
Computational Emancipation of Problem Domains

Teodor Rus
The University of Iowa

Department of Computer Science
Iowa City, IA 52242, USA

Email: rus@uiowa.edu

Abstract—In this paper we show how cloud computing can
be used as a mechanism that supports computer integration
within the problem solving process, independent of problem
domain. The paper is organized as follows: Section II discusses
the domain based problem solving process; Section III presents
the domain algorithmic language, to be used by domain experts to
develop domain algorithms for solving their problems; Section IV
describes the process of computational emancipation of problem
domains, which allows computer to be integrated within the
specific problem solving process, characteristic to the domain;
Section V describes the domain dedicated virtual machine, used
to execute domain algorithms on the Internet, as web services;
Section VI sketches the cloud computing implementation of the
DAL System, the system that allows domain experts to subscribe
to cloud for computer services required by their problem domain
solving algorithms.

I. INTRODUCTION

The problem we address in this paper is the integration of
the computer as a brain assistant within the human problem
solving process. Original computers have not been developed
as problem solving tools. Rather, computers were developed
as number crunching tools to be used by mathematicians and
engineers. The computer based problem solving methodology
provided by the creators of the original computer consists of:

• Formulate the problem;

• Develop a solution algorithm;

• Encode the algorithm and its data into a program in
the language of the computer;

• Let the computer execute the program;

• Decode the result and extract the solution of your
problem.

This problem solving methodology offers computer program-
ming as an “one-size-fits-all” pattern for computer use as a
problem solving tool, independent of the problem domain.
Therefore one may say that this paradigm of computer use as
a problem solving tool integrates the problem solving process
within the computer.

Difficulties of this approach of using computers as prob-
lem solving tools result from the requirement to encode the
algorithm into a program, which implies knowledge about
computer architecture and functionality. Computer science
experts diminish these difficulties by developing software
tools (operating systems, programming languages, compilers,
interpreters, graphic user interfaces, etc.,) which raise the

machine language abstraction level towards the logical level of
problem solving process. The software tools thus created allow
people to avoid thinking in terms of binary signal processing
employed by the machine. But, irrespective of their level of
abstraction, these software tools represent machine computa-
tion concepts: they do not represent the concepts used by the
human problem solving process. Therefore, in order to use the
computer during problem solving process one needs to learn
the language provided by software tools, thus increasing the
level of professionalism required to computer user. However,
by increasing the number and the complexity of the problem
domains where computer is used as a problem solving tool,
the number and the complexity of software tools required
by the translation from problem domain language into the
software tool language increases dramatically. Consequently,
current software complexity reached a level where it threatens
to kill the current computer technology itself (Horn, 2001). To
tackle this situation pioneers of current software technology
(Markoff, 2012) suggest “Killing the Computer to Save It”.

Successes of computer use during problem solving process
have evolved software tools at the level of information pro-
cessing services (SaaS, 2010). Moreover, currently the net-
working technology allows software tools to be exchanged as
standalone pieces of composeable tools called Web Services
(WS). A new problem solving paradigm based on WS-s
emerges, where computer based problem solving process is
split between problem domain expert and computer expert
according to their expertise as follows:

• Problem domain expert formulates the problem and
the solution algorithm in terms of problem domain
concepts;

• Computer expert implements software tools and do-
main concepts as web services using computer lan-
guages;

• Computer user acquires and manipulates WS-s in
order to solve her problems.

The architecture of the problem solving software resulted
depends upon the problem domain and evolves as a Service
Oriented Architecture (SOA). The computer platform that runs
it is transparent to the problem solver. Therefore, one may
say that with this problem solving methodology computer is
integrated within the human problem solving process. The
problems raised by the interoperability of WS-s components
of SOA-s are resolved using new standards. XML technology
led to the development of three main standards that are used
for the implementation of SOA-s:

1) Standard (Small) Object Access Protocol (SOAP),
a standard that allows applications to invoke WS-s
irrespective of the computer architecture on which
they run.

2) Web Service Description Language (WSDL), a stan-
dard that allows software developers to describe WS-s
such that they can be discovered and used by other
developers.

3) Universal Description, Discovery, and Integration
(UDDI), a standard registry that allows software
developers to advertise, sell, and buy WS-s.

These standards transform computer based problem solving
process into a computer business where the exchange unit is
the WS. Unfortunately this computer business is not targeted to
the computer user. By the contrary, in addition to the language
of the software tools, now computer user needs also to learn
the intricacies of Web Programming, the language of the WS-s
and SOA-s.

The recent hype about Cloud Computing (CC) promises to
bring computers as problem solving tools to the masses. How-
ever, so far the main research on CC (Srinivasan and Getov,
2011) concerns mostly cloud infrastructure management, ex-
pressed in terms of Virtual Machines (VM-s) populating the
cloud at a given time. But current VM-s in the cloud context
are abstractions of computer architectures not abstractions of
problem domains. Therefore CC is addressed to computer
experts not to problem domain experts. Moreover, the goal of
CC is stated mostly in terms of computer resource optimization
and efficiency, not in terms of how computer use can be
addressed to masses. We believe that populating the cloud with
domain dedicated virtual machines CC can become a problem
solving tool dedicated to masses.

In this paper we show how cloud computing can be used
as a mechanism that supports computer integration within
the problem solving process, independent of problem domain.
The paper is organized as follows: Section II discusses the
domain based problem solving process; Section III presents the
domain algorithmic language, to be used by domain experts to
develop domain algorithms for solving their problems; Section
IV describes the process of computational emancipation of
problem domains, which allows computer to be integrated
within the specific problem solving process, characteristic to
the domain; Section V describes the domain dedicated virtual
machine, used to execute domain algorithms on the Internet,
as web services; Section VI sketches the CC implementation
of DAL System, the system that allows domain experts to
subscribe to the cloud for computer services required by their
problem domain solving algorithms.

II. PROBLEM SOLVING PROCESS

Problem and problem solving are among the few con-
cepts computer scientists use without defining them, un-
der the assumption that everybody understands them a pri-
ori. However, for different domains of activity problem and
problem solving may mean different things. For example,
for a high-school student solving the equation a ∗ x2 + b ∗
x + c = 0 means the development of the formula x1,x2 =
(−b+ |−

√
b2−4∗a∗ c)/(2∗a) which when fed with the

coefficients a,b,c of the equation evaluates to the numbers
x1,x2 that satisfy the equality a∗x2 +b∗x+c = 0. On the other
hand, for a computer expert this may mean the development
of a program that inputs the numbers a,b,c and evaluates the
expression a ∗ x2 + b ∗ x + c for all x ∈ [MinR,MaxR], where
MinR and MaxR are minimum and maximum real numbers
representable in machine memory, and outputs those x for
which the value of a∗ x2 +b∗ x+c is zero. Teaching students
the art of problem solving, Polya (Polya, 1957) has defined
the concepts of a problem and problem solving as follows:

To have a problem means to search consciously for
some action appropriate to attain a given aim. To
solve a problem means to find such an action.

Notice that hidden here are three things: unknown, action,
purpose. These concepts are independent of problem domain,
therefore Polya’s definition is robust. Polya’s problem solving
process involves the operations: identify the unknown, find
the action that leads from the given data to the discovery of
unknown, and check that the unknown thus found satisfies the
purpose, i.e., satisfies the condition that characterizes the prob-
lem. Unknown, action, and purpose are natural language terms
used to formulate and solve problems in any problem domain.
In any scientific domain the natural language ambiguities in
problem formulation and solution algorithm development are
resolved by the domain context. That is, for mathematician
an unknown may denote a mathematical abstraction while
for a chemist it may denote a concrete chemical substance;
the actions performed by the mathematician while developing
a solution algorithm perform operations with mathematical
abstractions while the actions performed by the chemist are
operations with concrete physical instruments and chemical
substances. Scientists solving problems manipulate the objects
of their sciences whose meanings are different though their
natural language notations may be the same. That is, though
the natural language is infinite through the infinity of the
discourse it manipulates, in any given domain the language
used by the domain expert is unambiguous and is finitely
generated by the mechanism of knowledge acquisition and
use. Consequently, the problem solving process proposed by
Polya is linguistically unambiguous and domain independent.
Focusing on mathematical objects, Polya formulates it as the
four steps problem solving methodology:

1) Formalize the problem;
2) Develop a plan (an algorithm) to solve the problem;
3) Perform the algorithm on the data characterizing the

problem;
4) Validate the solution by checking the validity of

problem conditions.

The requirement to formalize the problem means to express
the three characteristic concepts components of the problem,
unknown, condition, data, as mathematical objects. The result
of “problem formalization” step depends upon mathematical
knowledge and problem understanding. The requirement to de-
velop a solution algorithm asks the problem solver to discover
a sequence of well-coordinated operations which when applied
to the data characterizing the problem leads to the values
of the requested unknowns. The algorithm could be defined
over a class of problems a member of which the problem at

hand is, or it could be a heuristic that is used for one given
problem when no good algorithm is known. The requirement
to perform the algorithm asks the problem solver to actually
execute the operations involved in the algorithm using her
brain as a tool. This means to instantiate the problem by
appropriate data, conditions, and unknown and to execute the
operations defining the algorithm on the problem instance thus
obtained. The requirement to validate the solution means to
shows that conditions characterizing the problem are satisfied
by the solution discovered by the algorithm execution.

There are two kinds of difficulties involved in Polya problem
solving methodology: difficulties that pertain to the discovery
of the problem solving algorithm and difficulties that pertain
to the execution of the problem solving algorithm. Algorithm
discovery is characteristic to human problem solving process
and due to the diversity of human range of problem domains
and problems there is little mechanical help for general algo-
rithm discovery. However, computers evolved from tools that
can help performing numerical operations to tools that can
perform any kind of well-defined operations. Hence, computer
can be used to help with algorithm execution irrespective of
the problem and problem solving algorithm. To straighten the
mechanism used by computers to perform operations during an
algorithm execution, we give below an algebraic specification
of a computer (Rus and Rus, 1993):

beginSpec Computer
name Hardware System is
sort Memory, Processor, Devices, Control;
opns receive:Device x Control->Memory;

transmit:Memory x Control->Device;
store:Processor x Control->Memory;
fetch:Memory x Control->Processor;
process:
Memory x Processor x Control->Processor,
Memory x Processor x Control->Memory,
Processor x Control->Processor;

vars PC:Control;
axms PC.operation is receive|transmit|stores|

fetch|process;
actn PEL: while PluggedIn and PowerOn do

l_0: Perform(PC);PC:=Next(PC):ˆl_0
endSpec Computer

The essential part is the action Program Execution Loop
(PEL) composed of the functions Perform() and Next().
Perform() takes as the argument the control register called
Program Counter (PC) and evaluates the operation encoded
as its contents; Next(PC) determines the operation of the
algorithm to be performed next. Computer Based Problem
Solving Process (CBPSP) uses Polya methodology where
problem solving algorithm is performed by a computer. This
requires that problem characteristic components unknown,
data, condition, as well as problem solving algorithm, be
encoded in computer memory. The process of this encoding
has been called the computer programming. In addition, a
mechanism for activating the computer on a given program and
for controlling computer’s actions during program execution,
must also be provided. This has been called the program
execution.

Computer programming and program execution are tedious
and error prone tasks, and they require problem solver to
be a computer expert. So, to make computers usable by the
human problem solving process, an evolving collection of pro-
gramming tools have been developed as the system software.
According to services provided for program development and
execution, system software tools can be classified as translators
and operators. Translator tools allow programmers to use
high level mnemonic terms for machine operations during
programming process. Operator tools manipulate computer re-
sources (memory, processor, devices, control, information) and
events (interrupts and exceptions) that occur during program
execution process. But it doesn’t matter the abstraction level
of the terms used to denote computer resources, events, and
system software tools, these terms represent computer elements
and computer computation concepts. Software tools are not
problem domain concepts. Therefore CBPSP actually embeds
problem solving process into the computer language, irrespec-
tive of the problem it solves. To bring computers to masses
it means to reverse this process, i.e., to embed the computer
into the problem solving process. This is achievable by letting
computer user employ the computer during the algorithm
evaluation as a brain assistant that performs operations required
by the control flow of the algorithm evaluation process. Current
computer technology makes this task feasible by developing
software tools that allow domain expert and computer expert to
share the problem solving process according to their domains
of expertise, as follows:

• Problem domain experts formulate problems and de-
velop solution algorithms using problem domain log-
ics;

• Computer experts develop software tools and provide
them to computer users as web service;

• Computer network experts develop tools that allow
problem solvers to ask computer networks to perform
the tasks involved in their problem solving processes.

The new software tools required by this computer based
problem solving methodology are:

• The Domain Algorithmic Language (DAL) a compu-
tational language to be used by the problem solver to
express problem solving algorithms.

• Computational Emancipation of the Application Do-
main (CEAD), which provides a data-representation
of the problem domain that automates algorithm eval-
uation using a Domain Dedicated Virtual Machine
(DDVM);

• The DAL System that implements the DDVM (in the
cloud) and offers computer services to the computer
user by subscription, without asking computer knowl-
edge in order to consume these services.

III. COMPUTATIONAL LANGUAGE OF THE PROBLEM
DOMAIN

Polya’s problem solving methodology is centered around
problem formalization and problem solving algorithm devel-
opment, using problem domain concepts. This is easily done
for mathematical problems because mathematical well defined
concepts are implicitly formalized. But for other problem
domains, problem formalization and algorithm development
may not be so obvious. However, whatever problem domain
may be, problem formalization means define problem con-
cepts and methods in terms of well-understood concepts and
methods. Using a mathematical say, “one cannot expect to
be able to solve a problem one does not understand”. Our
conjecture here is that solvable problems of any problem
domain are expressible in terms of a finite number of well
defined concepts. This is trivially true for the common sense
problems raised by the usual real-life. A formal proof of this
conjecture can actually be sought using decidability theory
(Sipser, 2006).

We assume further that for a problem solver, the problem
domain consists of a set of well defined domain characteristic
concepts, and is modeled by a tree as shown in Figure 1.

Primitive Defined Primitive Defined

Data Concepts

�� HH
Action Concepts

�� HH

Concept

1

. . .
Concept

i

. . .
�� HH

Concept

n

Domain Tree Modeling

⇠⇠⇠⇠⇠⇠
XXXXXX

Figure 1: Tree modeling of a problem domain

1

Fig. 1. Tree modeling of a problem domain

The Primitive leaves
of the modeling
tree represent
domain characteristic
concepts that are
common to all domain
experts. Primitive data
are expressed by the
concepts of variable
and value. Primitive
actions are expressed

by the simple phrases of the form: Sub ject Action−→ Ob ject,
Sub ject

Property−→ Ob ject where Sub ject and Ob ject are data or
actions (as appropriate), and Action−→ and

Property−→ are operations
to perform or predicates to check, expressed by the common
linguistic jargon of the domain. The Defined leaves of the
modeling tree represent concepts created by problem solving
process and are specific to the problem solver. However, the
mechanisms used to define new data and action concepts
during problem solving process are specific to the domain. We
assume here that data definition mechanisms are formalized
by mathematical concepts of pair, vector, table, list, set,
function. Linguistic expressions of these definitions are
domain characteristic and are tailored to the problem and, as
appropriate, are formulated by the problem solver. The action
definition mechanisms are formalized by mathematical rules
that define the action-composition operations by expression-
well-formation, concatenation, choice, iteration. The linguistic
expressions of these definitions are domain specific phrases.

These are actually valid expressions in the natural language
of the problem solvers, which are understood by all domain
experts because these expressions uses only concepts familiar
to the domain experts.

This domain modeling implies that the solution (algorithm)
of any domain problem defines a new characteristic concept

of the problem domain. Consequently, by problem solving,
a problem domain becomes a potentially infinite collection
of concepts usable to solve other potential problems of that
domain. Problem solutions (algorithms) are expressed in terms
of concepts and operations characteristic to the domain.

For example, for a high-school student learning arithmetic,
the problem domain may be characterized by the set I of
integer numbers with the operations + : I×I → I, − : I×I → I,
∗ : I× I → I. Then, solving the equation a ∗ x + b = 0, a,b ∈
I,a 6= 0 means finding c ∈ I such that a∗ c+b = 0. Using the
properties of equality, the problem solver develops the formula
c = a/b. But one can easily observe that a/b is not always an
integer. Therefore, problem solver concludes that a∗x+b = 0
is not always solvable over the set of integers. However, if she
extends I to R, the set of all real numbers, then the equation
a ∗ x + b = 0 is solvable and its solution is x = −b/a. Since
division by zero is not defined, the problem solver requires
the condition a 6= 0.Thus, by solving the problem a new well-
defined concept, the set R of real numbers, has been developed
and problem domain was enlarged with the new concept.

The specification of the Domain Algorithmic Language (DAL)
can be done using a vocabulary that contains language terms
used for few characteristic concepts of the domain, and very
simple rules for sentence formation. The potential ambiguity
of these terms is eliminated by their meaning in the domain.
In other words, though phrases containing these terms may be
ambiguous as natural language expressions, these ambiguities
are transparent for a domain expert. That is, for a problem
domain D, DAL(D) is the language spoken by an expert of
the domain D.

The problem solving process expands the vocabulary of
DAL(D) with the terms used to name problem solutions. In
addition, problem solution expressions (algorithms) expand
the sentence formation rules with the rules provided by the
solution expression. This mimics the natural learning process
that characterizes the problem domain. We should observe
here the difference between computer languages and DAL.
Computer languages have a fixed vocabulary (lexicon) and a
fixed set of algorithm well formation rules. DAL’s vocabulary
(lexicon) and the concept terms well formation rules evolves
dynamically with the domain learning process.

Formally DAL may be specified using a pattern similar to the
pattern used to specify computer languages, which consists
of given a finite set of BNF rules specifying terms denoting
domain characteristic concepts and few simple BNF rules for
statement formation. Further, DAL specification mechanism
allows both its vocabulary and formation rules to grow dynam-
ically with domain learning process. We call this the process of
DAL’s evolution. Since DAL terms and algorithms are natural
language concepts (though they may have machine represen-
tations) domain experts can freely reuse them as components
of the new concepts and solution algorithms developed during
problem solving process, while preserving the unambiguity of
DAL.

Grammatically, the initial terms of the DAL vocabulary
would be categorized as nouns, verbs, adjectives, and ad-
verbs. The statement formation rules are chosen to fit

the Resource Description Framework (RDF) used by the
Semantic Web (McBride, 2004; Kline and Caroll, 2004),
Sub ject Action−→ Ob ject, Sub ject

Property−→ Ob ject, where Sub ject,
Ob ject, Action, Property are elements of the DAL vocabulary.
Of course, solution algorithms developed by the problem
solving process are seen as statement formation rules expressed
in terms of the already defined statement formation rules.
The evolving DAL specification defined above could be best
illustrated by any of the formal systems provided by the
axiomatic specification of set theory (Takeuti and Zaring,
1971).

Computational nature of DAL is obtained by DAL’s semantics
specification using a description logic (Badder et al., 2005)
whose model is defined as follows:

• Implement every concept C of the DAL terminology
as a web service WS(C). Let URI(C) be the URL of
the WS(C).

• Implement formation rules Sub ject Action−→ Ob ject by
web services WS(Action) whose input and output are
elements of Sub ject×Ob ject.

• Implement formation rules Sub ject
Property−→ Ob ject

by web services WS(Property) that input tuples of
Sub ject×Ob ject and return true or false.

• Implement every solution algorithm by a web service
obtained by the composition of the web services
employed in the algorithm using the following rules:

1) Implement concept concatenation C1;C2 by
service concatenation WS(C1);WS(C2);

2) Implement concept composition C1(C2) by
service composition WS(C1)(WS(C2));

3) For each domain specific operator, rator, im-
plement concept composition C1 rator C2 by
a domain specific web service composition
operator WS(rator)(WS(C1),WS(C2)).

In order to allow algorithm evaluation by the problem solver
using the computer as a brain assistant, we further structure
DAL and its model using a domain ontology represented by a
file in the Web Ontology Language, (OWL) (McGuinness and
van Harmelen, 2003). For a problem domain D, let OWL(D) be
the OWL file representing the DAL(D). A solution algorithm
in the domain D is then executed by the problem solver
using an approach similar to the usage of a calculator to
evaluate an expression. However, data and operations of the
DAL algorithm are evaluated using computers available on
the Internet and the OWL(D) as follows. Let A be a solution
algorithm to be executed.

1) Map the expression of A into an expression tree. A
Polish-form (prefix or postfix) can be used to express
this tree. Let PF(A) be the postfix form of the DAL
algorithm.

2) Evaluate PF(A) using a stack and OWL(D), by the
following rules:

a) Examine the PF(A) from left to write.
b) If a data concept d is examined, search d in

the OWL(D). Let URL(d) be the web service
implementing the concept d. Call the web

service at URL(d) and push the result on the
stack;

c) If an action a (operation or property) is
examined, search a in the OWL(D) and let
URL(a) be the web service implementing a.
Call URL(a) taking as input arguments the
elements on top of the stack. Let r be the
result. Delete the arguments taken as input by
URL(a) from the top of the stack and push r
on the stack;

d) The result of the DAL algorithm evaluation
is on top-of the stack when the PF(A) is
completely examined.

This algorithm is well-known in compiler construction (Aho
et al., 1986) and does not require any computer knowledge
in order to perform it by a domain-expert. However, in this
context the PF(A) algorithm interpretation assumes that: (a)
problem domain is represented as a data structure (the OWL
file) that can be searched by the computer user, and (b) domain
concepts are implemented as web services available on the
Internet. Since computer user handles only domain concepts,
this paradigm of computer use integrates the computer within
the problem solving process.

Note: though the DAL algorithm evaluation described above
follows a sequential approach, it can be implemented by a
distributed system, as we shall see in Section V.

IV. COMPUTATIONAL EMANCIPATION OF A PROBLEM
DOMAIN

The DAL algorithm execution discussed in Section III
demonstrates that current software technology allows computer
integration within the problem solving process, as a brain
assistant. But this integration lacks the efficiency because
computer user spends all the time searching for web services
in the OWL(D). In addition, it imposes new complexities
during problem solving process determined by the structure
of the OWL(D) and by the web service calling mechanism.
Therefore, in order to be effective, this integration must be
automated. How can this be done?

CEAD is the process that transforms the DAL from a frag-
ment of natural language used by the problem solver during
problem solving process into a computational language used to
automate the problem solving process. Therefore CEAD can
actually be seen as a new step towards domain formalization
described in Section III and can be achieved by:

1) Software tools to automate the process of domain
ontology creation and implementations using the
OWL(D);

2) Software tools that automate WS generation and
optimize the search for the concept implementation
in OWL(D) during the DAL algorithm execution;

3) Software tools that automate the process of WS
evaluation during DAL algorithm execution;

4) Software tools that expand domain ontology with
the terms denoting new algorithms developed during
problem solving process and with the formation rules
provided by these algorithms.

Many such software tools are already provided by current
software technology. However, these tools have not been
designed with this goal in mind. Therefore, while computer
research creates tools dedicated to the goal set forth by the
CEAD process, the challenge is to use the existing software
as appropriate, in the context of the new problem solving
methodology, which integrate the computer in the human
problem solving process, further referred to as the Web Based
Problem Solving Process (WBPSP).

A. Domain Ontology

In this paper, domain ontology is a mechanism that fa-
cilitates the goal of domain algorithm execution, by the do-
main expert, employing the computer as a brain assistant,
which uses web services to perform algorithm’s operations.
Therefore, while much of current work on ontology focuses
on development and modeling (Guarino and Welty, 2000;
Guarino and Welty, 2002; Welty and Guarino, 2001; Hruby,
2005) we concentrate on a Domain Ontology structuring
and representation that supports the automation of concept
identification in the domain ontology and the execution of the
web services implementing domain concepts. Since WBPSP
ensures domain evolution by the problem solving process, our
ontology structuring must be automatically updated with the
new concepts representing problems and solution algorithms.
Hence, the ontology structuring we assume here is similar to
that described in (Rector, 2003). That is:

1) The domain ontology is specified by a taxonomy
that is representable by a collection of disjoint trees
whose nodes are primitive concepts of the domain
and whose edges are relationships interpreted as
logical subsumptions, that is to say that if concept
C1 subsumes concepts C2 then ∀x.C1(x)→C2(x).

2) Ontology trees are of two kinds: DataConcept trees
and ActionConcept trees. The relations among them
are explicitly specified by definitions. Example of
such definitions are the references to the input and
the output of actions used in the domain algorithms.

3) New concepts are constructed by domain specific
tree constructors which represent problem solving
algorithms.

The methodology we use to build a domain ontology is
similar to the “adaptive methodology” reported in (Open-
Structs,TechWiki,2011) tailored to the goal of WBPSP. That
is, the domain ontology reflects the problem solving process
which evolves the ontology by the user learning process, and
thus consists of two parts: a part that represents the user own
ontology and a part that represents the domain expert ontology.
Domain Expert Ontology (DEO) is built by hand, using a small
taxonomy chosen from a textbook. This is performed by a
collaboration between domain expert and computer expert as
shown in Figure 2.

The User Own Ontology (UOO) is built automatically by
tools from the DEO, thus extending automatically the TBox
and the ABox during algorithm execution by the DDVMs.
That is, initially UOO coincides with the DEO. Then, during
problem solving process UOO is automatically expanded with
new concepts representing problems and solution algorithms
developed by the particular user. Hence, at a given time, the

domain ontology consists of the core DEO, that is available to
all domain users, and a private part (UOO) which is specific
to a given domain user. The DEO may be extended by the
system to represent the domain evolution containing the new
domain discoveries developed by the activity of the collection
of domain users. This may be illustrated with the evolution of
arithmetic ontology to a vector space.

Define terms
Declare axioms
DAL algorithms

Domain expert

Execute
DAL algorithms

Web expert
Implement WS
Develop DAL

Ontologies

Computer expert

-�
Update

DAL
-�

Update

OWL

Figure 1: Domain Ontology Implementation and Use

1

Fig. 2. Domain Ontology Implementation and Use

Consider
an
application
domain
modeled by
a tree as
shown in
Figure 1.
Data
concepts represent data that can be used in a computational
process such as input and output of such a process. The
three attributes of a data concept are: type, value, literal.
The type of a data concept is defined by the collection of
operations defined on that data; the value of the data concept
is the abstraction it represents; and the literal is a string
representing that data value during problem solving process.
For example, Integer type is defined by the collection of
operations identified by +, -, *, / where +, -, * are total
operations and / is a partial operation; Integer values are
decimal numbers and are formally defined as cardinals of
sets; Integer literals could be sequences of decimal digits
(potentially prefixed by + or -) representing integer numbers.
Using appropriate definitions, one can extend the primitive
operations +, -, *, / to the operations add, subtract,
multiply, divide, which are defined on Number that subsumes
both Integer and Rational.

The CEAD process associates both data concepts and action
concepts of the domain modeled with WS-s which represent
their semantics. As suggested in Figure 2, the WS-s are
constructed by computer experts cooperating with domain
experts. For example, the concepts in the arithmetic domain
in Figure ?? are modeled by WS-s automatically generated
from Java classes as we shall see further.

The domain concepts are represented in the OWL file by
their properties. As seen above, a data concept such as
Integer, has three main attributes: type, value, and lit-
eral. These attributes are represented in OWL language by
three properties: hasType, hasValue, and hasLiteral. The
RDF triples of these properties look like: Integer

hasType−→
URI(integerType), Integer

hasValue−→ URI(integerValue), and
Integer

hasLiteral−→ URI(integerLiteral). The action concepts like
add, subtract, multiply, etc., are associated with WS-s
which implements them via a Concept Agent. There could
be several WS instances that implement the same concept so
that if one instance is down other instances can take over. For
example, the concept add may have the agent addAgent imple-
mented by two WS instances: addInstance1, addInstance2.
The agent maintains the list of web services which it can ex-
ecute as implementations of the action it performs. Therefore,
the RDF triples that define an action concept a in the OWL
file will look like: a

hasAgent−→ aAgent and aAgent
implementedBy−→

aInstance_1; . . .; aAgent
implementedBy−→ aInstance_n. For

example, the add action of the Integer type is repre-
sented in OWL by the RDF triples: add

hasAgent−→ addAgent,
and addAgent

implementedBy−→ addInstance1, addInstance2.
The signature Integer × Integer add−→ Integer of the add ac-
tion is represented in the OWL file using the three RDF
triples: add

hasInput−→ IntegerPair, add
hasOut put−→ Integer, and

add
hasAgent−→ addAgent.

B. Using Protegé For OWL File Development

An OWL file is usually composed of a header and a
body. The header tells us about the namespaces used in the
ontology document and the ontology documents imported in
the ontology document. Each namespace is specified by a
Prefix construct and each ontology imported is specified
by an Import construct. The body is basically composed
of entity declarations (classes, properties, objects, individuals,
axioms). Such declarations are in the form of RDF triples.
We may use either XML syntax or OWL 2 Manchester
Syntax (OWL2,2009) to express them. Though XML syntax
is verbose, we believe that it is better understood by people
and therefore we use XML syntax in the examples that follow.
Since the goal of this paper is to describe a system that allows a
computer user to perform problem solving using her computer
as a brain assistant, we simplify the concept representation
in OWL language and split the activity of OWL file creation
in two steps. The first step is where the domain concepts
are represented in the OWL file without being associated
with web services implementing them, and the second step
is where concepts in the OWL file are associated with their
semantics. The first step is automatically performed by domain
expert using Protégé tool (Horridge, 2011), and second step is
performed by the computer expert collaborating with domain
expert. So far there are no tools assisting this activity. However,
as we shall see in the next section, such tools can be easily
developed.

Protege is an ontology editor tool which provides Graphical
User Interface (GUI) so that the process of editing OWL files
is easier. The user can create the OWL file by entering each
concept as a class via the Protégé GUI. The subsumption
relation present in the domain model is called the sub-class
relation in Protégé. The major benefit of using Protégé for the
first step of the OWL file development is automatic creation
of the OWL ontology file header. An example of an OWL
file as created by Protégé is shown below. To gain space we
collected all constructs Class:concept on one line though
Protégé would place each of them on its own line.

Prefix: xml: <http://www.w3.org/XML/1998/namespace>
Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Prefix: owl: <http://www.w3.org/2002/07/owl#>
Prefix: : <http://bula1.cs.uiowa.edu/ontologies/arithmetics.owl#>

Ontology: <http://bula1.cs.uiowa.edu/ontologies/arithmetics.owl>
Class:Integer Class:add Class:multiply Class:subtract Class:divide

C. Updating an OWL File with Web Services

The file created by Protégé in the first step of the CEAD
process represents a pure domain ontology where concepts

are predefined (primitive) and are not associated with their
implementations. We denote this file by domainPURE.owl.
The second step of the CEAD process consists of creating
the file domainCEAD.owl. This is initiated by including in the
domainCEAD.owl the file domainPURE.owl. Then the entities
in the file domainCEAD.owl are associated with computer
artifacts implementing them, thus performing the second step
of the CEAD process. This activity is standardized by the two
kind of knowledges we are handling: data concepts and action
concepts. The patterns used to specify data concepts and action
concepts consist of sequences of text lines where:

1) First line represents the domain term used to denote
the concept;

2) Each line that follows represents a property (in the
sense of OWL) of the concept specified on its pre-
vious lines. We use indentation conventions for the
identification of the domain and range of the property,
as follows:
Property term

Property Domain
Property Range

Since we use WS-s as semantics of data concepts the prim-
itive data are supplied by XML schema and are: xsd:int,
xsd:double, xsd:boolean, xsd:string, xsd:time, etc.,
(see XML schema). All the other concepts are represented in
terms of the predefined or already defined concepts.

The two kind of patterns that represent the two kind of
concepts are:

• Data concepts are specified by the pattern:
DataConcept: domain term used to denote it

Individuals: concept term itself as an individual
Objects: instantiations of the DataConcept

Individuals: object’s elements
Constant: an immutable element
Variable: a mutable element

Type: Set of action concepts available on the objects

Example data concept is the Integer which when fit
in the above pattern becomes:

Integer
integer
xsd:int

"3":int
x:int

Operations available on xsd:int

• Action concepts are specified by the pattern:
ActionConcept: domain term denoting the action

Individuals: concept term itself as an individual
Objects: instantiations of the ActionConcept
Input: a data concept
Output:a data concept
Agent: language expressions of the action

Implemented by:
Brain | Hardware | Software

Resource implementing
Communication protocol

Example of action concept is:
ActionConcept: add

"add"
add | + | add-code | etc.
Input: (integer, integer)
Output: integer
Agent: URI(addAgent)

Implemented by
Software

URI(WebService)
SOAP

Note: though the representation structure of the domain con-
cepts is standardized, when they are represented in the OWL
file these standards may vary. Therefore the concrete rules used
to represent domain concepts in OWL(D) are collected by the
computer expert in an OWL file called here cead.owl. The
cead.owl is an XML file that contains OWL rules used to
describe domain concepts in the domainCEAD.owl file. The
structure of this file is defined by the template:

<?xml version="1.0"?>
<rdf:RDF attributes defining namespaces>

Ontology imported
Concepts
Properties

</rdf:RDF>

The namespaces in the head part of the cead.owl file are auto-
matically supplied by Protégé. In addition, the computer expert
provides the namespaces of the system. Example namespaces
pattern is:

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:p1="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:swrl="http://www.w3.org/2003/11/swrl#"
xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns="http://bula1.cs.uiowa.edu/cead.owl#"
xml:base="http://bula1.cs.uiowa.edu/cead.owl"
<owl:Ontology rdf:about="">

<owl:imports rdf:resource=
"http://www.daml.org/services/owl-s/1.1/Profile.owl"/>

</owl:Ontology>

Concepts are defined as XML elements whose tag is
owl:Class and whose Id is domain term such as DataConcept,
ActionConcept, Input, Output, etc. The RDF constructors such
as union, subClass, etc., may also be used. Example concept
definitions are:

<owl:Class rdf:ID="Concept">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#DataConcept" />
<owl:Class rdf:about="#ActionConcept" />

</owl:unionOf>
</owl:Class>
<owl:Class rdf:ID="ActionConcept"/>

<owl:Class rdf:ID="DataConcept"/>
<owl:Class rdf:ID="Input"/>

Properties of the concepts are defined as XML ele-
ments whose tags are OWL properties ObjectProperty,
DataProperty, FunctionProperty, whose ID attribute
identifies the property name, such as hasInput, hasOutput,
etc., and the XML element components define the domain,
range, and the type of the property. Example property defini-
tions are:

<owl:ObjectProperty rdf:ID="hasInput">
<rdfs:domain rdf:resource="#ActionConcept"/>
<rdfs:range rdf:resource="#Input"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="inputName">

<rdfs:domain rdf:resource="#Input"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:ID="serviceName">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DataProperty"/>
<rdfs:domain rdf:resource="#ServiceInstance"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:FunctionalProperty>

The description of namespaces, concepts, and proper-
ties in cead.owl follows a standard pattern. Therefore
the examples given above are sufficient to understand the
concept representation in arithmeticCEAD.owl that illus-
trates the domainCEAD.owl file. Here we illustrate WS
generation for domain’s primitive concepts using the file
ArithmeticsPure.owl. To simplify the matter we show only
the web services associated with the data concept Integer and
action concept add, and use XML syntax which we believe is
more accessible to the reader. The rest of the entities of the
ArithmeticsPure.owl ontology are treated similarly.

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://bula1.cs.uiowa.edu/ontologioes/arithmetic.owl#"
xmlns:sadl="http://bula1.cs.uiowa.edu/site/sadl.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:xs="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xml:base="http://bula1.cs.uiowa.edu/ontologies/arithmetic.owl"
xmlns:tns1="http://webservices.nld.cs.uiowa.edu/">

<sadl:DataConcept rdf:about="#Integer">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<sadl:description> Integer concept of arithmetics domain </sadl:description>
<sadl:dataType rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

xs:int
</sadl:dataType>

</sadl:DataConcept>

<sadl:ComputationalConcept rdf:about="#Add">
<sadl:description> Returns the sum of two integers </sadl:description>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<sadl:hasInput>

<sadl:Input rdf:ID = "addI1">
<sadl:inputType rdf:resource="#Integer"/>

<sadl:order> 1 </sadl:order>
</sadl:Input>

</sadl:hasInput>
<sadl:hasInput>

<sadl:Input rdf:ID = "addI2">
<sadl:inputType rdf:resource="#Integer"/>

<sadl:order> 2 </sadl:order>
</sadl:Input>

</sadl:hasInput>
<sadl:hasOutput rdf:resource="#Integer"/>
<sadl:hasProfile>

<owls2:Profile rdf:ID="addProfile">
<cead:implementedBy rdf:resource="#addServiceInstance1"/>

</owls2:Profile>
</sadl:hasProfile>

</sadl:ComputationalConcept>
<sadl:ServiceInstance rdf:ID="addServiceInstance1">

<sadl:uri rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://localhost:8080/ArithmeticsWebServices/calculator
</sadl:uri>

<sadl:wsdlFile rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
http://localhost:8080/ArithmeticsWebServices/calculator?wsdl

</sadl:wsdlFile>
<sadl:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Calculator Service
</sadl:serviceName>
<sadl:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

CalculatorServiceHttpSoap12Endpoint
</sadl:portName>
</sadl:ServiceInstance>
...
Copy all operatios

Copy concepts
</rdf:RDF>

For convenience, the domainCEAD.owl file is associated with
two dedicated namespaces:

• http://bula1.cs.uiowa.edu/site/domain.owl
which is one per domain called domain vocabulary
(in our case domain is arithmetic) where each term
is paired with the URI of the WS implementing it in
the cloud;

• http://bula1.cs.uiowa.edu/site/sadl.owl
which is the vocabulary of the domain dedicated
virtual machine used to perform computations, as
seen in section V, and it is the same for all domains.

The computer artifacts used to represent concept semantics
in the domainCEAD.owl file are in general developed by
computer experts collaborating with domain experts. They can
use any tools to implement them. The computer technology
abounds of such tools (Axis/Java, 2011; ApacheCXF, 2011;
Wikipedia, 2011; Metro, 2008) and many other. These tools
allow computer experts to develop WS by hand or to auto-
matically generate them from conventional computer artifacts
such as programs written in various programming languages
as are Java, C, C++, etc. Among these tools Apache Axis,
currently Apache Axis2, is a light-weight, yet powerful tool
for automatic WS generation from plain Java classes or C
functions. We develop WS-s used to CEAD a domain of
interest using two approaches:

1) WS-s associated with primitive concepts are
automatically generated from Java programs
using Apache Axis technology. The URL
bula-site.documentation shows how do we
use Axis2 in this project.

2) WS-s associated with user concepts defined during
problem solving process are automatically developed
by our own method as we shall see in section V.

V. DOMAIN DEDICATED VIRTUAL MACHINE

The efficiency of the DAL algorithm execution by problem
solver using the computer as a brain assistant is improved
by associating each concept used in the PF(A) with the WS
that implements it. This can be easily done by hand, by the
problem solver, or by an appropriate automaton that operates
on PF(A) and OWL(D). The result can be seen as a “program”
in the language of the brain assistant used by problem solver
to execute the DAL algorithm. However, since the operations
performed by this automaton (the brain assistant) are WS-s

implementing the concepts of the problem domain, we call it
the Domain Dedicated Virtual Machine (DDVM).

Formally, DDVM can be seen as a tuple DDVM =
〈ConceptC,Execute,Next〉 where:

• ConceptC is a Concept Counter, that, for a given DAL
algorithm A , points to the web service in the OWL(D),
that implements the concept, to be performed next
during the algorithm execution;

• Execute() is the process that execute the computations
in the WS pointed to by ConceptC;

• Next() is a function which determines the next concept
of the DAL algorithm A to be performed by Execute()
during algorithm execution.

The DDVM performs similarly with the PEL (see Section
II) and therefore the algorithm execution by DDVM can be
described by the following Domain Algorithm Execution Loop
(DAEL):

ConceptC = FirstDALConcept(DAL algorithm)
while (ConceptC is not End)

Execute (ConceptC);
ConceptC = Next(ConceptC, DAL algorithn)

Extract result + dysplay it to the user

On closer inspection one can easily see the similarity between
DDVM and a Virtual Monitor (Popek and Goldberg, 1974).
The ConceptC is an abstraction of the program counter, the
WS pointed to by the ConceptC is similar to the function
executed by the OS simulating instructions of the machine
implemented by the VM, and Next() is similar to the process
that determines the next instruction of the program run by
the VM. The difference is that the memory of the machine
implemented by DDVM is the OWL(D), the processor of
the DDVM is the collection of all processors available on
the Internet (in the cloud) that implement WS-s used in the
OWL(D), and the Next() is well defined by the relationship
of the data and operations in the Polish form of the DAL
algorithm expression. Therefore, the DDVM is a true domain
dedicated virtual machine.

Once an application domain is CEAD-ed, the automation of
DAL algorithm execution is based on two main software
components:

1) a translator that maps the DAL algorithm into an
expression tree whose nodes are labeled by domain
concepts associated with the URL of the WS-s im-
plementing them, and

2) an interpreter operating on the expression tree gen-
erated by the translator, executing WS-s encountered
at the tree nodes.

The translator is implemented by the conventional compiler
construction tools and the interpretor is implemented by a stack
machine similar to Java Virtual Machine (JVM).

For a given DAL algorithm A the mapping of A into the
expression tree ET (A) is automatically performed by the DAL

parser, that transforms A into its parse tree, PT (A). A bottom-
up traversal of the PT (A), that searches the OWL(D) for the
domain concepts used in the PT (A) and associates them with
the URL of the WS-s implementing them, maps the parse tree
PT (A) into the expression tree ET (A). The automation of
the DAL algorithm execution using the WS-s available on
the Internet requires the ET (A) to be transformed into an
appropriate language that has WS-s as operations performed
by DDVM. For this purpose we use the Software Architecture
Description Language (SADL) (Rus and Curtis, 2007; Rus,
2008).

A. Software Architecture Description Language

Software Architecture Description Language (SADL), in-
spired by Armani (Monroe, 2001), has been conceived as a lan-
guage suitable to describe functional behavior of component-
based software architectures, where components are standalone
and composeable pieces of software. Hence, its goal is sim-
ilar to the goal of the Intermediate Language (IL) used by
Microsoft’s ASP.NET Framework. However, SADL evolved
as a language suitable to describe functional behavior of
component-based software architectures, where components
are Web Services. Consequently the SADL software is de-
signed to run on the network, therefore CC provides a suitable
mechanism to implement it.

As any language, SADL syntax has a three layer structure: vo-
cabulary, simple constructs, and composed constructs. SADL
vocabulary is a dynamic collection of terms used to denote
problem domain concepts. Since SADL is meant as the target
for any DAL implementation, it needs to be implemented as a
domain dedicated namespace where each terms is associated
with the collection of semantic properties that defines it in
the respective domain. For example the term Integer in the
SADL namespace of the High-School Arithmetic is specified
by:

<cead:DataConcept rdf:about="#Integer">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<cead:description>

This is the integer number concept in arithmetics domain.
</cead:description>
<cead:type rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

xs:int
</cead:type>

</cead:DataConcept>

SADL vocabulary is the collection of DAL terms used
by problem solvers in their DAL algorithms during problem
solving process. Thus, from a computational viewpoint SADL
terms denote computer process names. The code executed
by these processes is associated with the term in the SADL
namespaces and specifies completely the WS implementing
that term. For example, the process executing the integer
addition is associated with the term addI as follows:

<cead:ActionConcept rdf:about="#addI">
<cead:description>

This is the add operation in the arithmetics domain.
</cead:description>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<cead:hasInput rdf:ID = "orderedPair">

<cead:pairFirst rdf:resource ="#Integer"/>
<cead:pairSecond rdf:resource = "#Integer/>
</cead:hasInput?
<cead:hasOutput rdf:resource = "#Integer/>
<cead:hasAgent>

<cead:Agent rdf:ID = "addAgent"/>
<cead:ImplementedBy = rdf:resource = "#addServiceInstance1"/>

</cead:hasAgent>
</cead:ActionConcept>

<cead:ServiceInstance rdf:ID="addServiceInstance1">
<cead:wsdlFile rdf:datatype = "http://www.w3.org/2001/XMLSchema#string:>

http://bula1.cs.uiowa.edu:8080/axis2/services/CalculatorService?wsdl
</cead:wsdlFile>
<cead:serviceName rdf:datatype = "http:www.w3.org/2001/XMLSchema#string">

CalculatorService
</cead:serviceName>
<cead:operationName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

add
</cead:operationName>
<cead:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

CalculatorServiceHttpSoap12Endpoint
</ceadPortName>

</ceadServiceInstance>

The simple constructs of the SADL are simple XML elements:
<tag attributes /> where tag is a term in the SADL
namespace and each attribute is a tuples of the form property
= "value" where property is a property of the process (data
are considered here as nulary operations) represented by the
term tag. For example, the process that perform the addition
of two integers is specified by: <ari:addI input = "x, y"
output = "z"/> where ari is the prefix of the namespace
“http://bula1.cs.uiowa.edu/owl/arithmetic.owl”.

The composed constructs of the SADL language are XML
constructs composed with the terms: foreach, if, ifthen,
next, etc. Example, the SDAL expression of the formula:
x1 = (−b−

√
b2−4∗a∗ c)/(2 ∗ a) is represented by the fol-

lowing XML code:

<ari:delta input="a, b, c" output="delta" />
<ari:sqrt input="delta" output="tmp1" />
<ari:unaryMinus input="b" output="tmp2" />
<ari:subtract input="tmp2, tmp1" output="tmp3" />
<ari:multiply input="2, a" output="tmp4" />
<ari:divide input="tmp3, tmp4" output="x1" />

Note that SADL composition operators are provided as tags
in the SADL namespace, as any other term of the problem
domain.

SADL expressions are SADL representations of DAL algo-
rithms.

B. SADL Interpreter

SADL interpreter inputs a SADL expression and interpret
it on a stack, in a manner similar to the byte-code interpretation
of a Java code. Since each SADL simple element composing
a SADL expression represents a process executed on Internet,
the flow of control during a SADL expression evaluation
requires synchronization of these processes. Thus, the SADL
interpreter performs a distributed implementation of the the
DAL algorithm. The simplest synchronization mechanism used
to control the flow of processes performing a DAL algorithm
is provided by a (wait, signal) inserted in the SADL
expression, after each SADL simple element. While this SADL
implementation performs DAL algorithm distributed, on Inter-
net, the algorithm execution is restricted to being sequential,
where the computation unit is the WS. This mechanism can
be extended to allow the processes executing a DAL algorithm
to perform in parallel.

C. Evolving Domain Ontology

One of the key ideas of the DAL system is to provide
a method that allows domain experts to create and extend
their own CEAD-ed domain knowledge base. The DAL system
solves this problem by allowing domain experts to create new
action concepts and data concepts.

1) Creating new Action Concepts: In order to create a new
action concept a domain expert expresses the new concept by
n DAL expressions which is then saved in a file. Then she
adds the concept to her UOO via an DAL Console program
by executing ”add2Onto <file>” command. This command
translates the DAL expression into a SADL expression and
sends it to her private space in the cloud, to which she
subscribed. An Ontology Manager in the cloud automatically
analyzes the submitted SADL expression and creates a new
domain concept in the user’s UOO with a name specified in
the DAL expression. The Ontology Manager also creates a
web service broker which wraps around the SADL code so
that the concept is available on the Internet as a standalone,
composeable software component. All the information about
this concept’s web service is automatically linked back to the
user’s UOO so that newly created domain concept is CEAD-ed.
From now on, the user can use that new concept as any other
CEAD-ed domain concepts such as using it in a DAL Consoles
or composing it with other CEAD-ed domain concepts in an
DAL expression to express the user’s new computation.

The above scenario is demonstrated with the example in high
school algebra that maps the algorithm solving quadratic equa-
tions into a new concept called Solver. We assume that the
DAL expression of the algorithm that solves quadratic equa-
tions is written as follows and saved as the file solver.nld:

algorithm "Solver";
description: "This is a quadratic equation solver.";
message: "Provide coeffs of equation axˆ2 + bx + c = 0";
input: a, b, c real;
output: x1, x2 real;
local: t real;
t = b * b - 4 * a * c;
if t >= 0 then

x1 = (-b - sqrt(t)) / (2 * a);
x2 = (-b + sqrt(t)) / (2 * a);

else
print "the equation has no real solution";

endif;

Then using the DAL Console program, the user executes
the command

add2Onto solver.nld

With the help of user’s profile including user’s CEAD-ed
ontologies and dictionaries, the DAL Console program trans-
lates the above DAL expression into the following SADL
expression:

<?xml version="1.0" encoding="UTF-8"?>
<sadl xmlns:xs="http://www.w3.org/2001/XMLSchema" name="Solver">
<imports>
<import type="ontology"
uri="http://bula1.cs.uiowa.edu/owl/arithmeticPURE.owl"/>
<import type="ontology"
uri="http://bula1.cs.uiowa.edu/owl/arithmeticCEAD.owl"/>
<import type="ontology"
uri="http://bula1.cs.uiowa.edu:8080/NLDPortal/profile/<user>/PURE.owl"/>
<import type="ontology"
uri="http://bula1.cs.uiowa.edu:8080/NLDPortal/profile/<user>/CEAD.owl"/>

</imports>

<declaration>
<inConst a, b, c type = "xs:double" />
<outVar x1, x2 type = "xs:double" />
<localVar t0 type = "xs:boolean" />
<localVar t1, t2, t3, t4, t5 type="xs:double" />
</declartion>
<perform>
<ari:delta input="a, b, c" output="t1" />
<ari:greaterOrEqual input="t1, 0" output="t0">
<ifTrue "t0">

<perform>
<ari:unaryMinus input="b" output="t2" />
<ari:sqrt input="t1" output="t3" />
<ari:add input="t2, t3" output="t4" />
<ari:subtract input "t2, t3" output = "t5" />
<ari:multiply input="2, a" output="t2" />
<ari:divide input="t4, t2" output="x1" />
<ari:divide input="t5, t2" output="x2" />

</perform>
<else>

<perform>
<print message="the equation has no real solutions" />
</perform>

</else>
</if>
</perform>

</sadl>

This SADL expression is then sent to the Ontology Manager
in the cloud. The Ontology Manager analyzes the SADL
expression and create a web service broker for this SADL
expression at the URL address

http://bula1.cs.uiowa.edu:8080/NLDPortal/profiles/<user>/services/Service?wsdl

The Ontology Manager also creates a new entry in the user
private ontology (<user>PURE.owl and <user>CEAD.owl)
as follows:

<cead:ActionConcept rdf:about="#Solver">
<cead:description>

This is a quadratic equation solver.
</cead:description>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<cead:heasInput rdf:List = "a, b, c" rdf:resource = "#Real"/>
<cead:hasOutput rdf:List = "x1, x2" rdf:fresource= "#Real"/>
<cead:hasAgent>

<cead:Agent rdf:ID="solverAgent">
<cead:implementedBy rdf:resource="#solverServiceInstance1"/>

</cead:Agent>
</cead:hasAgent>

</cead:ActionConcept>
<cead:ServiceInstance rdf:ID="solverServiceInstance1">

<cead:wsdlFile rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
http://bula1.cs.uiowa.edu:8080/NLDPortal/profiles/<user>/services/Service?wsdl

</cead:wsdlFile>
<cead:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Solver
</cead:serviceName>
<cead:operationName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

solver
</cead:operationName>
<cead:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

ServiceHttpSoap12Endpoint
</cead:portName>

</cead:ServiceInstance>

Now the user can use the concept ”Solver” as any other
primitive concepts by executing the command use Solver.
The user can also use this concept in another DAL expression
as shown by the following example:

x = Solver(a, b, c);
print "First solution of the equation: ";
print x.x1;
print "Second solution of the equation: ";
print x.x2;

2) Creating new Data Concepts: DAL System is also
provided with the mechanism that allows a user to add data

concepts to her UOO. New data concepts must be defined
as compositions of other known data concepts using such
definition schemes as record, vector, set. Since all the
known data concepts are represented as some XML data type,
the DAL system represents the new data concept using an
appropriate constructor record, vector, set that maps the
user defined data concept into an XML data type. The method
for a user to create a new data concepts are described in the
following steps:

1) The user defines the new concept in an DAL expres-
sion as shown in the above pattern.

2) The user use a DAL Console to submit the DAL
expression to her private space in the cloud.

3) The Ontology Manager in the cloud receives the DAL
expression and analyze it.

4) When the Ontology Manager finds a data concept
definition:

a) creates the corresponding domain data con-
cept and add to the user’s UOO.

b) creates a new XML Data type which repre-
sents the data concept following the above
pattern.

c) automatically link the newly created data
concept with the corresponding XML Data
type.

5) The CEAD-ing process for creating new data concept
finished.

We illustrate the mechanism of extending domain ontology
with new data concepts with the example where a user defines
the data concept Complex that represents complex numbers in
the high school arithmetic domain. Since a complex number
is a record of two real numbers the user defines the concept
Complex using the following DAL expression:

concept Complex is
record

ImgPart integer;
RealPart integer;

endrecord;
endconcept,

The XML schema used to transform this DAL expression into
a SADL expression is:

<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified" targetNamespace="some-URI">

<xs:complexType name="NewDataConceptName">
<xs:sequence>

<xs:element minOccurs="0" name="fieldName1" type="fieldType1"/>
<xs:element minOccurs="0" name="fieldName2" type="fieldType2"/>

...
</xs:sequence>

</xs:complexType>
</xs:schema>

In the case of the Complex concept, we have the following
concrete XML data type definition: small

<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="some-URI">

<xs:complexType name="Complex">
<xs:sequence>

<xs:element minOccurs="0" name="imgPart" type="xs:double"/>

<xs:element minOccurs="0" name="realPart" type="xs:double"/>
</xs:sequence>

</xs:complexType>
</xs:schema>

VI. DAL SYSTEM

DAL System provides a user-dedicated implementation of
a computer. That is, a computer user who install this system
on her computer can further use the computer as a brain-
assistant dedicated to her problem domain. Since the computer
use lack the efficiency when used in this manner we chose to
describe here the implementation of the system in the cloud.
This manner of DAL System implementation dedicates the
system to a problem domain, thus allowing the computer to
be shared among many users, who in effect share the problem
domain in a manner in which the students of a class share the
class instructor’s knowledge.

A. Cloud Implementation of DAL System

Cloud-implementation of the DAL System is described
in Figure 3. The assumption is that CC that accommodates
the DAL System would have an administrator that man-
age the system allowing various users to register for DAL
System use on a given problem domain. For that the CC
maintains a data base where all the domain ontologies of
the CEAD-domain are maintained. The user subscription for
a domain D is performed by an installation procedure that
activates DAL System with the domain ontology required.

"!
bb

Cloud

?
Install DAL System

??

'

&

$

%DDVM: SADL -Execute Network

DALalgorithm - DALtranslator � DALspecs

DomainOntology

?

⌥⌃ ⌅⇧User1

?Evolve DAL

6
Use DAL

-Publish
ontology

-Subscribe for DAL
UOO = DEO

. . .
⌥⌃ ⌅⇧Userk

?Evolve DAL

6
Use DAL

� Publish
ontology

� Subscribe for DAL
UOO = DEO

User1’s own
ontology

Userk’s own
ontology

Figure 1: Architecture of an DAL System

1

Fig. 3. Architecture of an DAL System

Further,
as
shown
in
Fig-
ure 3,
the
user
cus-
tomizes
the
sys-
tem
to
her
per-
sonal
use,
evolv-
ing
the
prob-
lem
do-
main
she
sub-
scribed for with the concepts she learned and/or created during
her own problem solving process. When the user decides
to leave the system and cancel her subscription, the DAL
System’s manager my buy the knowledge developed by the
user and update the domain, thus ensuring domain evolution
with the concepts developed by the respective user. This

ensures a domain evolution with the knowledge developed by
problem solving process of all domain experts.

B. User Interaction with DAL System

A user doesn’t need a computer in order to interact
interact with the DAL System. An iPad (or any other dis-
play) which provide a two-way communication using a com-
mand language can be used in this purpose. We envision
here a Unix shell interaction as described in Figure 4.

&%
'$b b

?

Cloud Resources

Cloud
iPad

?
6Send Receive

SADL Interpreter

SADL Expression

?

T : DAL! SADL

?

Domain Ontology

?

solution algorithm
Natural language

?

Input

Send
result

�

Update
ontology

K

Figure 1: Interacting with an DAL System

1

Fig. 4. Interacting with an DAL System

Th
DAL
Sys-
tem
is
not
ap-
pro-
pri-
ate
for
iconic-
language
im-
ple-
men-
ta-
tion
be-
cause
it
ma-
nip-
u-
lates
con-
cepts that can be created by the user. Since the system
is natural language based, and natural language is infinite
through the infinite sequences of human generations speaking
it, Window-implementation, though possible, would not be
appropriate.

VII. CONCLUSION

The research reported in this paper shows that software
development for non-expert computer user open an unlimited
area for computer technology development. This has the poten-
tial to empower human being with the computer as a brain tool
(oracle). To achieve this potential computer needs to be freed
from its universal feature, and let it be, as it has proven to
be, a problem solving tool that may act in any problem domain
as a domain oracle.

ACKNOWLEDGMENT

The author thanks here his generations of graduate students
at the University of Iowa, Department of Computer Science,
who developed the TICS software tools used in the design
and implementation of DAL system. Special thanks are due
to Cuong Bui who implemented the proof of concept for
arithmetic domain, that is available (upon request) at URL
bula1.cs.uiowa.edu.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. (January 1, 1986). Compil-
ers: Principles, Techniques, and Tools. Addison Wesley.

ApacheCXF (2011). http://cxf.apache.org/.
Axis/Java (2011). http://axis.apache.org/axis2/java/core/.
Badder, F., Calvanese, D., McGuinnes, D., Nardi, D., and

Patel-Schneider, P., editors (2005). The Description Logic
Handbook. Cambridge University Press.

Guarino, N. and Welty, C. (2000). A formal ontology of
properties. In Dieng, R., editor, Proceedings of 12-th
International Conference on Knowledge Engineering and
Knowledge Management, Berlin. Springer Verlag.

Guarino, N. and Welty, C. (2002). Evaluating ontological
decisions with ontoclean. CACM, 45(2):61–65.

Horn, P. (2001). Autonomic computing: IBM’s per-
spective on the state of the information technology.
http://www.research.ibm.com/autonomic/manifesto.

Horridge, M. (2011). Protègè-owl tutorial.
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/.

Hruby, P. (2005). Ontology-based domain-driven design. In
OOPSLA05 Workshop on Best Practices for Model Driven
Software Development, San Diego, CA.

Kline, G. and Caroll, J. (2004). W3C, Resource Descrip-
tion Framework (RDF): Concepts and abstract syntax.
http://www.w3.org/TR/rdf-concepts/.

Markoff, J. (2012). Killing the computer to save it. ACM
TechNews, October(31).

McBride, B. (2004). The Resource Description Framework
(RDF) and its Vocabulary Description Language RDFS,
pages 51–65. Springer.

McGuinness, D. and van Harmelen, F. (2003). OWL
Overview, OWL Web Ontology Language Overview.
W3C Proposed Recommendation 15 December 2003.
http://www.w3.org/TR/2003/PR-owl-features-20031215/.

Metro (2008). Web services for java platform.
http://java.sun.com/webservices/reference/tutorials/index.jsp.

Monroe, R. (2001). Capturing software architecture design
with armani. Technical Report CMU-CS-163, Carnegie
Mellon University.

OpenStructs, TechWiki (2011). Lightweight,
domain ontology development methodology.
http://techwiki.openstructs.org/index.php/

OWL2 (2009). OWL2 Web Ontology Language Manchester
Syntax. http://www.w3.org/TR/owl2-manchester-syntax/ .

OWL2 Primer (2009). OWL2 Web Ontology Language Primer.
http://www.w3.org/TR/owl2-primer/ .

Polya, G. (1957). How To Solve It. Princeton University Press,
second edition.

Popek, G. and Goldberg, R. (1974). Formal requirements
for virtualizable third generation architectures. CACM,
17(7):412–421.

Rector, A. (2003). Modularization of domain ontologies
implemented in description logics and related formalism
including owl. In Proceedings, K-CAP-03, pages 121–
128. ACM 1–5811-583–1/03/0010.

Rus, T. (2008). Liberate computer user from programming.
In Meseguer, J. and G., R., editors, 12-th International
Conference, AMAST 2008, Proceedings, volume LNCS
5140, pages 16–35. Springer.

Rus, T. and Curtis, D. (2007). Towards an application driven
software technology. In The proceedings of the 2007 In-

ternational Conference on Software Engineering Research
& Practice, page 282288, Las Vegas, NV, USA.

Rus, T. and Rus, D. (1993). System Software and Software
Systems: Concepts and Methodology. World Scientific.

SaaS (2010). Software as a Service (SaaS).
http://en.wikipedia.org/wiki/Software_as_a_service.

Sipser, M. (2006). Introduction to the Theory of Computation.
Thomson Course Technology, second edition.

Srinivasan, N. and Getov, V. (2011). Navigating the cloud com-
puting landscape – technologies, services, and adopters.
Computer, 44(3). IBM and University of Westminster:
Cloud Computing: Infrastructure-As-A-Service, Platform-
As-A-Service, Software-As-A-Service.

Takeuti, G. and Zaring, W. (1971). Introduction to Axiomatic
Set Theory. Springer-Verlag.

Welty, C. and Guarino, N. (2001). Supporting ontological
analysis of taxonomic relationship. Data & Knowledge
Engineering, 39:51–74.

Wikipedia, T. F. E. (2011). Enterprise javabean.
http://en.wikipedia.org/wiki/Enterprise_JavaBean.

