammar to allow for multiple character identifiers.

The same declaration sequence should be produced by the single declaration:
var w, x, y, z : integer;

This is accomplished by adding three hyper-rules:

1. The first variable in the list, which must be preceded by var symbol and
followed by comma symbol .

119

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration seq

DECLSEQ

DECL

letter z type integer
declaration

NAME type TYPE

letter z
symbol

var
symbol

letter y type integer
declaration

NAME type TYPE

letter y
symbol

var
symbol

letter x type integer
declaration

NAME type TYPE

letter x
symbol

colon
symbol

integer
symbol

semicolon
symbol

var
symbol

letter w type integer
declaration

NAME type TYPE

letter w
symbol

colon
symbol

integer
symbol

semicolon
symbol

var
symbol

letter w type integer
letter x type integer
letter y type integer
declaration seq

DECL

DECLSEQ

DECLSEQ letter w type integer
letter x type integer
declaration seq

DECL

letter w type integer
declaration seq

DECL

colon
symbol

integer
symbol

semicolon
symbol

colon
symbol

integer
symbol

semicolon
symbol

Figure 4.6: Parsing Individual Declarations

2. The last variable in the list, which must be followed by colon symbol , the
type, and semicolon symbol

3. “In between” variables, each of which is followed by comma symbol

4.2 A TWO-LEVEL GRAMMAR FOR WREN

120 CHAPTER 4 TWO-LEVEL GRAMMARS

The general strategy is to have the type information passed from right to left.
Here are the three hyper-rules that are used in conjunction with h4 to build
the declaration information.

(h7) DECLSEQ NAME type TYPE declaration :
DECLSEQ NAME type TYPE var list,
NAME symbol, colon symbol, TYPE symbol, semicolon symbol.

(h8) DECLSEQ NAME1 type TYPE NAME2 type TYPE var list :
DECLSEQ NAME1 type TYPE var list,
NAME1 symbol, comma symbol.

(h9) NAME1 type TYPE NAME2 type TYPE var list :
var symbol, NAME1 symbol, comma symbol.

Figure 4.7 shows the derivation tree for the declaration of the variables w, x,
y, and z in a single declaration statement.

We now return to our sample program. To develop the derivation tree from
the program node, we need these hyper-rules for program and block .

(h1) program : program symbol, NAME symbol, is symbol,
block with NAME type pr ogram DECLSEQETY ,
where NAME type pr ogram DECLSEQETY unique.

(h2) block with NAME type pr ogram DECLSEQETY :
DECLSEQETY declaration seq, begin symbol,
NAME type pr ogram DECLSEQETY command seq, end symbol.

Notice that the program identifier name is added to the declaration sequence
with type program . This information is passed to the command sequence and
is also checked for multiple declarations of the same identifier by a where rule.
A top-level derivation tree for the example program is shown in Figure 4.8.

The where rule checks for the uniqueness of declarations. All leaf nodes for
the where clauses will be EMPTY if the identifiers are unique. Since our
hyper-rules for variable lists have produced separate declaration informa-
tion for each identifier, this checking is relatively straightforward, albeit
lengthy. The easiest case is a single declaration, which is obviously unique.

(h22) where DECL unique : EMPTY .

In the case of multiple declarations, we separate the last declaration in the
list, and we use the following rule to ensure that the name is not contained in
any declarations to the left

121

letter w
symbol

comma
symbol

letter y
symbol

comma
symbol

letter z
symbol

colon
symbol

integer
symbol

semicolon
symbol

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration

DECLSEQ

NAME type TYPE

var
symbol

letter w type integer
letter x type integer
letter y type integer
letter z type integer
declaration seq

DECLSEQ

NAME1 type TYPE
NAME2 type TYPE

letter w type integer
letter x type integer
letter y type integer
letter z type integer
varlist

letter w type integer
letter x type integer
letter y type integer
varlist

DECLSEQ
NAME1 type TYPE
NAME2 type TYPE

letter w type integer
letter x type integer
varlist

letter x
symbol

comma
symbol

NAME1 type TYPE
NAME2 type TYPE

Figure 4.7: Parsing the Declaration: var w, x, y, z : integer ;

(h23) where DECLSEQ NAME type TYPE unique :
where DECLSEQ unique,
where NAME not in DECLSEQ.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

122 CHAPTER 4 TWO-LEVEL GRAMMARS

program

program
symbol

is
symbol

letter p
symbol

block with
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where
letter p type program
letter x type integer
letter y type integer
letter a type boolean
unique

letter x type integer
letter y type integer
letter a type boolean
declaration seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

begin
symbol

end
symbol

See Figure 4.9

letter x type integer
letter y type integer
declaration seq

letter a type boolean
declaration

var
symbol

letter a
symbol

colon
symbol

boolean
symbol

semicolon
symbol

letter x
symbol

comma
symbol

var
symbol

letter y
symbol

colon
symbol

integer
symbol

semicolon
symbol

letter x type integer
letter y type integer
declaration

letter x type integer
letter y type integer
var list

See Figure 4.10

Figure 4.8: Top-Level Derivation Tree of Sample Program

To ensure that a name is not contained in a declaration sequence, we check
one declaration at a time from right to left.

(h24) where NAME not in DECLSEQ DECL :
where NAME not in DECLSEQ,
where NAME not in DECL.

123

The type information in a declaration sequence is not needed to check for
name uniqueness, so the hyper-rule simply checks that two names are not
the same.

(h25) where NAME1 not in NAME2 type TYPE :
where NAME1 is not NAME2.

Names are separated into a sequence of characters, which is possibly empty,
followed by a final character. We need to use the metanotions for NOTION
and NOTETY introduced in section 4.1.

(m14)NOTION :: ALPHA; NOTION ALPHA.

(m15)NOTETY :: NOTION; EMPTY .

The identifiers contain either alphabetic characters or digit characters. If
characters are of different kind, they are not equal. If characters are of the
same kind but they are not the same, then one character appears before the
other character in the appropriate character set. This test is applied to all
characters in the sequence until a mismatch is found.

(h26) where NOTETY1 NOTION1 ALPHANUM1 is not
NOTETY2 NOTION2 ALPHANUM2 :

where NOTETY1 is not NOTETY2;
where NOTION1 dif ferent kind NOTION2;
where ALPHANUM1 pr ecedes ALPHANUM2

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM2 pr ecedes ALPHANUM1

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM1 pr ecedes ALPHANUM2

in zero one two thr ee four five six seven eight nine;
where ALPHANUM2 pr ecedes ALPHANUM1

in zero one two thr ee four five six seven eight nine.

A letter is always different than a digit .

(h27) where letter dif ferent kind digit : EMPTY .

(h28) where digit dif ferent kind letter : EMPTY .

Finally, two hyper-rules check whether a character or a digit precedes an-
other.

(h29) where ALPHA1 pr ecedes ALPHA2
in NOTETY1 ALPHA1 NOTETY2 ALPHA2 NOTETY3 : EMPTY .

(h30) where NUM1 pr ecedes NUM2
in NOTETY1 NUM1 NOTETY2 NUM2 NOTETY3 : EMPTY .

Figure 4.9 shows the use of these where rules to check the uniqueness of the
identifiers in our sample program.

4.2 A TWO-LEVEL GRAMMAR FOR WREN

124 CHAPTER 4 TWO-LEVEL GRAMMARS

where
letter p type program
letter x type integer
letter y type integer
letter a type boolean
unique

where
letter p type program
letter x type integer
letter y type integer
unique

where letter a
not in
letter p type program
letter x type integer
letter y type integer

where letter a
not in
letter p type program
letter x type integer

where letter a
not in
letter y type boolean

where letter a
is not letter y

where letter a
precedes letter y in
abcdefghijklmnopqrstuvwxyz

EMPTY

where letter a
not in
letter p type program

where letter a
not in
letter x type integer

where letter a
is not letter p

where letter a
precedes letter p in
abcdefghijklmnopqrstuvwxyz

EMPTY

where letter a
is not letter x

where letter a
precedes letter x in
abcdefghijklmnopqrstuvwxyz

EMPTY

left as an
exercise

Figure 4.9: Checking Uniqueness of Declared Identifiers

Commands and Expressions

We complete the development of our two-level grammar for Wren by examin-
ing how declaration information is used to check for the proper use of vari-
ables that appear in commands. To reduce the number of hyper-rules, we
introduce metanotions for the arithmetic operators and comparison opera-
tors.

125

(m16)WEAKOP :: plus symbol; minus symbol.

(m17)STRONGOP :: multiply symbol; divide symbol.

(m18)RELATION ::
less or equal symbol; less symbol; not equal symbol;
greater symbol; gr eater or equal symbol; equal symbol.

Declaration information is passed to each individual command. Note that an
empty declaration sequence need not be allowed since every program must
be named, even if no variables are declared.

(h10) DECLSEQ command seq :
DECLSEQ command;
DECLSEQ command, semicolon symbol,

DECLSEQ command seq.

Commands use the declaration information in different ways:

• The skip command uses no declaration information.

• The write , while , and if commands pass the declaration information to
their constituent parts.

• The read command uses the declaration information to check that the
associated variable is of type integer.

Here is the hyper-rule that separates these cases:

(h11) DECLSEQ command :
TYPE NAME in DECLSEQ, assign symbol,

TYPE expr ession in DECLSEQ;
skip symbol;
read symbol, integer NAME in DECLSEQ;
write symbol, integer expr ession in DECLSEQ;

while symbol, boolean expr ession in DECLSEQ, do symbol,
DECLSEQ command seq, end while symbol;

if symbol, boolean expr ession in DECLSEQ, then symbol,
DECLSEQ command seq, end if symbol;

if symbol, boolean expr ession in DECLSEQ, then symbol,
DECLSEQ command seq, else symbol,
DECLSEQ command seq, end if symbol.

The read command illustrates hyper-rules of the form TYPE NAME in
DECLSEQ that perform two important functions: They produce the appro-
priate NAME symbol and they check that the NAME appears in the DECLSEQ
with the appropriate TYPE .

4.2 A TWO-LEVEL GRAMMAR FOR WREN

126 CHAPTER 4 TWO-LEVEL GRAMMARS

(h19) TYPE NAME in DECLSEQ :
NAME symbol, wher e NAME type TYPE found in DECLSEQ.

The DECLSEQ is checked one declaration at a time from left to right. The
EMPTY notion is produced if the appropriate declaration is found; other-
wise, the parse fails.

(h20) where NAME type TYPE found in
NAME type TYPE DECLSEQETY : EMPTY .

(h21) where NAME1 type TYPE1 found in NAME2 type TYPE2
DECLSEQETY : wher e NAME1 type TYPE1

found in DECLSEQETY .

The remainder of the two-level grammar, dealing with expressions and com-
parisons, is straightforward. The portion of the grammar dealing with Bool-
ean expressions has been left as an exercise.

(h12) integer expr ession in DECLSEQ :
term in DECLSEQ;
integer expr ession in DECLSEQ, WEAKOP , term in DECLSEQ.

(h13) term in DECLSEQ :
element in DECLSEQ;
term in DECLSEQ, STRONGOP , element in DECLSEQ.

(h14) element in DECLSEQ :
NUMERAL symbol;
integer NAME in DECLSEQ;
left par en symbol, integer expr ession in DECLSEQ,

 right par en symbol;
negation symbol, element in DECLSEQ.

(h15) boolean expr ession in DECLSEQ : left as an exercise.

(h16) boolean ter m in DECLSEQ : left as an exercise.

(h17) boolean element in DECLSEQ : left as an exercise.

(h18) comparison in DECLSEQ :
integer expr ession in DECLSEQ, RELA TION,

integer expr ession in DECLSEQ.

Figures 4.10 and 4.11 illustrate a partial derivation tree for the command
sequence in the sample program. The unfinished branches in the tree are left
as exercises.

127

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

semicolon
symbol

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

semicolon
symbol

read
symbol

Left as an
exercise

integer letter x in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter x
symbol

where letter x type
integer found in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where letter x type
integer found in
letter x type integer
letter y type integer
letter a type boolean

EMPTY

See
Figure 4.11

Figure 4.10: Partial Derivation Tree for a Command Sequence

4.2 A TWO-LEVEL GRAMMAR FOR WREN

128 CHAPTER 4 TWO-LEVEL GRAMMARS

integer expression
in
letter p type
program
letter x type
integer
letter y type
integer
letter a type
boolean

semicolon
symbol

boolean expression in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

boolean letter a in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

letter a
symbol

where letter a type
boolean found in
letter p type program
letter x type integer
letter y type integer
letter a type boolean

where letter a type
boolean found in
letter x type integer
letter y type integer
letter a type boolean

EMPTY

assign
symbol

where letter a type
boolean found in
letter y type integer
letter a type boolean

where letter a type
boolean found in
letter a type boolean

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

write
symbol

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command seq

letter p type program
letter x type integer
letter y type integer
letter a type boolean
command

Left as an
exercise

then
symbol

if
symbol

else
symbol

end if
symbol

Left as an
exercise

Left as an
exercise

Left as an
exercise

Figure 4.11: Partial Derivation Tree for a Command Sequence (continued)

129

 (m1) ALPHA :: a; b; c; d; e; f; g; h; i; j; k; l; m;
n; o; p; q; r; s; t; u; v; w; x; y; z.

 (m2) NUM :: zer o; one; two; thr ee; four; five; six; seven; eight; nine.

 (m3) ALPHANUM :: ALPHA; NUM.

 (m4) LETTER :: letter ALPHA.

 (m5) DIGIT :: digit NUM.

 (m6) LETTERDIGIT :: LETTER; DIGIT .

 (m7) NAME :: LETTER; NAME LETTERDIGIT .

 (m8) NUMERAL :: DIGIT ; NUMERAL DIGIT .

 (m9) DECL :: NAME type TYPE.

 (m10) TYPE :: integer; boolean; pr ogram.

 (m11) DECLSEQ :: DECL; DECLSEQ DECL.

 (m12) DECLSEQETY :: DECLSEQ; EMPTY .

 (m13) EMPTY :: .

 (m14) NOTION :: ALPHA; NOTION ALPHA.

 (m15) NOTETY :: NOTION; EMPTY .

 (m16) WEAKOP :: plus symbol; minus symbol.

 (m17) STRONGOP :: multiply symbol; divide symbol.

 (m18) RELATION :: less or equal symbol; less symbol; not equal symbol;
greater symbol; gr eater or equal symbol; equal symbol.

Figure 4.12: Metarules for Wren

 (h1) program : program symbol, NAME symbol, is symbol,
block with NAME type pr ogram DECLSEQETY ,
where NAME type pr ogram DECLSEQETY unique.

 (h2) block with NAME type pr ogram DECLSEQETY :
DECLSEQETY declaration seq, begin symbol,
NAME type pr ogram DECLSEQETY command seq, end symbol.

 (h3) DECLSEQ DECL declaration seq :
DECLSEQ declaration seq, DECL declaration.

 (h4) DECLSEQ declaration seq :
DECLSEQ declaration.

 (h5) EMPTY declaration seq : EMPTY .

Figure 4.13: Hyper-rules for Wren (Part 1)

4.2 A TWO-LEVEL GRAMMAR FOR WREN

130 CHAPTER 4 TWO-LEVEL GRAMMARS

 (h6) NAME type TYPE declaration : var symbol, NAME symbol,
colon symbol, TYPE symbol, semicolon symbol.

 (h7) DECLSEQ NAME type TYPE declaration :
DECLSEQ NAME type TYPE var list,
NAME symbol, colon symbol, TYPE symbol, semicolon symbol.

 (h8) DECLSEQ NAME1 type TYPE NAME2 type TYPE var list :
DECLSEQ NAME1 type TYPE var list,
NAME1 symbol, comma symbol.

 (h9) NAME1 type TYPE NAME2 type TYPE var list :
var symbol, NAME1 symbol, comma symbol.

 (h10) DECLSEQ command seq :
DECLSEQ command;
DECLSEQ command, semicolon symbol,
DECLSEQ command seq.

 (h11) DECLSEQ command :
TYPE NAME in DECLSEQ, assign symbol,

TYPE expr ession in DECLSEQ;
skip symbol;
read symbol, integer NAME in DECLSEQ;
write symbol, integer expr ession in DECLSEQ;
while symbol, boolean expr ession in DECLSEQ, do symbol,

DECLSEQ command seq, end while symbol;
if symbol, boolean expr ession in DECLSEQ, then symbol,

DECLSEQ command seq, end if symbol;
if symbol, boolean expr ession in DECLSEQ, then symbol,

DECLSEQ command seq, else symbol,
DECLSEQ command seq, end if symbol.

 (h12) integer expr ession in DECLSEQ :
term in DECLSEQ;
integer expr ession in DECLSEQ, WEAKOP , term in DECLSEQ.

 (h13) term in DECLSEQ :
element in DECLSEQ;
term in DECLSEQ, STRONGOP , element in DECLSEQ.

 (h14) element in DECLSEQ :
NUMERAL symbol;
integer NAME in DECLSEQ;
left par en symbol, integer expr ession in DECLSEQ,

right par en symbol;
negation symbol, element in DECLSEQ.

 (h15) boolean expr ession in DECLSEQ : left as exercise

 (h16) boolean ter m in DECLSEQ : left as exercise

Figure 4.13: Hyper-rules for Wren (Part 2)

131

 (h17) boolean element in DECLSEQ : left as exercise

 (h18) comparison in DECLSEQ :
integer expr ession in DECLSEQ, RELA TION,
integer expr ession in DECLSEQ.

 (h19) TYPE NAME in DECLSEQ :
NAME symbol, wher e NAME type TYPE found in DECLSEQ

 (h20) where NAME type TYPE found in NAME type TYPE DECLSEQETY :
EMPTY.

 (h21) where NAME1 type TYPE1 found in NAME2 type TYPE2
DECLSEQETY : wher e NAME1 type TYPE1 found in

DECLSEQETY .

 (h22) where DECL unique : EMPTY .

 (h23) where DECLSEQ NAME type TYPE unique :
where DECLSEQ unique,
where NAME not in DECLSEQ.

 (h24) where NAME not in DECLSEQ DECL :
where NAME not in DECLSEQ,
where NAME not in DECL.

 (h25) where NAME1 not in NAME2 type TYPE :
where NAME1 is not NAME2.

 (h26) where NOTETY1 NOTION1 ALPHANUM1 is not
NOTETY2 NOTION2 ALPHANUM2 :

where NOTETY1 is not NOTETY2;
where NOTION1 dif ferent kind NOTION2;
where ALPHANUM1 pr ecedes ALPHANUM2

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM2 pr ecedes ALPHANUM1

in abcdefghijklmnopqrstuvwxyz;
where ALPHANUM1 pr ecedes ALPHANUM2

in zero one two thr ee four five six seven eight nine;
where ALPHANUM2 pr ecedes ALPHANUM1

in zero one two thr ee four five six seven eight nine.

 (h27) where letter dif ferent kind digit : EMPTY .

 (h28) where digit dif ferent kind letter : EMPTY .

 (h29) where ALPHA1 pr ecedes ALPHA2
in NOTETY1 ALPHA1 NOTETY2 ALPHA2 NOTETY3 : EMPTY .

 (h30) where NUM1 pr ecedes NUM2
in NOTETY1 NUM1 NOTETY2 NUM2 NOTETY3 : EMPTY .

Figure 4.13: Hyper-rules for Wren (Part 3)

4.2 A TWO-LEVEL GRAMMAR FOR WREN

132 CHAPTER 4 TWO-LEVEL GRAMMARS

Exercises

1. Show the derivation tree for the following declaration sequence:
var w, x : integer;
var y, z : integer;

2. Complete the remaining branches in Figure 4.9.

3. Complete the following hyper-rules:
(h15) boolean expr ession in DECLSEQ :
(h16) boolean ter m in DECLSEQ :
(h17) boolean element in DECLSEQ :

4. Complete the remaining branches in Figures 4.10 and 4.11.

5. Draw the complete derivation tree for the following program:
program p is

var n, f : integer;
begin

read n; f := 1;
while n > 0 do f := f * n; n := n – 1 end while;
write f

end

6. Suppose the declaration in exercise 5 is changed to
var n : integer;
var f : boolean;

Show all locations in the command sequence where the parse fails, as-
suming the declaration sequence letter n type integer letter f type
boolean .

7. Show all changes necessary to metarules and hyper-rules to allow for
multiple character identifiers. Some rules already allow for multiple char-
acters whereas others, such as those with NAME symbol , will have to
be modified. Additional rules may be needed.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

The consistent substitution of protonotions for a metanotion within a hyper-
rule may seem similar to the binding of identifiers in a Prolog clause. In fact,
a close relationship exists between two-level grammars and logic program-
ming. Rather than present a complete implementation of the two-level gram-

133

mar for Wren in this section, we present a brief example of implementing a
two-level grammar in Prolog and then discuss some of the relationships be-
tween two-level grammars and logic programming.

Implementing Two-Level Grammars in Prolog

We implement the Hollerith string literal grammar from Section 4.1 to give
the flavor a two-level grammar in Prolog. The top-level predicate, named
hollerith, is called with three arguments:

hollerith(<list of digit symbols>, hollerith, <list of lowercase letters>).

The program should print either “valid Hollerith string” or “invalid Hollerith
string”, as appropriate for the data. We assume the list of digits and list of
letters are syntactically correct. A sample session appears below.

| ?- hollerith([digitSixSymbol], hollerith, [a,b,c,d,e,f]).
valid Hollerith string
yes

| ?- hollerith([digitSixSymbol], hollerith, [a,b,c,d,e]).
invalid Hollerith string
yes

| ?- hollerith([digitTwoSymbol,digitFiveSymbol], hollerith,
 [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y]).
valid Hollerith string
yes

| ?- hollerith([digitTwoSymbol,digitFiveSymbol], hollerith,
 [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]).
invalid Hollerith string
yes

This interface is not very elegant, but it will serve adequately to illustrate the
intended performance. An exercise suggests techniques for improving the
interface. Observe that we have allowed for numerals of any size, so a where
clause must be used in the grammar. The two-level grammar for Hollerith
string literals is summarized in Figure 4.14.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

134 CHAPTER 4 TWO-LEVEL GRAMMARS

hollerith : T ALLY digit, hollerith symbol, T ALLY LETTERSEQ.

TALLY i LETTER LETTERSEQ : i LETTER, T ALLY LETTERSEQ.
i LETTER: LETTER symbol.

i digit : digit one symbol.
ii digit : digit two symbol.
iii digit : digit thr ee symbol.
iiii digit : digit four symbol.
iiiii digit : digit five symbol.
iiiiii digit : digit six symbol.
iiiiiii digit : digit seven symbol.
iiiiiiii digit : digit eight symbol.
iiiiiiiii digit : digit nine symbol.

TALLETY constant :
TALLETY digit;
TALLETY2 constant, T ALLETY3 digit, wher e TALLETY is

TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2
TALLETY2 T ALLETY2 T ALLETY2 T ALLETY2 T ALLETY2
TALLETY3.

where TALLETY is T ALLETY : EMPTY .

EMPTY digit : digit zer o symbol.
TALLETY :: T ALLY; EMPTY.

APLHA :: a; b; c; d; e; f; g; h; i; j; k; l; m; n; o; p; q; r; s; t; u; v; w; x; y; z.
LETTER :: letter ALPHA.
LETTERSEQ :: LETTER; LETTERSEQ LETTER.

Figure 4.14: Two-level Grammar for Hollerith String Literals

The clauses for single digits are simple.

digit([digitZeroSymbol], []).
digit([digitOneSymbol], [i]).
digit([digitTwoSymbol], [i,i]).
digit([digitThreeSymbol], [i,i,i]).
digit([digitFourSymbol], [i,i,i,i]).
digit([digitFiveSymbol], [i,i,i,i,i]).
digit([digitSixSymbol], [i,i,i,i,i,i]).
digit([digitSevenSymbol], [i,i,i,i,i,i,i]).
digit([digitEightSymbol], [i,i,i,i,i,i,i,i]).
digit([digitNineSymbol], [i,i,i,i,i,i,i,i,i]).

135

A constant is a single digit or a sequence of digits. We use the technique of
concatenating ten copies of the tally for the leading digits to the tally for the
units digit to produce a final tally. Supporting clauses are used to split the
digits into the leading digits and units digit, to concatenate the ten copies of
the leading digit’s tally to the units digit’s tally, and to perform the concat-
enation itself.

constant(DIGIT, TALLETY) :- digit(TALLETY, DIGIT).

constant(DIGITS, TALLETY) :-
splitDigits(DIGITS, LeadingDIGITS, UnitDIGIT),
constant(LeadingDIGITS, TALLETY2),
digit(UnitDIGIT, TALLETY3),
concatTenPlusDigit(TALLETY2, TALLETY3, TALLETY).

splitDigits([D], [], [D]).

splitDigits([Head|Tail],[Head|Result],Unit) :- splitDigits(Tail, Result, Unit).

concatTenPlusDigit(TALLETY2, TALLETY3, TALLETY) :-
concat(TALLETY2, TALLETY2, TwoTimes),
concat(TwoTimes, TwoTimes, FourTimes),
concat(FourTimes, FourTimes, EightTimes),
concat(EightTimes, TwoTimes, TenTimes),
concat(TenTimes, TALLETY3, TALLETY).

concat([],L,L).

concat([Head|Tail],L,[Head|Result]) :- concat(Tail,L,Result).

The tally is generated from the number part, and it is used to check the
length of the letter sequence. Each time a tally symbol is removed, a letter is
removed. One base case is a single tally and a single letter, resulting in a
valid hollerith string. If either the tally or the letter sequence becomes empty,
the other base cases, the hollerith string is invalid. Each letter is checked to
ensure that it is a lowercase character.

hollerith(Number,hollerith,Letters) :- constant(Number, TALLETY),
letterSeq(TALLETY, Letters).

letterSeq([i],[Letter]) :- alpha(Letter),
write(‘valid Hollerith string’), nl.

letterSeq([i|TALLETY],[Letter|Letters]) :- alpha(Letter),
letterSeq(TALLETY, Letters).

letterSeq([],Letters) :- write(‘invalid Hollerith string’), nl.

letterSeq(Number,[]) :- write(‘invalid Hollerith string’), nl.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

136 CHAPTER 4 TWO-LEVEL GRAMMARS

alpha(a). alpha(b). alpha(c). alpha(d). alpha(e). alpha(f).
alpha(g). alpha(h). alpha(i). alpha(j). alpha(k). alpha(l).
alpha(m). alpha(n). alpha(o). alpha(p). alpha(q). alpha(r).
alpha(s). alpha(t). alpha(u). alpha(v). alpha(w). alpha(x).
alpha(y). alpha(z).

Two-level Grammars and Logic Programming

Hyper-rules in two-level grammars are similar to clauses in Prolog. In two-
level grammars we have consistent substitution of the same value for a par-
ticular metanotion in a rule. In Prolog we have the consistent binding of the
same value to a particular variable in a clause. Some of the syntax and pat-
tern matching in two-level grammars are also similar to Prolog. Several re-
searchers have investigated the relationships between two-level grammars
(also known as W-grammars) and logic programming. We briefly summarize
one of those approaches, originally presented by S. J. Turner in a paper
entitled “W-Grammars for Logic Programming” [Turner84].

A programming language seldom completely represents a programming para-
digm. For example, Common Lisp is not a purely functional language, and
Prolog is not a purely logical language. Turner believes that two-level gram-
mars as an implementation mechanism for logic programming have many
advantages over Prolog, the most popular logic programming language. He
implements a logic programming system based on a two-level (or W-) gram-
mar in a system called WLOG. He claims this system overcomes some of the
disadvantages of Prolog (see [Turner84], page 352).

• Understanding Prolog requires a detailed understanding of the backtrack-
ing mechanism built into the implementation of Prolog.

• The meaning of a Prolog program is highly dependent on the order of the
clauses in the database, making the formal analysis of the semantics of
Prolog very difficult.

• Many built-in predicates in Prolog have side effects that make parallel
implementations difficult.

• Minor programming errors, such as misspelling, are difficult to find since
the entire program fails with no indication of where the error occurred.

Consider the following example taken from Turner’s paper:

MAN :: geor ge; john; paul.

WOMAN :: jane; mary; sue.

137

PERSON :: MAN; WOMAN.

THING :: flowers; food; football; food; wine.

LEGAL :: PERSON likes THING; PERSON likes PERSON.

A fact is usually stated as a hyper-rule with an empty right side, such as:

mary likes football : .

john likes wine : .

paul likes mary : .

jane likes sue : .

paul likes food : .

george likes football : .

We can make a query, such as finding out what paul likes:

paul likes THING?

which succeeds with THING matching mary and food. We can have com-
pound queries, such as:

PERSON1 likes PERSON, PERSON likes THING?

which succeeds with paul likes mary and mary likes football. Hyper-rules
with right-hand sides are used to express rules of logic. Consider the logical
rule: Two people who like the same object like each other, which is expressed
as:

PERSON1 likes PERSON2 : PERSON1 likes OBJECT ,

PERSON2 likes OBJECT .

From the database given above, we can conclude that mary likes john.

Turner’s paper gives a formal definition of WLOG and discusses an imple-
mentation based on non-deterministic finite automata. This implementation
uses a breadth-first search, which means that the order of the database is
not critical and that certain types of parallelism can be realized. The system
also handles not in a more understandable manner than Prolog. With the
database given above, if we pose the query

paul likes WOMAN?

then only mary is found in the database. In WLOG, if we make the query

not [paul likes WOMAN]?

then the values of sue and jane satisfy the query. This should be compared
with Prolog where this query fails. In WLOG, not[not[X]]? is satisfied by the
same values as X?, but this is not true in Prolog, which is based on negation
as failure. This completes our brief look at the relationship between two-level
grammars and pure logic programming.

4.3 TWO-LEVEL GRAMMARS AND PROLOG

138 CHAPTER 4 TWO-LEVEL GRAMMARS

Exercises

1. Build a “front end” for the Hollerith string checker to prompt the user for
string input and then print the appropriate evaluation message. Use the
built-in Prolog clause name for converting a string to a sequence of ascii
codes.

2. Implement a two-level grammar that parses strings of the form anbncn.
The program should either print that the string obeys the grammar or
that it does not. Assume that the strings are syntactically correct, in the
sense that they are a sequence of a’s followed by a sequence of b’s,
followed by a sequence of c’s.

3. Implement a two-level grammar to recognize valid Pascal identifiers as-
suming that an identifier starts with a letter followed by a sequence of
alphanumeric characters and that the length of the identifier is eight or
fewer characters (see exercise 4 in section 4.1).

4.4 FURTHER READING

Two-level grammars are also called W-grammars after their developer, Aad
van Wijngaarden, who described them in an early paper [vanW ijngaarden66].
The formal definition of Algol68 using two-level grammars appears in [van
Wijngaarden76]. [Kupka80] has applied two-level grammars to model infor-
mation processing.

Several references include two-level grammars as part of an overview of for-
mal techniques. Most notable are [Pagan81], [Marcotty76], and [Cleaveland77].
Pagan develops an interpreter for a language with parameterized procedures
using a two-level grammar.

Some of the theoretical issues relating to two-level grammars are discussed
in [Deussen75] and [Slintzoff67]. The relationship between two-level gram-
mars and programming language design is explored in [van Wijngaarden82],
[Maluszynski84], and [Turner84].

The most active group of researchers in the United States working on two-
level grammars is at the University of Alabama, Birmingham. Barrett Bryant
and Balanjaninath Edupuganty are coauthors of several papers dealing with
applications of two-level grammars to a wide variety of problem domains
[Bryant86a], [Bryant86b], [Bryant88], [Edupuganty85], [Edupuganty88],
[Edupuganty89], and [Sundararaghavan87].

