
Object-Oriented 
Programming and UML

Lecture 3
Based on slides from Leigh Dodds (mostly verbatim)

Chapters 2 and 3 of MSD



Overview

• Principles of Object Oriented Programming
• What is OOP? Why is it important?
• Basic principles and advantages

• The Unified Modelling Language
• UML Class Diagrams

2



Object-Oriented Programming

• Understanding OOP is fundamental to writing good Java applications
• Improves design of your code
• Improves understanding of the Java APIs

• There are several concepts underlying OOP:
• Abstract Types (Classes)
• Encapsulation (or Information Hiding)
• Aggregation
• Inheritance
• Polymorphism

3



What is OOP?

• Modelling real-world objects in software
• Why design applications in this way?

• We naturally classify objects into different types.
• By attempting to do this with software aim to make it more maintainable, 

understandable and easier to reuse

• In a conventional programming we typically:
• decompose it into a series of functions, 
• define data structures that those functions act upon
• there is no relationship between the two other than the functions act on the 

data

4



What is OOP?

• How is OOP different from conventional programming?
• Decompose the application into abstract data types by identifying some 

useful entities/abstractions
• An abstract type is made up of a series of behaviours and the data that those 

behaviours use.

• Similar to database modelling, only the types have both behaviour 
and state (data)

5



Abstract Data Types

• Identifying abstract types is part of the modelling/design process
• The types that are useful to model may vary according to the individual application
• For example a payroll system might need to know about Departments, Employees, Managers, 

Salaries, etc
• An E-Commerce application may need to know about Users, Shopping Carts, Products, etc

• Object-oriented languages provide a way to define abstract data types, and then 
create objects from them
• It’s a template (or ‘cookie cutter’) from which we can create new objects
• For example, a Car class might have attributes of speed, colour, and behaviours of accelerate, brake, etc
• An individual Car object will have the same behaviours but its own values assigned to the attributes 

(e.g. 30mph, Red, etc)

6



"OO Programming" --
Abstract Types combine data and behaviour

-----
-----
-----
-----

-----
-----
-----
-----

-----
-----
-----
-----

"Conventional Programming" --
Functions or Procedures operating on independent data

7



Encapsulation

• The data (state) of an object is private 
– it cannot be accessed directly.

• The state can only be changed 
through its behaviour, otherwise 
known as its public interface or 
contract

• This is called encapsulation

Private Data

Public Interface

"The Doughnut Diagram"
Showing that an object has
private state and public
behaviour. State can only be
changed by invoking some
behaviour

8



Encapsulation

• Main benefit of encapsulation
• Internal state and processes can be changed independently of the public interface
• Limits the amount of large-scale changes required to a system

9



What is an OO program?

• What does an OO program consist of?
• A series of objects that use each others behaviours in order to carry out some desired 

functionality
• When one object invokes some behaviour of another it sends it a message
• In Java terms it invokes a method of the other object
• A method is the implementation of a given behaviour.

• OO programs are intrinsically modular
• Objects are only related by their public behaviour (methods)
• Therefore objects can be swapped in and out as required (e.g. for a more efficient version)
• This is another advantage of OO systems

10



Aggregation

• Aggregation is the ability to create new classes out of existing classes
• Treating them as building blocks or components

• Aggregation allows reuse of existing code
• “Holy Grail” of software engineering

• Two forms of aggregation
• Whole-Part relationships

• Car is made of Engine, Chassis, Wheels

• Containment relationships
• A Shopping Cart contains several Products
• A List contains several Items

11



Inheritance

• Inheritance is the ability to define a new class in terms of an existing class
• The existing class is the parent, base or superclass
• The new class is the child, derived or subclass

• The child class inherits all of the attributes and behaviour of its parent class
• It can then add new attributes or behaviour
• Or even alter the implementation of existing behaviour

• Inheritance is therefore another form of code reuse

12



Polymorphism

• Means ‘many forms’
• Difficult to describe, easier to show, so we’ll look at this one in a later lesson
• In brief though, polymorphism allows two different classes to respond to the 

same message in different ways
• E.g. both a Plane and a Car could respond to a ‘turnLeft’ message, 

• however the means of responding to that message (turning wheels, or banking wings) is very 
different for each.

• Allows objects to be treated as if they’re identical

13



Summary!

• In OO programming we
• Define classes
• Create objects from them
• Combine those objects together to create an application

• Benefits of OO programming
• Easier to understand (closer to how we view the world)
• Easier to maintain (localised changes)
• Modular (classes and objects)
• Good level of code reuse (aggregation and inheritance)

14



Overview

• Principles of Object Oriented Programming
• What is OOP?
• Why is it important?

• The Unified Modelling Language
• UML Class Diagrams

15



Unified Modelling Language

• UML is a diagramming tool for describing and documenting object oriented 
applications

• Programming language independent
• Used for modelling an application before its engineered
• Twelve different diagrams in all, with many complex details
• Generally though only two of these are used regularly

• Class diagrams
• Sequence diagrams

16



Unified Modelling Language

• Class Diagrams
• Describe classes and interfaces
• …their properties
• …their public interface
• …and their relationships (e.g. inheritance, aggregation)

• Sequence Diagrams
• Describe how objects send messages to one another
• Useful for describing how a particular part of an application works

• We’ll be covering just class diagrams
• Very useful for describing APIs and discussing OO applications

17



UML -- Classes

• Box with 3 sections

• The top contains the class name
• The middle lists the classes attributes

• The bottom lists the classes methods
• Can indicate parameters and return types to 

methods, as well as their visibility

18



UML -- Association

• A line between two classes indicates a 
relationship

• Extra information can be added to describe 
the relationship

• Including
• Its name
• The roles that the classes play
• The cardinality of the relationship (how 

many objects are involved)

• E.g. a Person worksFor a Company, which has 
many employees

19



UML -- Comments

• Useful for adding text for the readers of your 
diagram

• The symbol looks like a little post-it note, 
with a dotted line joining it to the class or 
relationship that its describing

20



UML -- Aggregation

• Aggregation (a whole-part relationship) is 
shown by a line with clear diamond.

• As aggregation is a form of relationship you 
can also add the usual extra information

• I.e.
• Name
• Roles
• Cardinality

21



UML -- Inheritance

• Inheritance is shown by a solid arrow from 
the sub-class to the super-class

• The sub-class doesn’t list its super-class 
attributes or methods, 

• unless its providing its own alternate version 
(I.e. is extending the behaviour of the base 
class)

22



UML -- Interfaces

• Interfaces are a way to specify behaviour (a 
public contract) without data or 
implementation.

• Interfaces are classed with an extra label 
next to their name: <<Interface>>

• A dotted arrow from a class to an interface 
explains that the class fulfills the contract 
specified by that interface

23



Example #1

24



Example #2

25



Example #3

26


