
Copyright 2005 by Ken Slonneger Enumerated Types 1

Enumerated Types

The atomic values in a programming language include numbers,
boolean values, and characters.
However, to solve many problems we need to have atomic
values that represent other concepts such as the days of the
week, the colors of the spectrum, the kinds of employees, and
so on.
These types of values can be represented by normal identifiers
(Monday, Tuesday, red, blue, manager, and so on) and are
known as enumerated values.

Prior to version 1.5, Java expected a programmer to use integer
constants for enumerated values.

Example: Suit Values in a Card Class
static final int CLUBS = 1;
static final int DIAMONDS = 2;
static final int HEARTS = 3;
static final int SPADES = 4;

Now the program can use the identifiers CLUBS, DIAMONDS,
HEARTS, and SPADES to represent the four suit values inside of
the Card class.
Outside of the Card class, Card.CLUBS, Card.DIAMONDS,
Card.HEARTS, and Card.SPADES must be used.

2 Enumerated Types Copyright 2005 by Ken Slonneger

Java API
Enumerated values as integer constants are found thoughout
the Java library of classes and interfaces.

Identifier Value
Font.PLAIN 0
Font.BOLD 1
Font.ITALIC 2

Calendar.SUNDAY 1
Calendar.MONDAY 2
Calendar.TUESDAY 3

Calendar.WEDNESDAY 4
Calendar.THURSDAY 5

Calendar.FRIDAY 6
Calendar.SATURDAY 7
Calendar.JANUARY 0

Calendar.FEBRUARY 1
Calendar.MARCH 2
Calendar.APRIL 3
Calendar.MAY 4

: :
Calendar.NOVEMBER 10
Calendar.DECEMBER 11

WindowConstants.DO_NOTHING_ON_CLOSE 0
WindowConstants.HIDE_ON_CLOSE 1

WindowConstants.DISPOSE_ON_CLOSE 2
WindowConstants.EXIT_ON_CLOSE 3

WindowConstants is an interface containing the fours constants;
this interface is implemented by JFrame.

Copyright 2005 by Ken Slonneger Enumerated Types 3

Problems with Integers as Enumerated Values
Using integer constants for enumerated values is an idea with
many flaws.
• The compiler and the run time system think the identifiers are

integers, not special values, and the type checking treats them
the same as any other integers.

• Operations that use these enumerated values are not type
safe.
The following operations are legal at compile time and at run
time even though they make no sense at all.

int m = Calendar.MONDAY * Font.BOLD;
int n = WindowConstants.EXIT_ON_CLOSE / m;
double d = Math.sqrt(Calendar.DECEMBER + 100);
Card Constructor:

Card(int r, int s)
{ rank = r; suit = s; }
Card c1 = new Card(7, Card.SPADES); // okay
Card c2 = new Card(3, -77); // nonsensical

int s1 = Card.CLUBS;
int s2 = Card.HEARTS;
System.out.println(s1 * s2 - Font.ITALIC + Calendar.MAY);

Sometimes, however, adding enumerated values makes
sense.

Font f1 = new Font("Serif", Font.BOLD+Font.Italic, 12);
But what about this one?

Font f2 = new Font("Serif", Font.PLAIN+Font.BOLD, 12);

4 Enumerated Types Copyright 2005 by Ken Slonneger

Many of these operations are contrary to the intended
meaning of the enumerated values, which define a new type in
a sense, but neither the compiler nor the run time system will
detect any type errors with these erroneous operations.

• We need to write code to display enumerated values since
they will display as their integer values if we print them directly.

System.out.println(Card.SPADES) => 4
We need a conversion (toString) function.

static String mkString(int s)
{

switch (s)
{

case CLUBS : return "Clubs";
case DIAMONDS : return "Diamonds";
case HEARTS : return "Hearts";
case SPADES : return "Spades";
default : return "Oops";

}
}
System.out.println(mkString(Card.SPADES)) => Spades

• Defining enumerated values as integer constants creates
"brittle" code in the sense that changes in the set of values
defined or even the class in which they are defined will require
the code that uses the values to be recompiled.

All in all, implementing enumerated value with integer constants is
a bad idea, even though it is found in other languages such as C
and C++.

Copyright 2005 by Ken Slonneger Enumerated Types 5

Answer: Java 1.5 Enums
Java has several kinds of types that can be used to declare
variables and method signatures.

Eight primitive types
Array types
Class types
Interface types

Java 1.5 has added a new keyword enum that can be used to
define a finite set of enumerated values as a new type whose
values are legal Java identifiers.

Example: Suit
enum Suit
{

Clubs, Diamonds, Hearts, Spades;
}

Now Suit is a valid type in Java, and its values are the identifiers
Clubs, Diamonds, Hearts, and Spades.
Inside of the Suit definition, these identifiers can be referred to
directly, but from outside of the definition we need to use the
qualified identifiers Suit.Clubs, Suit.Diamonds, Suit.Hearts, and
Suit.Spades.

Variables can be declared of type Suit, and these variables can
only take one of the four values defined for Suit.

Suit s = Clubs;
s = Spades;
if (s == Diamonds) ...

6 Enumerated Types Copyright 2005 by Ken Slonneger

Observe that an enum definition is similar in structure to a class
or interface definition.
Minimum Code

1. Keyword enum.
2. Name of the new type.
3. List of possible values, separated by commas, terminated

by a semicolon.

Properties and Features of enums
• enum values are type safe—they can be used only as

designed.
• Variables and values of an enum type are checked by the

compiler (static type checking).
• enum values are not integers, even though they might be

implemented as integers. Actually, they are implemented as
references to constant objects.

• enum values are automatically public, static, and final.
• enum values can be compared using == or using equals,

and the results will be the same.
• enum definitions implicitly extend the class java.lang.Enum

and implement java.lang.Comparable.
• The instance method toString is supplied automatically,

inherited from Enum.
Suit.Spades.toString() => "Spades"

• The class method valueOf is also supplied by Enum.
Suit.valueOf("Hearts") => Suit.Hearts

• The class method Suit.values with no parameters returns
an array containing the values of this enum type in the order
they were defined.

Copyright 2005 by Ken Slonneger Enumerated Types 7

Card and CardDeck
To illustrate the use of enumerated values, we define these two
classes with the integer values for the suit and rank of a card
replace by enum types.

First we define the two enum types used to specify the Card
objects.

File: Suit.java
enum Suit
{

Clubs, Diamonds, Hearts, Spades;

}

File: Rank.java
enum Rank // note the order of the values
{

Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack,
Queen, King, Ace;

}

File: Card.java
class Card implements Comparable
{

Card(Rank r, Suit s)
{

Rank = r;
suit = s;

}

8 Enumerated Types Copyright 2005 by Ken Slonneger

Rank get Rank()
{

return rank;
}
Suit getSuit()
{

return suit;
}
public int compareTo(Object ob)
{

Card other = (Card)ob;
Rank rank = getRank();
Rank otherRank = other.getRank();
return rank.compareTo(otherRank);

}
public String toString()
{

String s = rank + " of " + suit;
return s + " ".substring(0, 17 - s.length());

}
private Rank rank;
private Suit suit;

}

Notes on Card
• Two Card objects are compared using the compareTo method

defined on the Rank values, which are ordered according to
the order of their declaration. The Rank type has Ace as the
highest value.

• The toString method employs the toString methods for Rank
and Suit to produce a string of the form "Five of Clubs".

Copyright 2005 by Ken Slonneger Enumerated Types 9

File: CardDeck.java
In this class we show only those methods that have changed.
Note that the fill method uses the new version of the for com-
mand to iterate through the Rank values and the Suit values.

class CardDeck
{

CardDeck()
{

deck = new Card [52];
fill();

}
private void fill() // only method changed
{

int index = 0;
for (Rank r : Rank.values())

for (Suit s : Suit.values())
{

deck[index] = new Card(r, s);
index++;

}
numCards = 52;

}

:
:
private Card [] deck;
private int numCards;

}

10 Enumerated Types Copyright 2005 by Ken Slonneger

Game of War
To test the new versions of Card and CardDeck, we take a look
at the classes in the Game of War.
The only change necessary is in the play method of the Game
class.
File: Game.java

class Game
{

void play()
{

CardDeck cd = new CardDeck();
cd.shuffle();
 : :

loop: for (int t=1; t<=100; t++)
{

: :
else // War
{ down.clear();

down.addCard(c1); down.addCard(c2);
boolean done = false;
do
{

int num = c1.getRank(); // error here
: :

}
while (!done);

}
System.out.println(p1.numCards() + " to "

+ p2.numCards());
}

}
:
private Player p1, p2;

}

Copyright 2005 by Ken Slonneger Enumerated Types 11

Now the getRank method in Card returns a Rank object instead of
an int value.

Corrections
Change the incorrect line in the method play from

int num = c1.getRank();
to

int num = c1.getNum();

and add an instance method to Card.
int getNum()
{

switch (value)
{

case Two : return 2;
case Three : return 3;
case Four : return 4;
case Five : return 5;
case Six : return 6;
case Seven : return 7;
case Eight : return 8;
case Nine : return 9;
case Ten : return 10;
case Jack : return 11;
case Queen : return 12;
case King : return 13;
case Ace : return 1;

}
return 0; // should never happen

}

The behavior of this version of the War game will be identical to
the first version, but now the compiler will type-check the use of
the Suit and Rank values, so that many foolish errors will be
caught early.

12 Enumerated Types Copyright 2005 by Ken Slonneger

Another Version of War
The definition of an enum type allows a number of other features
that make it much like a class definition.

Instance variables
Constructors
Method definitions

We use these features to associate an integer value with each of
the enum values in the definition of Rank.

enum Rank
{

Two(2), Three(3), Four(4), Five(5), Six(6),
Seven(7), Eight(8), Nine(9), Ten(10), Jack(11),
Queen(12), King(13), Ace(1);

private int num; // instance variable

Rank(int n) // constructor
{

num = n;
}

int getNum() // instance method
{

return num;
}

}

Copyright 2005 by Ken Slonneger Enumerated Types 13

Now each of the values in the enumerated type Rank carries
along a number that can be produced by calling the instance
method getNum.

Rank.Jack.getNum() => 11
Rank.Ace.getNum() => 1

No changes need to be made in the Card and CardDeck classes.
But the play method in Game needs one line altered.

Change the incorrect line in the original play method from
int num = c1.getRank();

to
int num = c1.getRank().getNum();

In addition, we may remove the getNum method from the Card
class because it is no longer needed.

Again, the behavior of the Game of War will be the same as with
the previous versions.

Overloading
Java enum types allow the overloading of the values in the
types.

enum Weapons
{

Knives, Clubs, Guns;
}

14 Enumerated Types Copyright 2005 by Ken Slonneger

Static Imports
The import statement in Java programs is used to make classes
and interfaces directly accessible (visible) without writing their
fully qualified names, such as ArrayList instead of
java.util.ArrayList.

Java 1.5 has added another kind of import statement, called a
static import, that can be used to make class variables and
class methods directly accessible.

Example
To import the enum definitions, we need to put them in a
package (and a subdirectory), say enums.

package enums;
public enum Suit { Clubs, Diamonds, Hearts, Spades; }

package enums;
public enum Weapons { Knives, Clubs, Guns; }

Test Program
import static enums.Suit.*
import static enums.Weapons.*
import static java.lang.System.out;
import static java.lang.Math.*;
public class StImport
{

public static void main(String [] args)
{

out.println("abs(-45.6) = " + abs(-45.6));
out.println("Spades = " + Spades);
out.println("Knives = " + Knives);
out.println("Clubs = " + enums.Suit.Clubs);

}
}

