CS 2630
Computer Organization

Floating Point

Steve Goddard
steve-goddard@uiowa.edu

Giving credit where credit is due

= Most of slides for this lecture are based on slides created by Drs.
Bryant and O’Hallaron, Carnegie Mellon University.

" | have modified them and added new slides.

Today: Floating Point

m Background: Fractional binary numbers
m |IEEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

m Summary

Floating Point Puzzles

® For each of the following C expressions, either:

= Argue that it is true for all argument values

= Explain why not true

int x = ...;

float £ = ...;

double d =

L]
X 4

Assume neither
d nor f is NaN

X%

== (float) d

Hh Q@ H X

== -(-£f);
2/3 == 2/3.0
d<O0.0 =
d > f =
d *d> 0.0
(d+£)-d ==

== (int) (float) x
== (int) (double) x
== (float) (double) £

((d*2) < 0.0)
-£f < -d

Fractional binary numbers

m What is 1011.101,?

Fractional Binary Numbers

bi

bi-1

m Representation
® Bits to right of “binary point” represent fractional powers of 2

® Represents rational number:

boib-l b2 | bs|see | by
12 — |
1/4 ‘ | I BN J
1/8
9

i:kaQk

k=—j

Fractional Binary Numbers: Examples

m Value Representation
53/4 101.11>
27/8 10.111>
17/16 1.0111>

m Observations
® Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
®" Numbers of form 0.111111...2 are just below 1.0
= 1/2+1/4+1/8+...+1/21+..— 1.0
» Use notation 1.0—¢

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2k
= Other rational numbers have repeating bit representations

" Value Representation
= 1/3 0.0101010101[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.0001100110011[0011]..2

m Limitation #2

® Just one setting of binary point within the w bits
= Limited range of numbers (very small values? very large?)

Today: Floating Point

m |IEEE floating point standard: Definition
C

IEEE Floating Point

m IEEE Standard 754
® Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
® Nice standards for rounding, overflow, underflow
® Hard to make fast in hardware
= Numerical analysts predominated over hardware designers in defining standard

10

Floating Point Representation

m Numerical Form:

(-1)*M 2F

= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).

= Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s

= exp field encodes E (but is not equal to E)

® frac field encodes M (but is not equal to M)

s |exp

frac

1

Precision options

m Single precision: 32 bits

s |exp frac
1 8-bits 23-bits
m Double precision: 64 bits
s |exp frac
1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)
s |exp frac
1 15-bits 63 or 64-bits

12

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
" Exp: unsigned value of exp field
= Bias = 2k1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx...x2
= xxx...x: bits of frac field
® Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111..1 (M =2.0—¢)
" Get extra leading bit for “free”

v=(=1)pM 2t

13

Normalized Encoding Example

m Value: float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
m Result:

v=(=l)pM 2t
E = Exp — Bias

S exp frac

0/1100011001/110131011011010000000000

14

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx..x:bits of frac

m Cases
" exp=000.0, frac=000..0

= Represents zero value

= Note distinct values: +0 and -0 (why?)
" exp=000.0, frac #000..0

= Numbers closest to 0.0

= Equispaced

15

Special Values

m Condition: exp=111..1

m Case:exp=111..1, frac=000..0

® Represents value 0 (infinity)

® QOperation that overflows

® Both positive and negative

= E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -0

m Case:exp=111..1, frac# 000..0

" Not-a-Number (NaN)
® Represents case when no numeric value can be determined

= E.g. sqrt(—1), 0o — o0, 0 x 0

16

Visualization: Floating Point Encodings

—00 . . +00
L -Normalized |—Denorm N E+Denorm | +Normalized]
1 | /I\ | 1
NaN
NaN
—] 0 +0 —

17

Today: Floating Point

C
C
m Example and properties
C
C

18

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit

" the next four bits are the exponent, with a bias of 7
" the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized

= representation of 0, NaN, infinity

19

Dynamlc Range (Positive Only) | v=(Iym2s

exp frac E Value n: E= Exp — Bias
0 0000 000 -6 0 d: E =1 — Bias
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512
smallest norm
0 0001 o001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 o000 0 8/8*1 =1
numbers 0 0111 001 0 9/8*1 = 9/8 closest to 1 above
0 0111 o010 0 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits
" Biasis231-1=3 1 3-bits 2-bits

s exp frac

m Notice how the distribution gets denser toward zero.

/8values

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

21

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits
" Biasis 3

S exp frac
1 3-bits 2-bits
S ——— — 0000

-0.5 0 0.5
¢ Denormalized A Normalized B Infinity

Interesting Numbers

Description
m Zero
m Smallest Pos. Denorm.
" Single=1.4x10™®
" Double =~ 4.9 x 1073%
m Largest Denormalized
" Single ~1.18 x 10738
" Double ~ 2.2 x 1073%
m Smallest Pos. Normalized

exp
00...00
00...00

00...00

00...01

® Just larger than largest denormalized

m One

m Largest Normalized
" Single ~ 3.4 x 10%
" Double ~ 1.8 x 103%

01..11
11..10

frac
00...00
00...01

11..11

00...00

00...00
11..11

{single,double}

Numeric Value

0.0
2—123,52} y 9-1{126,1022)

(1.0 — g) x 2~ {126,1022}

1.0 x 2 {126,1022)

1.0
(2.0 — g) x 2{127,1023}

23

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
® Must first compare sign bits
" Must consider-0=0
" NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= QOtherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

24

Today: Floating Point

C
C
C
m Rounding, addition, multiplication
C

25

Floating Point Operations: Basic Idea

mx +f y = Round(x + y)

BX Xf VY Round (x x y)

m Basic idea
® First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into frac

26

Rounding

m Rounding Modes (illustrate with S rounding)

® Towards zero

" Round down (—)

= Round up (+o0)

= Nearest Even (default)

$1.40 S1.60 S1.50 $2.50

s1
s1
S2
s1

s1
s1
S2
S2

s1
s1
S2
$2

S2
S2
S3
S2

—-$1.50
—Sl
_52
—Sl
_52

27

Closer Look at Round-To-Even

m Default Rounding Mode

® Hard to get any other kind without dropping into assembly

= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-

estimated

m Applying to Other Decimal Places / Bit Positions
"= When exactly halfway between two possible values

= Round so that least significant digit is even

= E.g., round to nearest hundredth

7.8949999
7.8950001
7.8950000
7.8850000

7.89
7.90
7.90
7.88

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

28

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is 0
= “Half way” when bits to right of rounding position = 100...2

m Examples
= Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action

23/32 10.000112 10.002 (<1/2—down)
2 3/16 10.001102 10.012 (>1/2—up)
27/8 10.111002 11.002 (1/2—up)

25/8 10.101002 10.102 (1/2—down)

Rounded Value
2

21/4

3

21/2

29

FP Multiplication

m (-1 M1 2F1 x (=1)2 M2 2F2
m Exact Result: (-1) M 2F

" Sign s: s17s2

= Significand M: M1x M2

" Exponent E: E1+E2
m Fixing

= |f M 2> 2, shift M right, increment E
" |f E out of range, overflow
= Round M to fit £rac precision

m Implementation

® Biggest chore is multiplying significands

30

Floating Point Addition

m (-1 M1 2F1 + (-1)2 M2 2F2

®Assume E1 > E2

m Exact Result: (-1)* M 2°F
®Sign s, significand M:
= Result of signed align & add
"Exponent E: El

m Fixing
=lf M > 2, shift M right, increment E
=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range
®"Round M to fit £rac precision

Get binary points lined up

| E1-E2

g

(-1)st M1

(-1)2 M2

(-1)*M

31

Mathematical Properties of FP Add

m Compare to those of Abelian Group

" Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
» (3.14+1e10)-1el10 = 0, 3.14+(1el0-1el10) = 3.14

0 is additive identity?
Every element has additive inverse? Yes
= Yes, except for infinities & NaNs Almost

m Monotonicity
" a>b = a+c>b+c? Almost
= Except for infinities & NaNs

32

Mathematical Properties of FP Mult

m Compare to Commutative Ring
® Closed under multiplication? Yes
= But may generate infinity or NaN

Multiplication Commutative? Yes

Multiplication is Associative? No

= Possibility of overflow, inexactness of rounding

» Ex: (1e20*%1e20) *1e-20=1nf, 1e20* (1e20*1e-20)=1e20
1 is multiplicative identity? Yes
Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

» 1e20* (1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 =NaN

m Monotonicity
"a>2b &c2>20 =>a*c2b*c?

= Except for infinities & NaNs

Almost

33

Today: Floating Point

Practice

34

Creating Floating Point Number

m Steps

" Normalize to have leading 1
® Round to fit within fraction
® Postnormalize to deal with effects of rounding

m Case Study

exp

frac

1

4-bits

= Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128
15
33
35

138
63

10000000
00001101
00010001
00010011
10001010
00111111

3-bits

35

Normalize

m Requirement

= Set binary point so that numbers of form 1.xxxxx

= Adjust all to have leading one

= Decrement exponent as shift left

Value
128
15
17
19
138
63

Binary

10000000
00001101
00010001
00010011
10001010
00111111

Fraction

R R R R PR R

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

S exp frac
1 4-bits 3-bits
Exponent

O 9 & b W J

36

Rounding 1 . BBGRXXX

Guard bit: LSB of result \/ Y
Sticky bit: OR of remaining bits
Round bit: 1%t bit removed

m Round up conditions
®" Round =1, Sticky=1—>0.5
® Guard =1, Round =1, Sticky =0 — Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

Postnormalize

m Issue
® Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

Today: Floating Point

Floating pointin C

39

Floating Pointin C

m C Guarantees Two Levels
"float single precision
"double double precision

m Conversions/Casting
® Casting between int, £loat, and double changes bit representation
" double/float > int
= Truncates fractional part
= Like rounding toward zero

= Not defined when out of range or NaN: Generally sets to TMin
"int - double

= Exact conversion, as long as int has < 53 bit word size
"int > float
= Will round according to rounding mode

40

Ariane 5

= Exploded 37 seconds after
liftoff on June 4, 1996

= Cargo worth $500 million
Why

= Computed horizontal velocity as
floating point number

= Converted to 16-bit integer
= Worked OK for Ariane 4
= Overflowed for Ariane 5

= Used same software

42

Summary

m |[EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity
= Makes life difficult for compilers & serious numerical applications programmers

43

