Object-Oriented
Programming and UML

Lecture 3

Based on slides from Leigh Dodds (mostly verbatim)
Chapters 2 and 3 of MSD

Overview

* Principles of Object Oriented Programming
* What is OOP? Why is it important?
 Basic principles and advantages

* The Unified Modelling Language
 UML Class Diagrams

Object-Oriented Programming

* Understanding OOP is fundamental to writing good Java applications
* Improves design of your code
* Improves understanding of the Java APIs

* There are several concepts underlying OOP:
» Abstract Types (Classes)
* Encapsulation (or Information Hiding)
* Aggregation
* Inheritance
* Polymorphism

What is OOP?

* Modelling real-world objects in software

* Why design applications in this way?
* We naturally classify objects into different types.

* By attempting to do this with software aim to make it more maintainable,
understandable and easier to reuse

* In a conventional programming we typically:
* decompose it into a series of functions,
» define data structures that those functions act upon

* there is no relationship between the two other than the functions act on the
data

What is OOP?

* How is OOP different from conventional programming?

* Decompose the application into abstract data types by identifying some
useful entities/abstractions

* An abstract type is made up of a series of behaviours and the data that those
behaviours use.

e Similar to database modelling, only the types have both behaviour
and state (data)

Abstract Data Types

* Identifying abstract types is part of the modelling/design process
* The types that are useful to model may vary according to the individual application
* For example a payroll system might need to know about Departments, Employees, Managers,
Salaries, etc
* An E-Commerce application may need to know about Users, Shopping Carts, Products, etc

* Object-oriented languages provide a way to define abstract data types, and then
create objects from them
* |t’s a template (or ‘cookie cutter’) from which we can create new objects
* For example, a Car class might have attributes of speed, colour, and behaviours of accelerate, brake, etc

* An individual Car object will have the same behaviours but its own values assigned to the attributes
(e.g. 30mph, Red, etc)

"Conventional Programming" --
Functions or Procedures operating on independent data

"OO Programming" --
Abstract Types combine data and behaviour

Encapsulation

* The data (state) of an object is private
— it cannot be accessed directly.

* The state can only be changed
through its behaviour, otherwise
known as its public interface or
contract

* This is called encapsulation

"The Doughnut Diagram"
Showing that an object has
private state and public
behaviour. State can only be
changed by invoking some
behaviour

Private Data

Public Interface

Encapsulation

* Main benefit of encapsulation
* Internal state and processes can be changed independently of the public interface
* Limits the amount of large-scale changes required to a system

What is an OO program?

* What does an OO program consist of?

* Aseries of objects that use each others behaviours in order to carry out some desired
functionality

* When one object invokes some behaviour of another it sends it a message
* InJava terms it invokes a method of the other object
* A method is the implementation of a given behaviour.

* OO programs are intrinsically modular
* Objects are only related by their public behaviour (methods)
* Therefore objects can be swapped in and out as required (e.g. for a more efficient version)
* This is another advantage of OO systems

Aggregation

» Aggregation is the ability to create new classes out of existing classes
* Treating them as building blocks or components

* Aggregation allows reuse of existing code

|)I

* “Holy Grail” of software engineering

* Two forms of aggregation
* Whole-Part relationships

* Caris made of Engine, Chassis, Wheels
e Containment relationships

* A Shopping Cart contains several Products
* A List contains several Items

Inheritance

* Inheritance is the ability to define a new class in terms of an existing class

* The existing class is the parent, base or superclass
* The new class is the child, derived or subclass

* The child class inherits all of the attributes and behaviour of its parent class

* It can then add new attributes or behaviour
* Or even alter the implementation of existing behaviour

* |Inheritance is therefore another form of code reuse

Polymorphism

Means ‘many forms’
Difficult to describe, easier to show, so we’ll look at this one in a later lesson

In brief though, polymorphism allows two different classes to respond to the
same message in different ways

E.g. both a Plane and a Car could respond to a ‘turnLeft’ message,

* however the means of responding to that message (turning wheels, or banking wings) is very
different for each.

Allows objects to be treated as if they’re identical

Summary!

* In OO programming we
* Define classes
* Create objects from them
* Combine those objects together to create an application

* Benefits of OO programming
* Easier to understand (closer to how we view the world)
» Easier to maintain (localised changes)
* Modular (classes and objects)
* Good level of code reuse (aggregation and inheritance)

Overview

* Principles of Object Oriented Programming
* What is OOP?
* Why is it important?

* The Unified Modelling Language
 UML Class Diagrams

15

Unified Modelling Language

UML is a diagramming tool for describing and documenting object oriented
applications

Programming language independent

Used for modelling an application before its engineered
Twelve different diagrams in all, with many complex details

Generally though only two of these are used regularly

e Class diagrams
e Sequence diagrams

Unified Modelling Language

e Class Diagrams
* Describe classes and interfaces
* ..their properties
* ...their public interface
 ...and their relationships (e.g. inheritance, aggregation)

* Sequence Diagrams
* Describe how objects send messages to one another
» Useful for describing how a particular part of an application works

* We'll be covering just class diagrams
* Very useful for describing APIs and discussing OO applications

UML -- Classes

* Box with 3 sections

* The top contains the class name

* The middle lists the classes attributes
* The bottom lists the classes methods

* Canindicate parameters and return types to
methods, as well as their visibility

Mty Class

-someAtrbute: int

-some OtherAtribute: String

+ahkethod(): void
+otherizthod(): void

18

UML -- Assoclation

A line between two classes indicates a
relationship

Extra information can be added to describe
the relationship

Including
* |ts name
* The roles that the classes play

* The cardinality of the relationship (how
many objects are involved)

E.g. a Person worksFor a Company, which has
many employees

relationship name

Company

As role

works For

B's role

|

Employee

employer

employee

19

UML -- Comments

» Useful for adding text for the readers of your

diagram
* The symbol looks like a little post-it note,
with a dotted line joining it to the class or This s 2 comment

about the class

relationship that its describing SomeClass

Some Class

UML -- Aggregation

» Aggregation (a whole-part relationship) is
shown by a line with clear diamond.

* As aggregation is a form of relationship you
can also add the usual extra information

Whole Part

* |e.

* Name

* Roles
* Cardinality

UML -- Inheritance

 Inheritance is shown by a solid arrow from
the sub-class to the super-class

* The sub-class doesn’t list its super-class
attributes or methodes,

* unless its providing its own alternate version
(l.e. is extending the behaviour of the base

class)

SuperClass

+somehdethod(): void
+anothervizthod(): void

I

SubClass

+anothervizthod(): void

+additionalhiethod(): void

22

UML -- Interfaces

* Interfaces are a way to specify behaviour (a
public contract) without data or
implementation.

* |nterfaces are classed with an extra label
next to their name: <<Interface>>

» A dotted arrow from a class to an interface
explains that the class fulfills the contract
specified by that interface

<<Interface>>

Printable

+print(): void

&

&

Image

Document

+print(): void

+print(): void

23

Example #1

“ehicle

speed :int
colour :int

tumLeft() : void
tumRight() : void|

S\

Bicycle

ringBell() : void

A

Motor'ehicle

size Of Engine : int

licencePlate : String

get Size Of Engine() : void
getlicensePlate() : void

/A

MotorBike

rev Engine() : void

AT

Car

number0fDoors : int

switchOnArCon() : void
get NumberOf Doors() : void

24

Example #2

Course

students : List

teacher : Lecturer

add Student(student: Student)
assignTeacheniteacher: Lecturer)
get NumberOf Students() : void
getTeachen() @ Lecturer

remowve Student(student: Student) : void

teache

taught By

Lecturer

taught Courses : List

getTaught Courses() : List

attends

0.x

Student

courses : List

get Courses() : List
T

v

<<Interface>>

Person

getName() : String
get Email Address() : String

Example #3

Company

name : String

employees : List

getName() : String

Employee

name : String

employeeNumber : int

get Employees() : List

hBnager

manages : List

addTeamhdembenemployee: Employes)
getTeamhdembers() : List

manager : Manager

get Employee Numbern() : int

gethianagen) : hanager

works For 1= salary :int
employer employee |getName() : String
getSalary() : int
ot
superviseg
supervisor

Contractor

lengthOf Contract : Date

getLength Of Contract() : Date

26

