
22C:113 INTRODUCTION TO SYSTEM SOFTWARE
Syllabus

Instructor: Teodor Rus
Office: 201J MLH, Phone: 335-0742

Class hours: MWF 10:30–11:20am, 51 SH
Office hours: MWF 9:30–10:20:am, 201J MLH

Important dates:
Midterm Exam: Wednesday, 19 October 2011, 10:30am, 51 SH
Final Exam: Thursday 15 December 2011, 7:30am, 51 SH
Assignments: To be set at assignment offering time.
Projects: To be set at project offering time.

Note: This course is given by the College of Liberal Arts and Sciences. This means
that class policies on matters such as requirements, grading, and sanctions for aca-
demic dishonesty are governed by the College of Liberal Arts and Sciences. Students
wishing to add or drop this course after the official deadline must receive the approval
of the Dean of the College of Liberal Arts and Sciences. Details of the University
policy of cross enrollments may be found at:
http://www.uiowa.edu/ provost/deos/crossenroll.doc

Academic Honesty:
The College of Liberal Arts and Sciences expects all students to do their own work,
as stated in the CLAS Code of Academic Honesty. Instructors fail any assignment
that shows evidence of plagiarism or other forms of cheating, also reporting the stu-
dent’s name to the College. A student reported to College for cheating is placed on
disciplinary probation; a student reported twice is suspended or expelled.

Procedures for Students with disability:
I must hear from anyone who has a disability which may require some modification
of seating, testing, or other class requirements so that appropriate arrangements may
be made.

Please see me after class or during my office hours.

1



1 Purpose

The purpose of the course “22C:113 Introduction to System Software” is to intro-
duce the student to the collection of programs and documents which constitute the
system software of a computer platform. This introduction will allow the student to
acknowledge the main objectives, problems, and programming techniques faced by a
system programmer designing and implementing system software. Therefore, in this
offering of 22C:113 the emphasis will be on concepts and foundations.

Emphasizing concepts and foundations we offer to the student a conceptual framework
in which the system software is developed and used rather than an enumeration of
programs which belong to the system software running on a given computer platform.
This conceptual framework will show the logical relationship between the software
components of any software system.

2 Approach

To achieve its goal a top-down approach will be used in this class. The essentials
for succeeding with this approach consists of: (a) apply a systematic analysis of the
components of the system software; (b) deduce the structuring which allows system
software components to be specified in terms of other system software components;
(c) study the mechanisms of interaction between system software components; (d)
explain the mechanism of integration of system software components. This will be
achieved by studying the behavior of the system software as a functional whole called
software system.

3 Topics

The topics of the course are split into three parts: methodology, programming support
environment, and execution support environment.

3.1 The Methodology

Part 1 of the course is devoted to the presentation of a system methodology, appro-
priate for discussing system software. The fundamental object of this methodology
is the concept of a system. This concept is discussed both as a mathematical con-
struction (illustrated by algebraic and logical systems) and as an ad hoc construction
(illustrated by ad hoc systems chosen from various fields of interest in computer sci-
ence). A special role will be devoted to the hardware organized as a system called
the hardware system, and to the transition systems used to explain the behavior

2



of the hardware system. The two concepts, system software and software system,
frequently used in computer science, are carefully specified and differentiated. A sys-
tematic approach for designing software systems is defined. The concept of a software
system is then taken as a building block for the structuring of the system software.
The system software is then organized as a software system that manages computer
resources and provides services to computer users. A vertical and a horizontal struc-
turing relationship of the programs and documents defining the system software is
then defined.

By vertical structuring components of the system software are layered on a hierarchy
of levels. A level of this hierarchy is defined in terms of the components provided
by the levels already defined. The hardware system is taken as the first level of this
hierarchy. The interface relationship between the components of the system software
vertical hierarchy is then established.

Each level of the system software vertical hierarchy is discussed as a horizontal struc-
ture. The elements of this horizontal structure are specific software components of
the system software organized as software systems. A systematic approach is used
in order to formally define the software system components that constitute a level of
the system software hierarchy.

The specific problems posed by the interaction between the software system compo-
nents of a horizontal level of the system software hierarchy are discussed and illus-
trated. The problems raised by the reliability, efficiency, convenience, and evolution
of a system software are introduced and illustrated. Two major levels of the vertical
hierarchy, the program execution support environment and the program development
(programming) support environment are given a special attention.

3.2 Programming Support Environment

The Programming Support Environment (PSE) 1 of the system software is discussed
as the collection of tools offered by a computer platform to computer users to help
them use the computer to develop programs that solve their problems.

The main mechanism offered by the PSE to computer users that helps them develop
programs to solve their problems is introduced as the translator. A translator is a
program that inputs programs written in a source programming language and maps
them into programs written in a target programming language, while preserving the
computation source language programs represent. Depending on the source and the
target languages of a translator and the mechanism of target program generation and
execution, we distinguish between Compilers, Assemblers, Linker/Loaders, and Inter-
preters. A mathematical methodology for translator specification and implementation
will be sketched and will be illustrated.

1PSE is also the acronym for Problem Solving Environment

3



The target language will constantly be the machine language of the processor run-
ning on the computer platform. The source language will be an abstraction of the
target language. The evolution of programming languages will be examined as layers
of machine language abstractions from the assembly language to various high-level
languages. A special attention will be given to the concept of a control language
seen as the interface between a user and the operating system supporting the tools
provided in the PSE. The following components of a PSE will be illustrated:

1. Dedicated program packages (such as mathematical and statistical). This illus-
trates the service-oriented versus programming-oriented approach of computer-
based problem solving process.

2. The assembler specification and implementation. Java Virtual Machine (JVM)
will be used as a hardware abstraction and a machine language for the JVM
will be developed. The student will learn how to write JVM assembly language
programs and how to designs a JVM interpretor that maps JVM programs into
programs of a given hardware, thus implementing Java slogan “write once and
execute always”. This illustrates the common approach for system program
development.

3. The Loader/Linker specification and implementation. With Loader/Linker the
student is introduced to the problems posed by program execution. JVM Class-
Loaders will be examined. The concepts of machine language and machine
language program will be discussed.

3.3 Execution Support Environment

The Execution Support Environment (ESE) is discussed as a software system that
manage computer resources of the computer platform and the processes running on
the computer platform. ESE is illustrated by the operating system. The components
of the operating system itself are layered on the levels of a hierarchy. The mechanism
of a system call (system function call) will be discussed as a tool for implementing
this hierarchy relation. The following layers of an operating system will be discussed:

1. Interrupt System.

2. Process Management System.

3. Memory Management System.

4. Input/Output Management System.

5. Information Management System (File System).

4



4 Homework

The course will be accompanied by assignments and projects. A system programming
language needs to be used in this respect. C-language and Java are the programming
languages suggested as tools for system software program development. The Linux
machines existent in various Labs of Computer Science Department controlled by a
version of the Unix operating system will be used in this offering of 22C:113. Each
student will receive an account on these machines in the first day of class. Using
this account students can develop their programs directly on the Linux machines
or they can port them from other machines to the Linux machines available in the
department.

4.1 Assignments

The instructor will keep the student’s interest daily focusing on the matters discussed
in class by means of the assignments. An important part of the assignment work is
student contribution to class evolution. This consists of student participation to the
class development and will be measured by random check on student class attendance.
In addition, we will use written assignments that will contain questions and problems
to be solved by students as their homework. These questions and problems are efficient
learning tools if they push the student to read and to search library materials for
solving them. Therefore, they will complete the students instruction, teaching them
to use the library, to choose readings, and to solve specific problems in software
system. We will try to keep a rhythm of one assignment every other two weeks of
classes.

4.2 Projects

The purpose of the projects in this class is to teach students practical skills for design-
ing and implementing system software. Projects will illustrate specific problems posed
by software design and implementation. Therefore, the projects of this class concern
programs which are actually needed in the system software of any computer platform.
These programs should be implemented such that they become building blocks in a
component-based software construction. Three projects will be implemented in this
class. The evaluation of the projects will focus on problem specification, solution im-
plementation and documentation, and on the use of the software thus implemented
and documented.

5



5 Textbooks

This offering of 22C:113, Introduction to System Software will be taught by a dual-
approach. During class presentation we will discuss concepts using instructor’s lecture
notes based on an updated version of the book T. Rus and D. Rus, System Method-
ology for Software, World Scientific 1996. The lecture notes will be available on the
Website of the class at http://www.cs.uiowa.edu/~rus/. Concept illustration will
be accomplished by the assignments and projects selected from the book D. Hoover,
System Software with C and Unix, Addison-Wesley 2009, available at IMU Bookstore.
Problems raised by programming support environment will be illustrated by the de-
sign and implementation of Java Virtual Machine. The book chosen as the textbook
for the Java Virtual Machine, is “Programming for the Java Virtual Machine”, by
Joshua Engel, available at IMU Bookstore. Problems raised by process execution
environment will be illustrated by C-language simulation of various components of
an operating system.

6 Grading Procedure

The assessment of students in this class will be determined by their scores obtained
in assignments, projects, one midterm exam, and one final exam. The midterm is an
in-class exam, to be scheduled later. This exam will check the knowledge acquired by
the students from the first day of class until the date of the exam. The final exam is
comprehensive and mandatory.

The student’s final result will be computed as follows:

• Assignment results are 15% of the final result;

• Project results are 15% of the final result;

• Midterm result is 35% of the final result;

• The final exam result is 35% of the final result;

The grades are determined as follows:

1. An A is obtained if the final result satisfies the restrictions:
90 < finalresult ≤ 100;

2. A B is obtained if the final result satisfies the restrictions:
70 < finalresult ≤ 90;

3. A C is obtained if the final result satisfies the restrictions:
50 < finalresult ≤ 70;

6



4. A D is obtained if the final result satisfies the restrictions:
30 < finalresult ≤ 50;

5. An F is obtained if the final result satisfies the restrictions:
0 ≤ finalresult ≤ 30;

These ranges are not absolute. However, the lower bounds will not be raised any
higher. We will use + and - attached to the letter score.

Good Luck!

7


