
Carnegie Mellon

1

Integers

CS 2630
Computer Organization

Steve Goddard
steve-goddard@uiowa.edu

Carnegie Mellon

2

Giving credit where credit is due
§ Most of slides for this lecture are based on slides created by Drs.

Bryant and O’Hallaron, Carnegie Mellon University.
§ I have modified them and added new slides.

Carnegie Mellon

3

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
¢ Summary

Carnegie Mellon

4

Encoding Integers

short int x = 15213;
short int y = -15213;

¢ C short 2 bytes long

¢ Sign Bit
§ For 2’s complement, most significant bit indicates sign

§ 0 for nonnegative
§ 1 for negative

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

5

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

6

Numeric Ranges
¢ Unsigned Values

§ UMin = 0
000…0

§ UMax = 2w – 1
111…1

¢ Two’s Complement Values
§ TMin = –2w–1

100…0
§ TMax = 2w–1 – 1

011…1
¢ Other Values

§ Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

7

Values for Different Word Sizes

¢ Observations
§ |TMin | = TMax + 1

§ Asymmetric range
§ UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

¢ C Programming
§ #include <limits.h>
§ Declares constants, e.g.,

§ ULONG_MAX
§ LONG_MAX
§ LONG_MIN

§ Values platform specific

Carnegie Mellon

8

Unsigned & Signed Numeric Values
¢ Equivalence

§ Same encodings for nonnegative
values

¢ Uniqueness
§ Every bit pattern represents

unique integer value
§ Each representable integer has

unique bit encoding

¢ Þ Can Invert Mappings
§ U2B(x) = B2U-1(x)

§ Bit pattern for unsigned
integer

§ T2B(x) = B2T-1(x)
§ Bit pattern for two’s comp

integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

9

C Puzzles
§ Taken from old exams
§ Assume machine with 32 bit word size, two’s complement integers
§ For each of the following C expressions, either:

§ Argue that it is true for all argument values
§ Give example where not true

• x < 0 Þ ((x*2) < 0)

• ux >= 0

• x & 7 == 7 Þ (x<<30) < 0

• ux > -1

• x > y Þ -x < -y

• x * x >= 0

• x > 0 && y > 0 Þ x + y > 0

• x >= 0 Þ -x <= 0

• x <= 0 Þ -x >= 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

Carnegie Mellon

10

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

11

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux xX

¢ Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

12

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Carnegie Mellon

13

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

14

+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Carnegie Mellon

15

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned

§ Ordering Inversion
§ Negative ® Big Positive

Carnegie Mellon

16

Signed vs. Unsigned in C
¢ Constants

§ By default are considered to be signed integers
§ Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
§ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

§ Implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Carnegie Mellon

17

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

§ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

§ Including comparison operations <, >, ==, <=, >=
§ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
2147483647 2147483648U
2147483647 (int) 2147483648U

Carnegie Mellon

18

Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
§ int is cast to unsigned!!

Carnegie Mellon

19

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

20

Sign Extension
¢ Task:

§ Given w-bit signed integer x
§ Convert it to w+k-bit integer with same value

¢ Rule:
§ Make k copies of sign bit:
§ X ¢ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

Carnegie Mellon

21

Sign Extension Example

¢ Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

22

Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)

§ Unsigned: zeros added
§ Signed: sign extension
§ Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
§ Unsigned/signed: bits are truncated
§ Result reinterpreted
§ Unsigned: mod operation
§ Signed: similar to mod
§ For small numbers yields expected behavior

Carnegie Mellon

23

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting

¢ Representations in memory, pointers, strings
¢ Summary

Carnegie Mellon

24

Unsigned Addition

¢ Standard Addition Function
§ Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Carnegie Mellon

25

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

¢ Integer Addition
§ 4-bit integers u, v
§ Compute true sum

Add4(u , v)
§ Values increase linearly

with u and v
§ Forms planar surface

Add4(u , v)

u

v

Carnegie Mellon

26

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

¢ Wraps Around
§ If true sum ≥ 2w

§ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Carnegie Mellon

27

Two’s Complement Addition

¢ TAdd and UAdd have Identical Bit-Level Behavior
§ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will give s == t

• • •
• • •

u
v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

28

TAdd Overflow

¢ Functionality
§ True sum requires w+1

bits
§ Drop off MSB
§ Treat remaining bits as

2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Carnegie Mellon

29

-8 -6 -4 -2 0 2 4 6
-8

-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

¢ Values
§ 4-bit two’s comp.
§ Range from -8 to +7

¢ Wraps Around
§ If sum ³ 2w–1

§ Becomes negative
§ At most once

§ If sum < –2w–1

§ Becomes positive
§ At most once

TAdd4(u , v)

u

v
PosOver

NegOver

Carnegie Mellon

30

Multiplication
¢ Goal: Computing Product of w-bit numbers x, y

§ Either signed or unsigned

¢ But, exact results can be bigger than w bits
§ Unsigned: up to 2w bits

§ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1
§ Two’s complement min (negative): Up to 2w-1 bits

§ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

§ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

§ Result range: x * y ≤ (–2w–1) 2 = 22w–2

¢ So, maintaining exact results…
§ would need to keep expanding word size with each product computed
§ is done in software, if needed

§ e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

31

Unsigned Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits

¢ Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

Carnegie Mellon

32

Signed Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits
§ Some of which are different for signed

vs. unsigned multiplication
§ Lower bits are the same

• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

Carnegie Mellon

33

Power-of-2 Multiply with Shift
¢ Operation

§ u << k gives u * 2k

§ Both signed and unsigned

¢ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24

§ Most machines shift and add faster than multiply
§ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Carnegie Mellon

34

Unsigned Power-of-2 Divide with Shift
¢ Quotient of Unsigned by Power of 2

§ u >> k gives ë u / 2k û
§ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0

Carnegie Mellon

35

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

36

Arithmetic: Basic Rules
¢ Addition:

§ Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

§ Unsigned: addition mod 2w

§ Mathematical addition + possible subtraction of 2w

§ Signed: modified addition mod 2w (result in proper range)
§ Mathematical addition + possible addition or subtraction of 2w

¢ Multiplication:
§ Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
§ Unsigned: multiplication mod 2w

§ Signed: modified multiplication mod 2w (result in proper range)

Carnegie Mellon

37

Why Should I Use Unsigned?
¢ Don’t use without understanding implications

§ Easy to make mistakes
unsigned i;

for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];

§ Can be very subtle
#define DELTA sizeof(int)

int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

Carnegie Mellon

38

Counting Down with Unsigned
¢ Proper way to use unsigned as loop index

unsigned i;

for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

¢ See Robert Seacord, Secure Coding in C and C++
§ C Standard guarantees that unsigned addition will behave like modular

arithmetic
§ 0 – 1 à UMax

¢ Even better
size_t i;
for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

§ Data type size_t defined as unsigned value with length = word size
§ Code will work even if cnt = UMax
§ What if cnt is signed and < 0?

Carnegie Mellon

39

Why Should I Use Unsigned? (cont.)
¢ Do Use When Performing Modular Arithmetic

§ Multiprecision arithmetic

¢ Do Use When Using Bits to Represent Sets
§ Logical right shift, no sign extension

Carnegie Mellon

41

Today: Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

42

Byte-Oriented Memory Organization

¢ Programs refer to data by address
§ Conceptually, envision it as a very large array of bytes

§ In reality, it’s not, but can think of it that way
§ An address is like an index into that array

§ and, a pointer variable stores an address

¢ Note: system provides private address spaces to each “process”
§ Think of a process as a program being executed
§ So, a program can clobber its own data, but not that of others

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

43

Machine Words

¢ Any given computer has a “Word Size”
§ Nominal size of integer-valued data

§ and of addresses

§ In the early 2000’s most computers used 32 bits (4 bytes)
§ Limits addresses to 4GB
§ Became too small for modern applications
§ Still used in some embedded applications (e.g., in your car)

§ Today, most systems (even smart phones) are 64 bits (8 bytes)
§ Potentially address » 1.8 X 1019 bytes

§ Machines support multiple data formats
§ Fractions or multiples of word size
§ Always integral number of bytes

Carnegie Mellon

44

Word-Oriented Memory Organization
¢ Addresses Specify Byte

Locations
§ Address of first byte in word
§ Addresses of successive words differ

by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

45

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Carnegie Mellon

46

Byte Ordering
¢ So, how are the bytes within a multi-byte word ordered in memory?
¢ Conventions
§ Big Endian: Sun, PPC Mac, Internet

§ Least significant byte has highest address
§ Little Endian: x86, ARM processors running Android, iOS, and Windows

§ Least significant byte has lowest address

¢ Many modern processors are often bi-endian: can be configured to be big or
little endian
§ Mac IOS and Google Android operating systems operate in little endian (and configure bi-

endian processors as little endian)

Carnegie Mellon

47

Byte Ordering Example

¢ Example
§ Variable x has 4-byte value of 0x01234567
§ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

48

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun

6D
3B
00
00

IA32

Carnegie Mellon

49

Examining Data Representations
¢ Code to Print Byte Representation of Data
§ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)
printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");
}

Carnegie Mellon

50

show_bytes Execution Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Carnegie Mellon

51

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

52

char S[6] = "18213";

Representing Strings

¢ Strings in C
§ Represented by array of characters
§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set
§ Character “0” has code 0x30

– Digit i has code 0x30+i
§ String should be null-terminated

§ Final character = 0

¢ Compatibility
§ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

53

Machine-Level Code Representation
¢ Encode Program as Sequence of Instructions

§ Each instruction is a simple operation
§ Arithmetic operation
§ Read or write memory
§ Conditional branch

§ Instructions encoded as bytes
§ Older Sun’s and Mac’s use 4 byte instructions

– Reduced Instruction Set Computer (RISC)
§ PC’s use variable length instructions

– Complex Instruction Set Computer (CISC)
§ Different instruction types and encodings for different machines

§ Most code not binary compatible

¢ Programs are Byte Sequences Too!

Carnegie Mellon

54

Representing Instructions
int sum(int x, int y)
{

return x+y;
}

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

n For this example, Alpha &
Sun use two 4-byte
instructions
l Use differing numbers of

instructions in other cases

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

n PC uses 7 instructions with lengths
1, 2, and 3 bytes
l Same for Windows and Linux
l Windows / Linux not fully binary

compatible

