
UNIVERSITY OF CALIFORNIA

Department of Electrical Engineering

and Computer Sciences

Computer Science Division

CS61B P. N. Hil�nger

Spring 1995

Simple Use of GDB

A debugger is a program that runs other programs, allowing its user to exercise some

degree of control over these programs, and to examine them when things go amiss. In this

course, we will be using GDB, the GNU debugger1. GDB is dauntingly chock-full of useful

features, but for our purposes, a small set of its features will su�ce. This document describes

them. Relatively complete documentation of gdb is available on-line in Emacs (use C-h i

and select the \GDB" menu option). There is also a paper reference manual available at

the ASUC bookstore, The GDB Reference Manual by the Free Software Foundation, which

contains the same information as is on-line.

Basic functions of a debugger

When you are executing a program containing errors that manifest themselves during execu-

tion, there are several things you might want to do or know.

� What statement or expression was the program executing at the time of a fatal error?

� If a fatal error occurs while executing a function, what line of the program contains the

call to that function?

� What are the values of program variables (including parameters) at a particular point

during execution of the program?

� What is the result of evaluating a particular expression at some point in the program?

� What is the sequence of statements actually executed in a program?

1The recursive acronym GNU means \GNU's Not Unix" and refers to a larger project to provide free

software tools.

27

28 P. N. Hil�nger

These functions require that the user of a debugger be able to examine program data, to

obtain a traceback|a list of function calls that are currently executing sorted by who called

whom|, to set breakpoints where execution of the program is suspended to allow its data to

be examined, and to step through the statements of a program to see what actually happens.

GDB provides all these functions. It is a symbolic or source-level debugger, creating the

�ction that you are executing the C++ statements in your source program rather than the

machine code they have actually been translated into.

Starting GDB

In this course, we use a system that compiles (translates) C++ programs into executable

�les containing machine code. This process generally loses information about the original

C++ statements that were translated. A single C++ statement usually translates to several

machine statements, and most local variable names are simply eliminated. Information about

actual variable names and about the original C++ statements in your source program is

unnecessary for simply executing your program. Therefore, for a source-level debugger to

work properly, the compiler must put back this super
uous information (super
uous, that is,

for execution). A standard way to do so is to add it into the information normally used by

the linker in the executable �le.

To indicate to our compiler (gcc) that you intend to debug your program, and therefore

need this extra information, add the -g switch during both compilation and linking. For

example, if your program comprises the two �les main.C and utils.C, you might compile

with

gcc -c -g -Wall main.C

gcc -c -g -Wall utils.C

gcc -g -o myprog main.o utils.o

or all in one step with

gcc -g -Wall -o myprog main.o utils.o

Both of the sample command sequences above produce an executable program myprog.

To run this under control of gdb, you can type

gdb myprog

in a shell. You will be rewarded with the GDB command prompt:

(gdb)

This provides a clumsy but e�ective text interface to the debugger. I don't actually recom-

mend that you do this; it's much better to use the Emacs facilities described below. However,

the text interface will do for describing the commands.

Simple Use of GDB 29

GDB commands

When GDB starts, your program is not actually running; it won't until you tell GDB to start

it. Whenever the program is stopped during execution, GDB is looking at a particular line

of the source program in a particular function call (or stack frame)|either the point in the

program where it actually stopped, or the line containing the call to the function in which it

stopped, or the line containing the call to that function, etc. In the following, I'll just use the

term current frame to refer to whatever point this is.

Whenever the command prompt appears, you have available the following commands.

help command

Provide a brief description of a GDB command or topic. Plain help lists the possible

topics.

run command-line-arguments

Starts your program as if you had typed

myprog {\it command-line-arguments}

to a Unix shell. GDB remembers the arguments you pass, and plain run thereafter will

restart your program from the top with those arguments.

where

Produce a backtrace|the chain of function calls that brought the program to its current

place. The commands bt and backtrace are synonyms.

up

Move the current frame that GDB is examining to the caller of that frame. Very often,

your program will blow up in a library function|one for which there is no source code

available, such as one of the I/O routines. You will need to do several ups to get to the

last point in your program that was actually executing. Emacs (see below) provides the

shorthand C-c< (Control-C followed by less-than).

down

Undoes the e�ect of up. Emacs provides the shorthand C-c>.

print E

prints the value of E in the current frame in the program, where E is a C++ expression

(usually just a variable). Each time you use this command, GDB numbers its response

for future reference. For example,

(gdb) print A[i]

$2 = -16

(gdb) print $2 + ML

$3 = -9

30 P. N. Hil�nger

telling us that the value of A[i] in the current frame is -16 and that when this value is

added to ML, it gives -9.

quit

Leave GDB.

The commands to this point give you enough to pinpoint where your program blows up, and

usually to �nd the o�ending bad pointer or array index that is the immediate cause of the

problem (of course, the actual error probably occurred much earlier in the program; that's

why debugging is not completely automatic.) Personally, I usually don't need more than this;

once I know where my program goes wrong, I often have enough clues to narrow down my

search for the error. You should at least establish the place of a catastrophic error before

seeking someone else's assistance.

The remaining commands allow you to actively stop a program during normal operation.

C-c (Control-C)

When a program is run from a Unix shell, C-c will permanently halt its execution

(usually). In GDB, however, the program is merely suspended while you poke around

at it. In Emacs, use C-c C-c.

break place

Establishes a breakpoint; the program will halt when it gets there. The easiest break-

points to set are at the beginnings of functions, as in

(gdb) break MungeData

Breakpoint 1 at 0x22a4: file main.C, line 16.

The command break main stops at the beginning of execution. You may also set

breakpoints at a particular lines in a source �le:

(gdb) break 19

Breakpoint 2 at 0x2290: file main.C, line 19.

(gdb) break utils.C:55

Breakpoint 3 at 0x3778: file utils.C, line 55.

When you run your program and it hits a breakpoint, you'll get a message and prompt

like this.

Breakpoint 1, MungeData (A=0x6110, N=7)

at main.c:16

(gdb)

In Emacs, you may also use C-c C-b to set a breakpoint at the current point in the

program (the line you have stepped to, for example) or you may move the point to the

line at which you wish to set a breakpoint, and type C-x SPC (Control-X followed by a

space).

Simple Use of GDB 31

delete N

Removes breakpoint number N . Leave o� N to remove all breakpoints. In Emacs,

C-c C-d deletes the breakpoint you just stopped at.

cont or continue

Continues regular execution of the program. In Emacs, you may use C-c C-r.

step

Executes the current line of the program and stops on the next statement to be executed.

In Emacs, you may use C-c C-s.

next

Like step, however if the current line of the program contains a function call (so that

step would stop at the beginning of that function), does not stop in that function. In

Emacs, you may use C-c C-n.

finish

Keeps doing nexts, without stopping, until reaching the end of the current function. In

Emacs, you may use C-c C-f.

GDB use in Emacs

While one can use gdb from a shell, nobody in his right mind would want to do so. Emacs

provides a much better interface that saves an enormous amount of typing, mouse-moving,

and general confusion. Executing the Emacs command M-x gdb starts up a new window

running gdb, and enables all the Emacs shorthands described in the command descriptions

above. Furthermore, Emacs intercepts output from gdb and interprets it for you. When you

stop at a breakpoint, Emacs will take the �le and line number reported by gdb, and display

the �le contents, with the point of the breakpoint (or error) marked. As you step through a

program, likewise, Emacs will follow your progress in the source �le. Finally, the command

M-x SPC will place a breakpoint at the current point in a �le you are visiting.

