
Application Driven Software for Chemistry
Donald Ephraim Curtis

Member, IEEE
donald-curtis@uiowa.edu

Department of Computer Science
University of Iowa

Iowa City, IA, USA

Teodor Rus
Member, IEEE

rus@cs.uiowa.edu
Department of Computer Science

University of Iowa
Iowa City, IA, USA

Jan Jensen
jhjensen@kemi.ku.dk

Department of Chemistry
University of Copenhagen
Copenhagen, Denmark

Abstract—This paper provides a brief introduction
to application driven software technology and its usage
in the development of a new computer-based problem
solving methodology. This new methodology is based on
the principle of ”take the computer to the problem”
rather than ”taken the problem to the computer” as done
by current computer-based problem solving process. We
illustrate our research in the Chemistry domain with
the problem of finding acid dissociation constants in
chemical reactions.

Index Terms—acid dissociation, application domain,
chemistry, information technology, ontology, computa-
tional emancipation of a problem domain

I. I NTRODUCTION

As the demand for computer use in all domains
of human endeavor grows, so does the complexity of
the software being used. Analysts say that “software
complexity is killing IT”[1]. Chemistry is an exam-
ple of a computer application domain that contains
a large amount of complex software tools used for
problem solving. Using these tools can be difficult to
a point where chemists are forced to become computer
experts.

There are two aspects of software complexity. The
first, and best studied, concerns the complexity of
the software development process. The second, and
less studied, concerns software usage in the problem
solving process including software maintenance as a
process of evolving software to fit the conceptual evo-
lution of the problem domain.This aspect of software
complexity is our concern here.

To handle the complexity of software usage during
the problem solving process we observe that current
computer-based problem solving methodology makes
no distinction between various problem domains. In
order to use a computer to solve a problem with
the current methodology, irrespective of problem and
problem domain, the problem-solving algorithm needs
to be translated into a program that can then be
run on the computer. The unification of potentially
infinite many computer application domains, each with

potentially infinite many problems, into a “one-size-
fits-all” pattern during problem solving is sooner or
later meant to “crush” the poor computer. We believe
that the only way to prevent the process of “computer-
crushing” under the expanding demand for computing
required by human-cognition process is to change
the one-size-fits-all pattern mentioned above. We seek
this change by developing a computer-based problem
solving methodology where the computer is “taken
to the problem” rather than taking the problem to
the computer. In other words, we are developing a
computer-based problem solving methodology where
the problem solving process takes placein the problem
domain and the computer is used as a cognitive tool
[2]. This methodology has two aspects. The first aspect
concerns the process of injecting the computational
thinking [3] developed in the information technol-
ogy (IT) into the application domain (AD). We call
this aspectcomputational emancipation of application
domain, (CEAD). The second aspect concerns the
development of appropriate software tools to support
the new problem solving methodology. We call this as-
pect application-driven software development (ADS).
This paper is organized as follows: section 2 provides
an informal introduction to the CEAD-ing process;
section 3 compares ADS software tool usage with
conventional software usage; section 4 provides an
overview of the ADS software tools; section 5 suggests
extensions to the current ADS tools and presents an
invitation to experiment with them.

II. COMPUTATIONAL EMANCIPATION OF A

PROBLEM DOMAIN

A computer application domain is characterized by
a collection of terms (terminology) and a domain
structuring. Domain terms have the same semantic
interpretation for all domain experts and are either
graphical or textual representations of AD concepts
which the domain expert utilizes to formulate prob-
lems and develop solution algorithms. We assume that
semantics of domain characteristic terms are comput-

dipole
moment

total
free

energy
Gtot(before)

?

H
H

H
H

H
Hj

�
�

�
�

�
��

molecular
orbits

electronic
energy

Gele(before)

thermochemical
energy

Gtherm(before)

solvation
energy

Gsol(before)

dipole
moment

total
free

energy
Gtot(after)

?

H
H

H
H

H
Hj

�
�

�
�

�
��

molecular
orbits

electronic
energy

Gele(after)

thermochemical
energy

Gtherm(after)

solvation
energy

Gsol(after)

reactants
before

?

H
H

H
HHj

�
�

�
���

products
after

?

H
H

H
HHj

�
�

�
���

acid dissociation reaction
energy change

Gdiff = Gtot(after) − Gtot(before)

������9

XXXXXXz

pKa

(acid dissociation constant)

pKa = Gdiff /1.36

?

Fig. 1. pKaOntology

ing objects (such as data and algorithms) that are:
universal over the domain, stand-alone, and compos-
able. The domain structuring describes relationships
between concepts represented by the domain terminol-
ogy. We use an ontology [4] to represent the domain
structuring and assume that it is incremental. That is, a
domain ontology is expanded with terms representing
solutions to AD problems. Developing an ontology for
an AD means identifying the domain characteristic
terms and organizing them into a domain ontology
which then becomes a cognitive tool for the problem
solving process in the domain.

The process of associating concepts of an AD
ontology with IT artifacts implementing them is called
Computational Emancipation of the Application Do-
main (CEAD), or what we refer to as theCEAD-
ing the AD [5], [6]. CEAD-ing the AD brings the
IT domain to the AD during the problem solving
process. CEAD-ing an AD allows AD experts to
manipulate software by manipulating domain concepts
using the natural language of the domain. This is the
idea behind bringing the computer to the problem.
Contrasting the natural language of the domain with
the idea of domain specific language as used in current
IT technology [7] we observe that while they share
many common characteristics they are fundamentally
different. Domain specific languages are programming
languages whose terms represents instructions to be
carried out by a computer. Natural languages of the do-
main are languages used to represent domain concepts
and consequently their terms represent computational

processes to be carried out by some computational
machinery be it the brain or computer. While a domain
specific language expresses a syntactic computation as
any other programming language, the natural language
of the domain expresses a semantic computation, as
any other natural language. But note, natural language
of a domain is defined by the domain ontology and
consequently it should not be confused with natural
language. Further discussion of the natural language
of the domain is outside the scope of this paper.
As an example of CEAD-ing the AD, in Figure 1
we provide the ontology for computational chemistry
related to the problem ofdetermining the pKavalue
(acid dissociation constant) for a particular acid.

III. A PPLICATION DRIVEN SOFTWARE

DEVELOPMENT

Application Driven Software Development (ADS)
[5], [6] is a methodology that provides the domain
expert with a mechanism to solve problems in her do-
main and execute solution algorithms on the computer
without requiring her to translate the solutions into
programs. The domain expert sees the computer as a
cognitive tool specific to her domain while IT develops
software which aides the problem solving process. We
demonstrate the ADS approach to problem solving on
the chemistry domain. To understand the benefits of
using computers as cognitive tools we first describe the
process of problem solving following the conventional
approach and then illustrate the same process using
ADS tools.

$CONTRL SCFTYP=RHF RUNTYP=ENERGY MPLEVL=2 ICHARG=0 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=2 NPFUNC=1 DIFFSP=.T. $END
$GUESS GUESS=HUCKEL $END
$SCF DIIS=.T. SOSCF=.F. DIRSCF=.T. FDIFF=.F. NPUNCH=1 $EN D
$SYSTEM TIMLIM=99999999 MEMORY=30000000 MEMDDI=25 $END
$DATA

MP2 Electronic Energy
C1
C 6.0 -0.22223 0.00000 -1.37329
C 6.0 0.12774 0.00000 0.08731
O 8.0 1.22570 0.00000 0.53827
O 8.0 -0.95942 0.00000 0.85727
H 1.0 -0.67768 0.00000 1.76702
H 1.0 0.68235 0.00000 -1.96227
H 1.0 -0.81825 0.87505 -1.60518
H 1.0 -0.81825 -0.87505 -1.60518

$END

Fig. 2. Electronic Energy input deck for GAMESS

A. Using GAMESS to compute pKa

Chemists utilize computers as tools to help compute
properties of molecular systems, avoiding the need to
perform real-world experiments. We are interested in
the problem of finding theacid dissociation constant
for acetate characterized by the CEAD-ed ontology
given in Figure 1. ThepKavalue is useful for, among
other things, determining an acid’spH value (level of
acidity) and reactivity.

An acidic dissociation reaction occurs when an acid
is mixed with a base. So let us say we mixacetate acid
CH3COOH in water H2O. The following chemical
reaction happens:H3COOH+H20 → CH3COO−+
H3O

+. The acetate acid loses a positively charged pro-
ton, represented in the equation as a hydrogen atom,
and becomes negatively charged (−1). We simplify
this reaction toHA → H+A whereA = CH3COO−

andH is the positively charged proton.
ThepKavalue can be calculated based on theenergy

change for this reaction, denotedGdiff , using the
formula: pKa = Gdiff/1.36. The energy change is
the difference between thetotal free energy, denoted
Gtot, after the reaction andbefore the reaction
computed by the formulas:

Gtot(before) = Gtot(HA)

Gtot(after) = Gtot(H) + Gtot(A)

Gdiff = Gtot(after) − Gtot(before)

Gtot for H , A, andHA are the sum of their thermo-
chemical, electronic and solvation energies:

Gtot(x) = Gtherm(x) + Gele(x) + Gsol(x)

The electronic, thermochemical, and solvation en-
ergies are values which must be determined ex-
perimentally or calculated using universal formulas
mathematically proven correct. There are chemistry
software packages that perform calculations based
on these mathematical formulas, but manipulation of
these chemistry packages can be just as complex
as developing the software itself. For example, the
input for the General Atomic and Molecular Electronic
Structure System (GAMESS) [8] developed to calcu-
late theelectronic energy of acetate acidGele(HA)
is given in Figure 2. The first six lines represent
instructions to the GAMESS package to calculate the
electronic energy and the data betweenC1 and$END
are coordinates which describe the internal structure of
the CH3COOH molecule. Calculating thepKavalue
for acetate acid requires the chemist to create six
different input decks like the one in figure 2. Thus,
the GAMESS solution to determining thepKavalue is:
solve the problem, learn the language of the GAMESS
package, create GAMESS input for all required values,
get the result, and calculate thepKavalue. We observe
that while arguably better than doing it by hand,
the software complexity of the GAMESS tool makes
carrying out a solution a chore.

B. Using ADS to compute pKa

The idea of application driven software we pursue
is to let the chemist identify fundamental concepts she
uses while performing problem solving, structure these
concepts following their relationships in chemistry,
and express solutions in terms of these concepts. Since
fundamental terms have already been identified and
structured through the ontology in figure 1 the only

Acetate_pKa:
Input: {HA:AcetateAcid, A:Acetate}
Ouput: AcetateAcidPKA:number

G_tot(HA) := G_elec(HA) + G_therm(HA) + G_solv(HA)
G_tot(A) := G_elec(A) + G_therm(A) + G_solv(A)
G_tot(H) := 0.000 + -4.38 + -262.5
G_tot(before) := G_tot(HA)
G_tot(after) := G_tot(A) + G_tot(H)
G_diff := G_tot(after) - G_tot(before)
AcetateAcidPKA := G_diff / 1.36

Fig. 3. Conceptual Algorithm for Calculating thepKaof Acetate Acid

thing left to do is express the solution in these terms,
shown in figure 3.

Note that in order to solve her problem the chemist
doesn’t have to manipulate any computer artifact. She
simple uses the AD ontology to express the solution
algorithm using the natural language of the domain
and lets the computer manipulate computer artifacts.
The conceptual algorithm is executed in the AD by
executingprocesses associated with the concepts in the
ontology and composing these processes as specified
in the conceptual algorithm given by the AD expert.

The ADS solution to determining thepKavalue is:
solve the problem using chemistry concepts in the
chemistry ontology and ask ADS software to execute
the algorithm and deliver the solution. There is no need
for chemist to knowwho executes the algorithms and
how it is done.

IV. A PPLICATION DRIVEN SOFTWARE

The Application Drive Software methodology pre-
sented above gives a path for developing tools which
manage software complexity and promote problem
solving without programming. Modern Graphical User
Interfaces (GUI) follow a similar approach by using
graphical “widgets” to represent domain concepts.
Similar to ADS, these widgets are associated with
code that carries out various functionality and thus
performing out a solution algorithm is a matter of
the user clicking on various parts of the GUI. There
are two differences between the approach taken by
GUIs and ADS. The first is that composition in a GUI
is handled at the code level and thus these domain
concepts are not stand alone. Extracting functionality
from a GUI for the purpose of utilizing ADS can be
a trivial process depending on how heavily the code
carrying out the domain process is embedded in the
code to draw the GUI. The second difference between
GUIs and ADS is at the language level. With ADS
one associates code with linguistic terms that represent
domain concepts while with a GUI one associates code
with iconographic material that may represent domain

concepts. In both cases at algorithm execution time an
interpreter maps terms or the iconographic symbols
into appropriate computer processes. Hence, CEAD-
ing can be performed through linguistic or graphical
presentations and thus ADS can indeed benefit from
utilizing GUI interfaces.

Application driven software developed by us so far
consists of:

1) The Software Architecture Description Lan-
guage (SADL) provided with control flow op-
erators used to represent AD solutions in the IT
domain.

2) A translator that takes the conceptual algorithm
provided by the domain expert and translates it
into a SADL process.

3) A SADL interpreter that performs SADL expres-
sions using computing resources for which the
concepts in the ontology are implemented.

These tools provide a means for the ADS methodology
and are invisible to AD experts.

The Software Architecture Description Language
(SADL) was designed to represent domain level so-
lutions in a machine interpretable form. SADL is not
a programming language. Rather, SADL expressions
are computer processes that represent AD algorithms
using XML syntax so they can more easily be carried
out by a computer. Execution is handled by the SADL
interpreter which initiates and controls the execution of
the computer artifacts associated with the concepts of
the ontology used in the solution algorithm. Semantic
elements of SADL are processes, process composition
operators, and systems. Processes are represented by
attributed files. A process’s attributes specify pro-
cess location, action the process performs (if any),
input/output, etc. Among others, the following are
attributes used in SADL XML elements to specify
processes:

name - The name attribute identifies the domain
concept which is to be executed for the problem
solution.

<?xml version="1.0" ?>
<sadl>

<system name="acetate_pka" input="uri(HA) uri(A)" outpu t="uri(AcetateAcidPKA)">
<!-- Acetate Acid -->
<component name="uri(G_elec)" input="uri(HA)" output=" uri(G_elec(HA))" />
<component name="uri(G_solv)" input="uri(HA)" output=" uri(G_solv(HA))" />
<component name="uri(G_therm)" input="uri(HA)" output= "uri(G_therm(HA))" />
<component name="uri(+)"

input="uri(G_therm(HA)) uri(G_solv(HA)) uri(G_elec(HA))"
output="uri(G_tot(HA))" />

<!-- Acetate -->
<component name="uri(G_elec)" input="uri(A)" output="u ri(G_elec(A))" />
<component name="uri(G_solv)" input="uri(A)" output="u ri(G_solv(A))" />
<component name="uri(G_therm)" input="uri(A)" output=" uri(G_therm(A))" />
<component name="uri(+)"

input="uri(G_therm(A)) uri(G_solv(A)) uri(G_elec(A))"
output="uri(G_tot(A))" />

<!-- Proton -->
<component name="uri(+)" input="0.000 -4.38 -262.5" outp ut="uri(G_tot(H))" />
<!-- Before -->
<component name="uri(null)" input="uri(G_tot(HA))" out put="uri(G_tot(before)" />
<!-- After -->
<component name="uri(+)" input="uri(G_tot(H)) uri(G_to t(A))" output="uri(G_tot(after))" />
<!-- Difference -->
<component name="uri(-)" input="uri(G_tot(after)) uri(G_tot(before))" output="uri(G_diff)" />
<!-- pKa -->
<component name="uri(/)" input="uri(G_diff) 1.36" outpu t="uri(AcetateAcidPKA)" />

</system>
</sadl>

Fig. 4. SADL Expression of Acetate AcidpKaSolution

input - The input attribute gives a space separated
list of concepts which are to be used for input to
the domain concept being executed.
output - The output attribute identifies the con-
cept being returned.

Using ADS tools and the CEAD-ed chemistry ontol-
ogy, the solution given in figure 3 is mapped into
the SADL expression given in Figure 4. Computer
artifacts associated with concepts in the CEAD-ed
ontology are named using Uniform Resource Identi-
fiers [9]. To simplify the SADL expression we have
replaced the URI for eachconcept with the expres-
sionuri(<concept>) . Once mapped into a SADL
expression, the solution is carried out by the SADL
interpretor by performing the processes existing at
each URI. The result is thepKavalue for acetate acid.
Note that this is not a simple interpretation process as
performed by the interpreters of current technology.
The symbols used in the domain algorithm represent
concepts of the domain. For example, the symbols
‘+’, ’-’, etc., may not be the arithmetical operations
because they represent the concepts which problem
domain denotes by these symbols. The ADS manner of
algorithm execution is better compared with the web-
service execution process [10].

Through computational emancipation of the ap-
plication domain the process of converting domain
level solutions to SADL expressions is trivial. Every
concept used in the domain algorithm is searched in
the ontology and is replaced by an XML element
whose tag is the concept itself and the attributes are

determined from the associated computer artifact. The
control flow operations are replaced by the appropriate
XML elements representing process composition op-
erators. The resulting XML expression represents the
computer artifact implementing the concept defined by
the domain algorithm, and thus extends the domain on-
tology while preserving computational emancipation
of the application domain.

The interpretor used for this work is available
at http://www.cs.uiowa.edu/˜dcurtis/sadl/

and is ready for experimentation. We appreciate any
observations that would help us to further extend and
improve it.

V. CONCLUSION

Application Driven Software (ADS) bridges the
conceptual gap between IT and the application domain
and provides a problem solving process that is charac-
terized by “hands on the problem” rather than “hands
on the computer”. This opens the door to new pat-
terns of collaborations. It also shows the way toward
developing solutions that handle software complexity
without generating more software complexity.

The work presented in this paper demonstrates that
ADS is ready for use. But as expected, this raises
new research problems. Among others, the problem
of synthesizing thenatural language of the domain, to
be used by domain experts while expressing solution
algorithms, is of a particular interest for further devel-
opments. Currently we are developing a mechanism to
extract this language from the CEAD-ed domain.

REFERENCES

[1] P. Krill, “Complexity is killing it, say analysts,” Techworld:
www.techworld.com.

[2] S. Lajoie and S. Derry, Eds.,Computers as Cognitive Tools I.
Hillsdale, Lawrence Erlbaum Associates, Inc., 1993.

[3] J. Wing, “Computational thinking,”Communications of the
ACM, vol. 49, no. 3, pp. 33–35, 2006.

[4] N. Noy and D. McGuinness, “Ontology development
101: A guide to creating your first ontology,”
http://ksl.stanford.edu/people/dlm/papers/ontology-tutorial-
noy-mcguinness-abstract.html, Stanford University, Stanford,
CA 94305.

[5] T. Rus and D. Curtis, “Application driven software develop-
ment,” in International Conference on Software Engineering
Advances, Proceedings, Tahiti, 2006.

[6] ——, “Toward application driven software technology,” in
The 2007 World Congress in Computer Science, Computer
Engineering, and Applied Computing,WORLDCOMP’07, Las
Vegas, USA, 2007.

[7] J. Heering and M. Mernik, “Domain-specific languages for
software engineering,” inProceedings of the 35th Annual
Hawaii International Conference on System Science, 2002.

[8] G. R. Group, “The general atomic and molec-
ular electronic structure system (GAMESS),”
http://www.msg.ameslab.gov/GAMESS/.

[9] B.-L. T., R. Fielding, U. Irvine, and L. Masinter, “RFC
2396: Uniform resource identifiers (URI): Generic syntax,”
http://www.ietf.org/rfc/rfc2396.txt, 1998.

[10] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarane, “Business process
execution language for web services,” http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

