
Carnegie Mellon

1

Bits and Bytes

CS 2630
Computer Organization

Steve Goddard
steve-goddard@uiowa.edu

Carnegie Mellon

2

Giving credit where credit is due
§ Most of slides for this lecture are based on slides created by Drs.

Bryant and O’Hallaron, Carnegie Mellon University.
§ I have modified them and added new slides.

Carnegie Mellon

3

Today: Bits and Bytes
¢ Representing information as bits
¢ Bit-level manipulations

Carnegie Mellon

4

Why Don’t Computers Use Base 10?
¢ Base 10 Number Representation

§ That’s why fingers are known as “digits”
§ Natural representation for financial transactions

§ Floating point number cannot exactly represent $1.20
§ Even carries through in scientific notation

§ 1.5213 X 104

¢ Implementing Electronically
§ Hard to store

§ ENIAC (First electronic computer) used 10 vacuum tubes / digit
§ Hard to transmit

§ Need high precision to encode 10 signal levels on single wire
§ Messy to implement digital logic functions

§ Addition, multiplication, etc.

Carnegie Mellon

5

Everything is bits
¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways

§ Computers determine what to do (instructions)
§ … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits? Electronic Implementation
§ Easy to store with bistable elements
§ Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

Carnegie Mellon

6

For example, can count in binary
¢ Base 2 Number Representation

§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

7

Encoding Byte Values
¢ Byte = 8 bits
§ Binary 000000002 to 111111112

§ Decimal: 010 to 25510

§ Hexadecimal 0016 to FF16
§ Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Carnegie Mellon

8

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Carnegie Mellon

9

Today: Bits and Bytes
¢ Representing information as bits
¢ Bit-level manipulations

Carnegie Mellon

10

Boolean Algebra
¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

11

Application of Boolean Algebra
¢ Applied to Digital Systems by Claude Shannon
§ 1937 MIT Master’s Thesis
§ Reason about networks of relay switches

§ Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

A&~B | ~A&B

A&~B

~A&B = A^B

Carnegie Mellon

12

Relations Between Operations

¢ DeMorgan’s Laws
§ Express & in terms of |, and vice-versa

§ A & B = ~(~A | ~B)
– A and B are true if and only if neither A nor B is false

§ A | B = ~(~A & ~B)
– A or B are true if and only if A and B are not both false

¢ Exclusive-Or using Inclusive Or
§ A ^ B = (~A & B) | (A & ~B)

– Exactly one of A and B is true
§ A ^ B = (A | B) & ~(A & B)

– Either A is true, or B is true, but not both

Carnegie Mellon

13

General Boolean Algebras
¢ Operate on Bit Vectors
§ Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101

01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

Carnegie Mellon

14

Example: Representing & Manipulating Sets
¢ Representation

§ Width w bit vector represents subsets of {0, …, w–1}
§ aj = 1 if j ∈ A

§ 01101001 { 0, 3, 5, 6 }
§ 76543210

§ 01010101 { 0, 2, 4, 6 }
§ 76543210

¢ Operations
§ & Intersection 01000001 { 0, 6 }
§ | Union 01111101 { 0, 2, 3, 4, 5, 6 }
§ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
§ ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

15

Bit-Level Operations in C
¢ Operations &, |, ~, ^ Available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise

¢ Examples (Char data type)
§ ~0x41 ➙ 0xBE

§ ~010000012 ➙ 101111102
§ ~0x00 ➙ 0xFF

§ ~000000002 ➙ 111111112
§ 0x69 & 0x55 ➙ 0x41

§ 011010012 & 010101012 ➙ 010000012
§ 0x69 | 0x55 ➙ 0x7D

§ 011010012 | 010101012 ➙ 011111012

Carnegie Mellon

16

Contrast: Logic Operations in C
¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01
§ p && *p (avoids null pointer access)

Carnegie Mellon

17

Contrast: Logic Operations in C
¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01
§ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

18

Shift Operations
¢ Left Shift: x << y
§ Shift bit-vector x left y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left
§ Useful with two’s complement integer representation

¢ Undefined Behavior
§ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

19

Cool Stuff with Xor

void funny(int *x, int *y)
{

*x = *x ^ *y; /* #1 */
*y = *x ^ *y; /* #2 */
*x = *x ^ *y; /* #3 */

}

§ Bitwise Xor is a form of
addition

§ With extra property
that every value is its
own additive inverse

A ^ A = 0

BABegin
BA^B1
(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

