Unit Testing and JUnit

Lecture 6

Based on Slides from Pradyumansinh Jadeja, Darshan Institute of Engg.
& Tech.

Software Testing Strategy

System testing

Validation testing

Integration testing

Unit testing

g

Code

Requirements

System engineering

Software Testing Strategy Cont.

Unit Testing

A

It concentrate on each unit of the software
as implemented in source code.
It focuses on each component individual,

ensuring that it functions properly as a unit.

What is Unit Testing?

* A procedure to validate individual units of Source Code
* Example: A procedure, method or class

 Validating each individual piece reduces errors when integrating the
pieces together later

Unit Testing in the OO Context

* The concept of the unit testing changes in object-oriented software

* Encapsulation drives the definition of classes and objects

* Means, each class and each instance of a class (object) packages attributes
(data) and the operations (methods or services) that manipulate these data

e Rather than testing an individual module, the smallest testable unit is the
encapsulated class

e Unlike unit testing of conventional software,
* which focuses on the algorithmic detail of a module and the data that flows
across the module interface,
* class testing for OO software is driven by the operations encapsulated by the
class and the state behavior of the class

Unit testing
* unit testing: Looking for errors in a subsystem in isolation.

* Generally a "subsystem" means a particular class or object.
* The Java library JUnit helps us to easily perform unit testing.

* The basic idea:

* For a given class Foo, create another class FooTest to test it,
containing various "test case" methods to run.

* Each method looks for particular results and passes / fails.

* JUnit provides "assert" commands to help us write tests.

* The idea: Put assertion calls in your test methods to check things
you expect to be true. If they aren't, the test will fail.

Automated Unit Tests with JUnit JUm't

* Open source Java testing framework for automated testing
* enables running and re-running tests very easily and quickly

* Allows you to write unit tests in Java using a simple interface

* Widely used in industry
Features:
* Assertions for testing expected results
» Test features for sharing common test data
 Test suites for easily organizing and running tests
* Graphical and textual test runners

* Primarily for unit and integration testing, not system testing

Junit5 Methods — Java annotations

o @BeforeAll //Run before all tests in class

* public static void setUpClass() throws Exception {}

o @AfterAll //Run after all tests in class

* public static void tearDownClass() throws Exception {}

e @BeforeEach // Run before each test in class
* public void setUp() {}

o @AfterEach // Run after each test in class

* public void tearDown() {}

* @Test
* public void testMain() {}

Try skipping this fist step. Later versions of Eclipse will take

J U n |t a n d ECl | pse care of it in the next step, creating the new Junit Test Case

e To add JUnit to an Eclipse project, click:

* Project — Properties — Build Path — Libraries —>
Add Library... > JUnit — JUnit 5 — Finish

. Java - DoSomething.java - Eclipse SDK

File Edit Source Refactor Navigate Search Project Run Window Help

. . ErE B i 0- Q- BEFG- @S @ Dy
TO Create a te St Ca Se . i Package Explorer Hieraréﬁy.‘.JUnif-g =Ta} Q] DoSometiling.java RN |
. . . v R Bs Y
e tht-ClICk d flle and & {33 openmrs [openmrs/trunk] ublic class DoSome
ERE] Something TeTast .
choose New — Test Case | = & (deur HEEE | 23 oot
.) J@R ED;)? Go Into | 6 Package _
* or click File — New — o ey open m New window @ Css ;
. Open Type Hierarchy F4 & Interface
JUnit Test Case '@ Enum
E@Copy Ctri+C @ Annotation
BS Copy Qualfied Name &% Source Folder
. (& Paste Ctri+v (% Folder b
* Eclipse can create stubs X Deke vekte |(opi
[| [Ef Untitled Text File]
of method tests for you. i PO = v rest Cose |
Refactor Alt+Shift+T *| % Other... 9

A JUnit test class

import org.junit.*;
import static org.junit.Assert.*;

public class name {

@Test
public void name() { // a test case method

}
}

A method with @Test is flagged as a JUnit test case.
* All @Test methods run when JUnit runs your test class.

10

JUnit assertion methods

assertTrue (test)

fails if the boolean testis false

assertFalse (test)

fails if the boolean test is true

assertEquals (expected, actual)

fails if the values are not equal

assertSame (expected, actual)

fails if the values are not the same (by ==

assertNotSame (expected, actual)

fails if the values are the same (by ==

assertNull (value)

fails if the given value is not null

assertNotNull (value)

fails if the given value is null

fail()

causes current test to immediately fail

e Each method can also be passed a string to display if it fails:

* e.g. assertEquals (expected, actual, "message")

* Why is there no pass method?

11

ArraylntList JUnit test

import org.junit.*;
import static org.junit.Assert.*;

public class TestArrayIntList {

@Test

public void testAddGetl () {
ArrayIntList list = new ArrayIntList();
list.add (42);
list.add(-3);
list.add(15);
assertEquals (42, list.get(0));
assertEquals (-3, list.get(1l));
assertEquals (15, list.get(2));

}

@Test
public void testIsEmpty () {
ArrayIntList list = new ArrayIntList();

assertTrue(list.isEmpty());
list.add(123);
assertFalse(list.isEmpty())

list.remove (0) ;
assertTrue(list.isEmpty());

Running a test

e Right click it in the Eclipse Package Explorer at left; choose:

Run As — JUnit Test

* The JUnit bar will show green if all tests pass, red if any fail.

* The Failure Trace shows which tests
failed, if any, and why.

o REINEST ra
| Assign Working Sets... |
»
D 2 Open Run Didlog... |

Walidata

Package Explorer I Hierarchy m!ﬂs =0

Finished after 0,01 seconds | Q:) a

Runs: 1f1 B Errors: 0 B Failures: 0

pPFaiures I @EHierarchy I

= Failure Trace

13

JUnit exercise

Given a Date class with the following methods:

* public
* public
* public
* public
* public
* public
* public
* public
* public
* public

Date (int year, int month, 1nt day)

Date () // today

int getDay (), getMonth(), getYear()

void addDays (int days) // advances by days
int daysInMonth ()

String dayOfWeek () // e.g. "Sunday"

boolean equals (Object o)

boolean isLeapYear ()

void nextDay () // advances by 1 day
String toString()

 Come up with unit tests to check the following:
* That no Date object can ever get into an invalid state.

e That the addDays method works properly.
* It should be efficient enough to add 1,000,000 days in a call.

14

What's wrong with this?

public class DateTest {

@Test

public void testl () {
Date d = new Date (2050, 2, 15);
d.addDays (4) ;
assertEquals (d.getYear (), 2050);
assertEquals (d.getMonth (), 2);
assertEquals(d.getDay (), 19);

@Test

public void test2 () {
Date d = new Date (2050, 2, 15);
d.addDays (14) ;
assertEquals (d.getYear (), 2050);
assertEquals (d.getMonth (), 3);
assertEquals (d.getDay (), 1);

Well-structured assertions

public class DateTest {
@Test
public void testl () {
Date d = new Date (2050, 2, 15);
d.addDays (4) ;

assertEquals (2050, d.getYear()); // expected
assertEquals (2, d.getMonth()); // value should
assertEquals (19, d.getDay()); // be at LEFT

}

@Test

public void test2 () {
Date d = new Date (2050, 2, 15);
d.addDays (14) ;
assertEquals (2050, d.getYear(), "year after +14 days");
assertEquals (3, d.getMonth(), "month after +14 days");
assertEquals (1, d.getDay (), "day after +14 days'");

} // test cases should usually have messages explaining

} // what is being checked, for better failure output

Expected answer objects

public class DateTest {
@Test
public void testl () {
Date d = new Date (2050, 2, 15);
d.addDays (4) ;
Date expected = new Date (2050, 2, 19);

assertEquals (expected, d); // use an expected answer
} // object to minimize tests

// (Date must have toString
@Test // and equals methods)
public void test2 () {
Date d = new Date (2050, 2, 15);
d.addDays (14) ;
Date expected = new Date (2050, 3, 1);
assertEquals (expected, d, "date after +14 days");

17

Naming test cases

public class DateTest {

@Test
public void test addDays withinSameMonth 1() ({

Date actual = new Date (2050, 2, 15);

actual.addDays (4) ;

Date expected = new Date (2050, 2, 19);

assertEquals (expected, actual, "date after +4 days");
}

// give test case methods really long descriptive names

@Test
public void test addDays wrapToNextMonth 2 () ({

Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;

Date expected = new Date (2050, 3, 1);

assertEquals (expected, actual, "date after +14 days");

}

// give descriptive names to expected/actual values

What's wrong with this?

public class DateTest {
@Test
public void test addDays addJustOneDay 1 ()
Date actual = new Date (2050, 2, 15);
actual.addDays (1) ;
Date expected = new Date (2050, 2, 16);
assertEquals (expected, actual,
"should have gotten " + expected +
" but instead got " + actual\n");

{

"\n"

|

19

public class DateTest {
@Test

Good assertion messages

public void test addDays addJustOneDay 1() {
Date actual = new Date (2050, 2, 15);

actual.addDays (1) ;

Date expected = new Date (2050, 2, 16);

assertEquals (expected,

actual,

"adding one day to 2050/2/15");

// JUnit will already show
// the expected and actual
// values in its output;

//
// don't need to repeat them

// in the assertion message

-
Package Explorerl Hierarchy (ﬂ'l' Junit 3 ==

Finished after 0.026 seconds

Runs: 2/2 B Errors: 0 B Failures: 2

E?_] test.FibonacciTest [Runner: JUnit 4]
&] generateAndCheck
LcalllllegalPrevious

= Failure Trace
J

2 java.lang.AssertionError: expected:<0> butwas:<42>

= attest.FibonacciTest.generateAndCheck(FibonacciTestjava:32)

20

Tests with a timeout

@Test (timeout = 5000)
public void name () { ... }

* The above method will be considered a failure if it doesn't finish
running within 5000 ms

private static final int TIMEOUT = 2000;

@Test (timeout = TIMEOUT)
public void name () { ... }

e Times out / fails after 2000 ms

21

Pervasive timeouts

public class DateTest {
@QTest (timeout = DEFAULT_TIMEOUT)
public void test addDays withinSameMonth 1() {
Date d = new Date (2050, 2, 15);
d.addbDays (4) ;
Date expected = new Date (2050, 2, 19);
assertEquals (expected, d ,"date after +4 days");

QTest (timeout = DEFAULT_TIMEOUT)
public void test addDays wrapToNextMonth 2 () {
Date d = new Date (2050, 2, 15);
d.addDays (14) ;
Date expected = new Date (2050, 3, 1);
assertEquals (expected, d "date after +14 days");

// almost every test should have a timeout so it can't
// lead to an infinite loop; good to set a default, too
private static final int DEFAULT TIMEOUT = 2000;

Testing for exceptions

@Test (expected = ExceptionType.class)
public void name () {

* Will pass if it does throw the given exception.
* |f the exception is not thrown, the test fails.
* Use this to test for expected errors.

Test (expected = ArrayIndexOutOfBoundsException.class)
public void testBadIndex () {
ArrayIntlList list = new ArrayIntlList();
list.get (4); // should fail

23

Setup and teardown

@BeforeEach
public void name () { ... }
@QAfterEach
public void name () { ... }

* methods to run before/after each test case method is called

@BeforeAll

public static void name() { ... }
@AfterAll

public static void name() { ... }

* methods to run once before/after the entire test class runs

24

Tips for testing
* You cannot test every possible input, parameter value, etc.
* So you must think of a limited set of tests likely to expose bugs.

* Think about boundary cases
* positive; zero; negative numbers
* right at the edge of an array or collection's size

* Think about empty cases and error cases
* 0, -1, null; an empty list or array

* test behavior in combination
* maybe add usually works, but fails after you call remove
* make multiple calls; maybe size fails the second time only

25

What's wrong with this?

public class DateTest {
// test every day of the year
@Test (timeout = 10000)
public void tortureTest () {

Date date new Date (2050, 1, 1);
int month = 1;

int day = 1;
for (int i = 1; i < 365; i++) {
date.addDays (1) ;
if (day < DAYS PER MONTH[month]) {day++;}
else {month++; day=1;}
assertEquals (new Date (2050, month, day), date);

private static final int[] DAYS PER MONTH = ({

iy

o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

26

Trustworthy tests

* Test one thing at a time per test method.
e 10 small tests are much better than 1 test 10x as large.

e Each test method should have few (likely 1) assert statements.

* If you assert many things, the first that fails stops the test.
* You won't know whether a later assertion would have failed.

* Tests should avoid logic.
* minimize 1f/else, loops, switch, etc.
e avoid try/catch
* Ifit's supposed to throw, use expected= ... if not, let JUnit catch it.

 Torture (stress) tests are okay, but only in addition to simple
tests.

27

JUnit exercise

Given our Date class seen previously:

* public Date(int year, 1int month,

* public Date()

* public int getDay (), getMonth(),

* public void addDays (int days)

* public int daysInMonth ()

* public String dayOfWeek ()

* public boolean equals (Object o)
* public boolean i1sLeapYear ()

* public void nextDay ()

* public String toString()

 Come up with unit tests to check the following:
* That no Date object can ever get into an invalid state.

e That the addDays method works properly.
* It should be efficient enough to add 1,000,000 days in a call.

int day)

// today

getYear ()

// advances by days

// e.g. "Sunday"

// advances by 1 day

28

Squashing redundancy

public class DateTest {
@Test (timeout = DEFAULT TIMEOUT)
public void addDays withinSameMonth 1() {
addHelper (2050, 2, 15, +4, 2050, 2, 19);

@QTest (timeout = DEFAULT TIMEOUT)
public void addDays wrapToNextMonth 2 () {
addHelper (2050, 2, 15, +14, 2050, 3, 1);

// use lots of helpers to make actual tests extremely short
private void addHelper (int yl, int ml, int dl, int add,
int y2, int m2, int d2) {
Date act = new Date(y, m, d);
actual.addbDays (add) ;
Date exp = new Date(y2, m2, d2);
assertEquals (exp, act, "after +" + add + " days");

// can also use "parameterized tests" in some frameworks

Flexible helpers

public class DateTest {
@Test (timeout = DEFAULT TIMEOUT)
public void addDays multipleCalls wrapToNextMonth2x ()

Date d = addHelper (2050, 2, 15, +14, 2050, 3, 1);
addhelper(d, +32, 2050, 4, 2);
addhelper(d, +98, 2050, 7, 9);

{

}
// Helpers can box you in; hard to test many calls/combine.
// Create variations that allow better flexibility
private Date addHelper (int yl, int ml, int dl, int add,
int y2, int m2, int d2) {
Date date = new Date(y, m, d);
addHelper (date, add, y2, m2, d2);

return d;

private void addHelper (Date date, int add,
int y2, int m2, int d2) {

date.addDays (add) ;
Date expect = new Date(y2, m2, d2);
assertEquals (expect, d, "date after +" + add + " days");

Regression testing

* regression: When a feature that used to work, no longer
works.
* Likely to happen when code changes and grows over time.
* A new feature/fix can cause a new bug or reintroduce an old bug.

* regression testing: Re-executing prior unit tests after a
change.
e Often done by scripts during automated testing.
* Used to ensure that old fixed bugs are still fixed.
e Gives your app a minimum level of working functionality.

* Many products have a set of mandatory check-in tests that
must pass before code can be added to a source code
repository.

31

Test-driven development

e Unit tests can be written after, during, or even before
coding.

* test-driven development: Write tests, then write code to pass
them.

* Imagine that we'd like to add a method subtractWeeks
to our Date class, that shifts this Date backward in time by
the given number of weeks.

* Write code to test this method before it has been written.
* Then once we do implement the method, we'll know if it works.

32

Tests and data structures

* Need to pass lots of arrays? Use array literals
public void exampleMethod (int[] wvalues) { ... }

exampleMethod (new int[] {1, 2, 3, 4});
exampleMethod (new int[] {5, 6, 7});

* Need a quick ArrayList? Try Arrays.asList
List<Integer> list = Arrays.asList(7, 4, -2, 3, 9, 18);

* Need a quick set, queue, etc.? Many collections can take a
list
Set<Integer> list = new HashSet<Integer> (
Arrays.aslList(7, 4, -2, 9));

33

What's wrong with this?

public class DateTest {

// shared Date object to test with (saves
private static Date DATE;

@QTest (timeout = DEFAULT TIMEOUT)
public void addDays sameMonth () {

DATE = new Date (2050, 2,

addhelper (DATE,
}

+4,

2050,

15);

2,

@QTest (timeout = DEFAULT TIMEOUT)
public void addDays nextMonthWrap () {

addhelper (DATE,
}

+10,

2050,

3,

@Test (timeout = DEFAULT TIMEOUT)
public void addDays multipleCalls() {
addDays_sameMonth () ;

addhelper (DATE,
addhelper (DATE,

+1,
+1,

2050,
2050,

2,
2,

19);

1),

20);
21);

//
//

//
//

//
//
//

memory!!1l)

first test;
DATE = 2/15 here

second test;
DATE = 2/19 here

third test;
go back to 2/19;
test two calls

34

Test case "smells"

e Tests should be self-contained
and not care about each other.

* "Smells" (bad things to avoid) in tests:

e Constrained test order :Test A must run before Test B.
(usually a misguided attempt to test order/flow)

e Tests call each other : Test A calls Test B's method
(calling a shared helper is OK, though)

* Mutable shared state : Tests A/B both use a shared object.
(If A breaks it, what happens to B?)

35

Test suites

* test suite: One class that runs many JUnit tests.
* An easy way to run all of your app's tests at once.

import org.junit.runner.*;
import org.junit.runners.*;

QRunWith (Suite.class)
@Suite.SuiteClasses ({
TestCaseName.class,
TestCaseName.class,

TestCaseName.class,

})

public class name {}

36

Test suite example

import org.junit.runner.*;
import org.junit.runners.*;

QRunWith (Suite.class)

@Suite.SuiteClasses ({
WeekdayTest.class,
TimeTest.class,
CourseTest.class,
ScheduleTest.class,

CourseComparatorsTest.class

})
public class HW2Tests {}

37

JUnit summary

* Tests need failure atomicity (ability to know exactly what failed).
* Each test should have a clear, long, descriptive name.
* Assertions should always have clear messages to know what failed.
* Write many small tests, not one big test.
* Each test should have roughly just 1 assertion at its end.
* Always use a timeout parameter to every test.
* Test for expected errors / exceptions.
* Choose a descriptive assert method, not always assertTrue.
* Choose representative test cases from equivalent input classes.
* Avoid complex logic in test methods if possible.

* Use helpers, @Before to reduce redundancy between tests.

38

Test First

* Detect defects earlier (cheaper)

* Forces understanding of the requirements before you start coding

* |dentifies problems with the requirements earlier Takes no more
effort to test first

* A tenet of eXtreme Programming (XP)

* A design technique, not a testing technique
* Doesn’t find bugs, but eliminates them
* Doesn’t measure quality, but improves it

