
1

Computer Organization
(from a programmer’s perspective)

CS 2630
Computer Organization

Steve Goddard
steve-goddard@uiowa.edu

2

Giving credit where credit is due

Most of slides for this lecture are based on
slides created by Drs. Bryant and O’Hallaron,
Carnegie Mellon University.

Some examples and slides are based on lecture
notes created by Dr. Shard Seth, UNL.
I have modified them and added new slides.

3

Carnegie Mellon

Topics

¢ Why do we care about this stuff?
¢ Course theme
¢ Five realities
¢ How the course fits into the CS/ECE curriculum
¢ Academic integrity

4

¢ Rapidly changing field:
§ vacuum tube -> transistor -> IC -> VLSI -> SoC -> Multi-Core

§ Clock rates and memory capacity were doubling every 1.5 years (until 2010):

§ Now, organization and new technologies are driving performance increases

¢ Things you’ll be learning:
§ how computers work, a basic foundation

§ how to analyze their performance (or how not to!)

§ issues affecting modern processors (caches, pipelines)

¢ Why learn this stuff?
§ you want to call yourself a “computer scientist”

§ you want to build software people use (need performance)

§ you need to make a purchasing decision or offer “expert” advice

Why Do We Care…

5

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
¢ Most CS courses emphasize abstraction
§ Abstract data types
§ Asymptotic analysis

¢ These abstractions have limits
§ Especially in the presence of bugs
§ Need to understand details of underlying implementations

¢ Useful outcomes from taking 213
§ Become more effective programmers

§ Able to find and eliminate bugs efficiently
§ Able to understand and tune for program performance

§ Prepare for later “systems” classes in CS
§ Compilers, Operating Systems, Networks, Computer Architecture, Embedded Systems, Storage

Systems, etc.

6

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

¢ Example 1: Is x2 ≥ 0?

§ Float’s: Yes!

§ Int’s:
§ 40000 * 40000 ➙ 1600000000
§ 50000 * 50000 ➙ ??

¢ Example 2: Is (x + y) + z = x + (y + z)?
§ Unsigned & Signed Int’s: Yes!
§ Float’s:

§ (1e20 + -1e20) + 3.14 --> 3.14
§ 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

7

Carnegie Mellon

Computer Arithmetic

¢ Does not generate random values
§ Arithmetic operations have important mathematical properties

¢ Cannot assume all “usual” mathematical properties
§ Due to finiteness of representations
§ Integer operations satisfy “ring” properties

§ Commutativity, associativity, distributivity
§ Floating point operations satisfy “ordering” properties

§ Monotonicity, values of signs

¢ Observation
§ Need to understand which abstractions apply in which contexts
§ Important issues for compiler writers and serious application programmers

8

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
¢ Chances are, you’ll never write programs in assembly
§ Compilers are much better & more patient than you are

¢ But: Understanding assembly is key to machine-level execution model
§ Behavior of programs in presence of bugs

§ High-level language models break down
§ Tuning program performance

§ Understand optimizations done / not done by the compiler
§ Understanding sources of program inefficiency

§ Implementing system software
§ Compiler has machine code as target
§ Operating systems must manage process state

§ Creating / fighting malware
§ x86 assembly is the language of choice!

9

Time Stamp Counter
§ Special 64-bit register in Intel-compatible machines
§ Incremented every clock cycle
§ Read with rdtsc instruction

Application
§ Measure time required by procedure

§ In units of clock cycles

Assembly Code Example

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

10

§ Write small amount of assembly code using GCC’s asm facility
§ Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

Code to Read Counter

11

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{

access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{

unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

12

Measuring Time
¢ Trickier than it Might Look
§ Many sources of variation

¢ Example
§ Sum integers from 1 to n

n Cycles Cycles/n
100 961 9.61

1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

13

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

¢ Memory is not unbounded
§ It must be allocated and managed
§ Many applications are memory dominated

¢ Memory referencing bugs especially pernicious
§ Effects are distant in both time and space

¢ Memory performance is not uniform
§ Cache and virtual memory effects can greatly affect program performance
§ Adapting program to characteristics of memory system can lead to major speed improvements

14

Carnegie Mellon

Memory Referencing Bug Example

§ Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

15

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {
int a[2];
double d;

} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

Location accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

16

Carnegie Mellon

Memory Referencing Errors

¢ C and C++ do not provide any memory protection
§ Out of bounds array references
§ Invalid pointer values
§ Abuses of malloc/free

¢ Can lead to nasty bugs
§ Whether or not bug has any effect depends on system and compiler
§ Action at a distance

§ Corrupted object logically unrelated to one being accessed
§ Effect of bug may be first observed long after it is generated

¢ How can I deal with this?
§ Program in Java, Ruby, Python, ML, …
§ Understand what possible interactions may occur
§ Use or develop tools to detect referencing errors (e.g. Valgrind)

17

Carnegie Mellon

Great Reality #4: There’s more to performance than
asymptotic complexity

¢ Constant factors matter too!
¢ And even exact op count does not predict performance

§ Easily see 10:1 performance range depending on how code written
§ Must optimize at multiple levels: algorithm, data representations, procedures, and

loops

¢ Must understand system to optimize performance
§ How programs compiled and executed
§ How to measure program performance and identify bottlenecks
§ How to improve performance without destroying code modularity and generality

18

Carnegie Mellon

Memory System Performance Example

¢ Hierarchical memory organization
¢ Performance depends on access patterns

§ Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms 2.0 GHz Intel Core i7 Haswell

19

Why The Performance Differs

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

copyij

copyji

20

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

¢ They need to get data in and out
§ I/O system critical to program reliability and performance

¢ They communicate with each other over networks
§ Many system-level issues arise in presence of network

§ Concurrent operations by autonomous processes
§ Coping with unreliable media
§ Cross platform compatibility
§ Complex performance issues

21

Carnegie Mellon

Course Perspective

¢ Most Systems Courses are Builder-Centric
§ Computer Architecture

§ Design pipelined processor in Verilog
§ Operating Systems

§ Implement sample portions of operating system
§ Compilers

§ Write compiler for simple language
§ Networking

§ Implement and simulate network protocols

22

Carnegie Mellon

Course Perspective (Cont.)

¢ Our Course is Programmer-Centric
§ Purpose is to show that by knowing more about the underlying system, one can be more effective as a

programmer
§ Enable you to

§ Write programs that are more reliable and efficient
§ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers
§ Cover material in this course that you won’t see elsewhere
§ Not just a course for dedicated hackers

§ We bring out the hidden hacker in everyone!

23

What is a computer?
Hardware Components and Organization:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

24

Memory Hierarchy

Registers

On-chip L1
cache (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

Off-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from cache memory.

L2 cache holds cache lines
retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

25

Cache Memories

Main
memory
(DRAM)

Memory
bridge

Bus interface
L2 cache
(SRAM)

ALU

Register file

CPU chip

Cache bus System bus Memory bus

L1
cache

(SRAM)

26

OS Abstracts HW

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

Processor Main memory I/O devices

Processes

Files

Virtual memory

27

Summary

¢ The Computer system is more than just hardware!
¢ We have to understand both the hardware and the system

interfaces to properly understand and use a computer.
¢ The rest of this semester will be spent studying these

concepts in much more detail.

