CS 2630 Computer Organization

Floating Point

Steve Goddard steve-goddard@uiowa.edu

•

Giving credit where credit is due

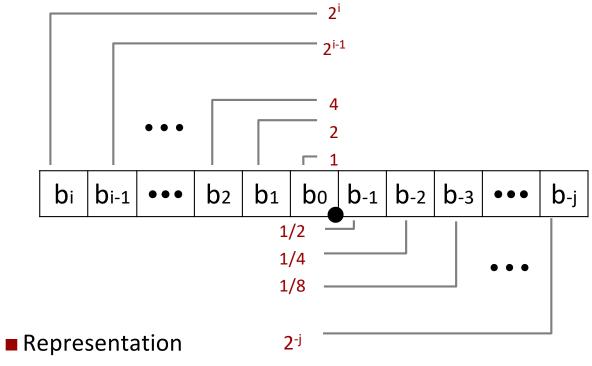
- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true


```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- lacktriangle Represents rational number: $\sum_{k=-j}^i b_k imes 2^k$

Fractional Binary Numbers: Examples

■ Value Representation

5 3/4 101.112

2 7/8 10.1112

1 7/16 1.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation1/3 0.01010101[01]...2
 - **1/5** 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

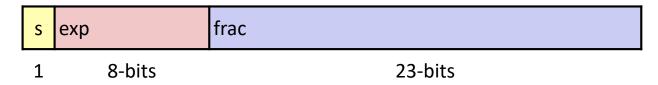
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

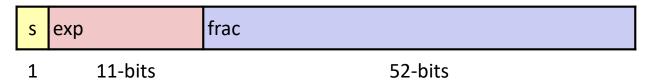
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:


$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)


S	ехр	frac
---	-----	------

Precision options

■ Single precision: 32 bits

■ Double precision: 64 bits

■ Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
v = (-1)^s M 2^E
E = Exp - Bias
```

- Value: float F = 15213.0; ■ 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³
- Significand

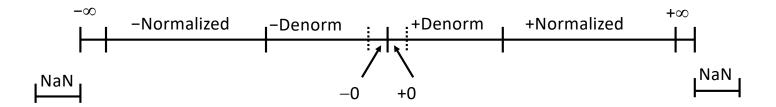
```
M = 1.11011011011<sub>2</sub>
frac= 1101101101101000000000<sub>2</sub>
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

■ Result:

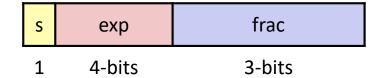
Denormalized Values


 $v = (-1)^s M 2^E$ E = 1 - Bias

- **■** Condition: exp = 000...0
- **Exponent value:** E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

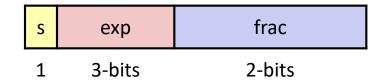
- **■** Condition: **exp** = **111**...**1**
- Case: **exp** = **111**...**1**, **frac** = **000**...**0**
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$


Visualization: Floating Point Encodings

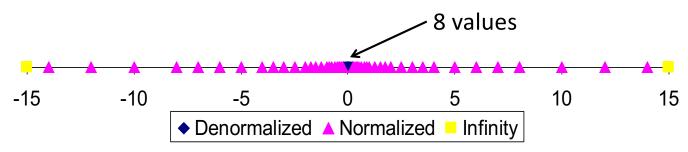
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

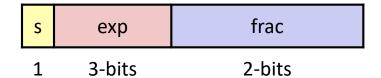

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

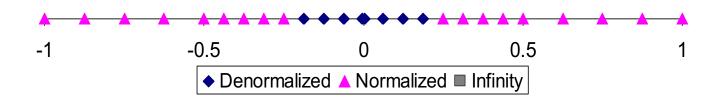
Dynamic Range (Positive Only) $v = (-1)^s M 2^E$


— y · · · c ·		•		- 1			- y ,	· (·) ··· -
	s e	exp	frac	E	Value			n: E = Exp – Bias
	0 0	000	000	-6	0			d: E = 1 – Bias
	0 0	000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized	0 0	000	010	-6	2/8*1/64	=	2/512	closest to zero
numbers								
	0 0	000	110	-6	6/8*1/64	=	6/512	
	0 0	000	111	-6	7/8*1/64	=	7/512	largest denorm
	0 0	001	000	-6	8/8*1/64	=	8/512	smallest norm
	0 0	001	001	-6	9/8*1/64	=	9/512	smanest norm
	0 0	110	110	-1	14/8*1/2	=	14/16	
	0 0	110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0 0	111	000	0	8/8*1	=	1	
numbers	0 0	111	001	0	9/8*1	=	9/8	closest to 1 above
	0 0	111	010	0	10/8*1	=	10/8	tiobast to 1 above
	0 1	.110	110	7	14/8*128	=	224	
	0 1	.110	111	7	15/8*128	=	240	largest norm
	0 1	.111	000	n/a	inf			

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$




■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	ехр	frac	Numeric Value
■ Zero	0000	0000	0.0
■ Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
Double ≈ 4.9 x 10 ⁻³²⁴			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	$1.0 \times 2^{-\{126,1022\}}$
Just larger than largest denorm	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
■ Single $\approx 3.4 \times 10^{38}$			

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

■ Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

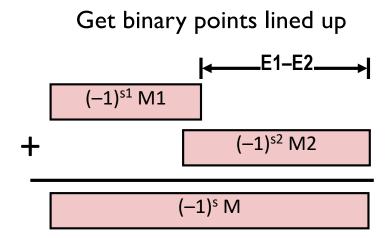
FP Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

■ Implementation


Biggest chore is multiplying significands

Floating Point Addition

- $-(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

■ Fixing

- If M ≥ 2, shift M right, increment E
- ■if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?

Yes

Yes

But may generate infinity or NaN

Commutative? Yes

Associative?

Overflow and inexactness of rounding

$$\bullet$$
 (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

- 0 is additive identity?
- Every element has additive inverse?
 - Yes, except for infinities & NaNs
 Almost
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$? Almost
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

• Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20=inf, 1e20*(1e20*1e-20)=1e20
- 1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity

Almost

- $a \ge b$ & $c \ge 0$ $\Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Practice
- Floating point in C
- Summary

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

S	ехр	frac
1	4-hits	3-hits

■ Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	ехр	frac		
1	4-bits	3-bits		

■ Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result -

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

■ Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Practice
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Ariane 5

- Exploded 37 seconds after liftoff on June 4, 1996
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers