
Fall Semester 2011, 22C:113 Final Exam
Thursday 15 December 2011 7:30am–9:30am, Room: 51 SH

Instructions:

The maximum number of points is 200. To contest for maximum credit you are required to
solve two of the following three problems. Please note that Problem I is mandatory, hence
you must solve Problem I and one of Problem II or Problem III.

Problem I: Reliability, Efficiency, and Convenience of the BOS (100 points)

The action TSS below represents the evolution of the control program to a reliable, efficient,
and convenient operating system called Time-Sharing System.

TSS::
inout DeviceBuffer, CommandQueue;
repeat

GetCommand(Device,DeviceBuffer);
||

EnqueueCommand(DeviceBuffer,CommandQueue);
||

ExecuteCommand(CommandQueue);
forever

The semaphore was defined as a lock data-type used to implement the interaction between
the three main components of the time-sharing system: GetCommand(), EnqueueCommand(),

ExecuteCommand(). You are required to answer the following questions:

1. (20 points) What is the data-carrier of a variable of type semaphore? (5 points). The
three main operations which define the semaphore data type are Set(), Signal(),

Wait(). Assuming that S is a variable of type semaphore explain the meaning of
operations Set(S,Expression), Signal(S), Wait(S) (do not forget that they are atomic).
You get 5 points for each of these operations correctly specified.

Solution sketch:

(a) Data-carrier of a variable of type semaphore is the set of natural numbers N
(including 0), i.e., N = {0, 1, 2, . . .}.

(b) Set(S, Expression) means:
Perform atomically the statements: V := V alue(Expression);
Signal(S) means: perform atomically the statement S := S + 1;
Wait(S) means: perform atomically the statement S := S − 1.
Note, if S = 0 Wait(S) implies delays because 0− 1 is not a natural number.

2. (25 points) Explain how is a semaphore variable S used for process synchroniza-
tion (5points). Illustrate your explanation showing how are the three processes P1:

1

GetCommand(), P2: EnqueueCommand(), P3: ExecuteCommand() (that represent
the core of a time-sharing system) synchronized using semaphore variables (20 points).

Solution sketch: (1) a semaphore variable S can be used to synchronize the actions
performed by two processes p and q such that p performs the action A2

2 only after q
has performed the action A1

1 by setting the initial value of S to 0 and designing the
code performed by q and q as follows:
p: L1: action A1

1; L2: Signal(S); L3: action A1
2

q: L1: action A2
1; L2: Wait(S); L3: action A2

2

Example: Let P1 perform the function GetCommand() and P2 perform the function
EnqueueCommand(). Then P2 can send a command in the Time-sharing command
queue Q only after that command was read by P1 in the command buffer B. Further,
assume that P3 is the process performing the function ExecuteCommand(). Then P3

can be forced to execute a command form Q only after that command has been sent
by P2 into the command queue Q. In conclusion, a Time-sharing system needs to use
two semaphores variables, Command and Execute, initialized to 0 and P1, P2, and P3

need to be designed as follows:

P1: GetCommand (Device, B); Signal(Command);

P2: Wait(Command); Enqueue(B,CommandQueue); Signal(Execute);

P3: Wait(Execute); ExecuteCommand(NextCommand(CommandQueue));

3. (25 points) Explain what does it mean that two processes share a resource in mutual
exclusion (5 points). Show the structure of a critical-section of two processes p and q
that share a resource R (5 points). Explain the resources P1, P2, P3 share (5 points)
and show their critical sections while sharing these resources (10 points).

Solution sketch: two processes P1 and P2 share a resource R in mutual exclusion
when only one process operates on R at a given time. The mutual exclusion of processes
P1 and P2 operating on a shared resource R is implemented by a semaphore variable
S initialized to 1 where the codes of P1 and P2 has the structure:

P1: UsualCode1; Wait(S); P1 operates on R; Signal(S); UsualCode2
P2: UsualCode3; Wait(S); P2 operates on R; Signal(S); UsualCode4

The three processes that make up a time-sharing system share the buffer B where a
command is read and the command queue Q where commands are waiting for exe-
cution. Hence the pseudo-code performed by the processes P1: GetCommand(), P2:

EnqueueCommand(), P3: ExecuteCommand() use a semaphore Buffer initialized to
1, that allows P1, P2 to share the buffer B in mutual exclusion, and a semaphore
Queue initialized to 1, that allows P2, P3 to share the command queue Q in mutual
exclusion.

2

4. (30 points) Let again P1, P2, P3 be the three processes that make up the core of
the TSS, where P1 performs GetCommand(), P2 performs EnqueueCommand(), and P3

performs ExecuteCommand(). Since P1, P2, P3 synchronize their actions and share
resources, the design of the TSS requires three parts:

(a) A common part, where their synchronization and sharing semaphores (Command,
Execute, Buffer, Queue) are declared and initialized, along with their shared
variables (Input buffer B, and command queue Q);

(b) A global part where the parallel actions performed by these process are executed;

(c) The code performed by each individual process P1, P2, P3.

You are required rewrite the action TSS showing the structure of a time-sharing sys-
tem in terms of the three components mentioned above. You get 10 points for each
component correctly designed.

Solution sketch:

Time Sharing System:
Common part:
semaphore Command, Execute, Buffer, Queue;

Set(Command, 0); Set(Execute, 0); Set(Buffer,1); Set(Queue,1);
buffer B;
commandQueue Q;

Global action:
Repeat P1 || P2 || P3 Forever

Individual actions:
P1: GetCommand:

Wait(Buffer) Read(Device,B);Signal(Buffer);Signal(Command);
P2: EnqueueCommand:

Command C;
Wait(Command);
Wait(Buffer); C := B; Signal(Buffer);
Wait(Queue) EnqueueCommand(C,CommandQueue); Signal(Queue);
Signal(Execute);

ExecuteCommand:
Command C;
Wait(Execute);
Wait(Queue);C:=GetNextCommand(CommandQueue);Signal(Queue);
Perform(C);

3

Problem II: Programming Support Environment, PSE (100 points)

The PSE of a computer platform is a collection of system software tools that provide services
to computer users for program development on a given computer platform. Please answer
the following questions regarding these tools:

1. (10 points) Give five examples of software tools that belong to the PSE of a Linux
machine. For each example indicate the service(s) it performs.

Sketch of answer:

(a) A control language, allows computer users to give commands to the software tools
available in the PSE.

(b) A control language interpretor, maps control-language commands into processes
executing them.

(c) Compiler, maps high-level /Solution programming languages into machine lan-
guages. Compilers allow programmers to develop programs using a human ori-
ented logic while programs are executed by the machine using a machine oriented
logic

(d) Debugger, runs programs under the control of the programmer. Debuggers allow
programmers to check the correctness of their programs by “step by step execu-
tion” in conditions determined by programmer according to program behavior.

(e) Editor, creates and update files. Editors allow programmers to write their pro-
grams files according to the constraints imposed by compilers.

2. (40 points) The two main requirements for the tools that belong to a PSE are that
they be efficient and convenient. These requirements are achieved through sharing,
concurrency, interaction, and integration. Explain (4 points) and illustrate (6 points)
the meaning of these terms in this context (10 points for each term).

Sketch of answer:

(a) Sharing: various tools of the PSE share computer resources (memory, processor,
devices, information) and thus allow their efficient usage. For example, the same
copy of a C compiler may be shared by all programmers developing C programs.

(b) Concurrency: various tools of the PSE may execute concurrently therefore in-
creasing system performance. For example, a compiler may run in parallel with an
editor, and in parallel with various components of the operating system servicing
current program execution.

(c) Interaction: tools in PSE interact with each other and with the system user mak-
ing problem solving process convenient. This interaction is expressed as services
tools can provide to each other and to the system user. For example, a compiler
interacts with Operating System by asking the OS to perform I/O operations on

4

its behalf. A compiler also interacts with its user by sending messages concerning
syntax and semantic correctness of the programs it compiles. Shell interpreter
interacts with the system user during problem solving process by receiving and
executing user commands and sending messages to the user about the behavior
of the problem solving process.

(d) Integration: tools of a PSE need to be integrated in the sense that if a tool T1
may provides a solution to the subproblems P1 of the problem solved by a tool
T2 then T1 can be used as a component of T2. This contributes to both PSE
tools convenience and efficiency.

3. (50 points) An assembler has been defined as a pair of mappings, A = 〈HA, TA〉,
where HA : ALSem → MLSem, TA : ALSyn → MLSyn, which makes commutative the
diagram in Figure ??.

MLSem

?
HA

�EvalML MLSyn

?
TA

�LearnML MLSem

?
HA

ALSem
-LearnAL ALSyn

-EvalAL ALSem

Figure 1: The assembler

You are required to answer the following questions:

(a) (10 points) The source language of the assembler is the assembly language AL =
〈ALSem, ALSyn, ALSem ↔ ALSyn〉. Explain the meaning of each of the compo-
nents ALSem, ALSyn, ALSem → ALSyn, ALSyn → ALSem of the AL.

Solution sketch:

i. ALSem is the semantic of the assembly language and is defined as the com-
puting system implementing machine computations.

ii. ALSyn is the syntax of the assembly language and is defined by the collection
of mnemonic notations programmers can use to represent machine computa-
tions.

iii. ALSem → ALSyn is the collection of rules which allows programmers to ex-
press machine computations using mnemonic notations. These may be called
assembly language programming rules

iv. ALSyn → ALSem is the collection of rules which allows programmers to exe-
cute their assembly language programs thus simulating machine behavior.

(b) (10 points) The target language of the assembler is the machine language ML =
〈MLSem, MLSyn, MLSem ↔ MLSyn〉. Explain the meaning of each of the com-
ponents MLSem, MLSyn, MLSem → MLSyn, MLSyn → MLSem of the ML (5
points). Explain the relationship between ALSem and MLSem (5 points).

5

Solution sketch:

i. MLSem is the semantic of the machine language and is defined as the com-
puting system implementing machine computations.

ii. MLSyn is the syntax of the machine language and is defined by the collection
of machine codes programmers can use to represent machine computations.

iii. MLSem → MLSyn is the collection of rules which allows programmers to
express machine computations using the collection of codes recognized by the
hardware. These may be called machine language programming rules

iv. MLSyn → MLSem is the collection of rules which allows programmers to
execute their machine language programs thus simulating machine behavior.

v. ALSem coincides with MLSem. Hence, the mappings HA : ALSem → MLSem

is an identity map.

(c) (10 points) Describe the structure of the ALSyn in terms of its three layers of
generation.

Solution sketch: ALSyn is defined on three levels of structuring:

i. On the first level are mnemonics denoting machine language operations,
pseudo-operations, macro-operation definition and macro-operation call, gen-
eral registers, index registers, modifiers, and address expressions denoting
machine language operands.

ii. On the second level are assembly language statements. These are AL con-
structs of the form [Label:] Mnemonic [Operand] [Comment] used to rep-
resent data and machine operations. The statement components in brackets
are optional.

iii. On the third level are assembly language programs. These are defined as
sequence of statements that start with a statement denoting program begin
and end with a statement denoting program end.

(d) (10 points) Describe the structure of the MLSyn in terms of its three layers of
generation.

Solution sketch: MLSyn is defined on three levels of structuring:

i. On the first level are the machined language codes. They are binary represen-
tations of opcodes, general registers, index registers, modifiers, and memory
addresses.

ii. On the second level are machine language statements. These are specified by a
fixed number of parameterized patterns used to represent data and operations.

iii. On the third level are machine language programs. These are defined as
sequence of machine language instruction and data words assembled according
to the model of program executions.

6

(e) (10 points) Sketch the implementation of the assembler component TA : ALSyn →
MLSyn as a two pass assembler.

Solution sketch: The two pass assembler is implemented by two readings of the
assembly language program called passes, which perform as follows:

Pass 1: read the assembly language program statement by statement. For
each statement identify its generators and remember them and their machine
language translations in appropriate tables. At the end of Pass 1 perform
memory allocation and collect all external defined and referenced symbols in
the External Symbol Dictionary, (ESD). Note: for optimization purpose the
assembly language statements thus identified may be represented by appro-
priate patterns whose elements point to the generators and their translations
stored in the appropriate tables. These patterns are written in the File of
Internal Form (FIF), that save the time needed for the second reading of the
assembly language source program.

Pass 2: is called by Pass1 and performs the following tasks:

A. Traverse the symbol table and performs memory allocation.

B. Construct the External Symbol Dictionary, where imported and exported
symbols used in the assembly language program are stored.

C. Read the assembly language program (or FIF if used) statement by state-
ment. For each statement identify the machine language pattern repre-
senting the computation performed by the statement and instantiate it
using the translations of the generators stored in tables by Pass 1.

D. Writes thus instantiated pattern into the File of Object Generated (FOG)
generated by the assembler. i

E. Collects the address dependent constants into the Relocation and Linking
Directory and generate the Machine Object Module, MOM = 〈ESD, Text, RLD〉
where Text is the program generated in FOG.

7

Problem III: reliability and efficiency of BOS (100 points)

The action Solve below represents the evolution of the control program to a reliable and
efficient batch operating system, called Multiprogramming System.

Solve::
local JobF ile: file of Jobs,

Job1, Job2, Job3: job data structures;
repeat

l1:Batch(Job1, JobF ile) or Skip :l̂1
||

l2:Process(Job2, JobF ile) or Skip :l̂2
||

l3: DoIO(Job3, JobF ile) or Skip :l̂3
forever

You are required to answer the following questions regarding the Solve action:

1. (30 points) What are the hardware (10 points) and software (20 points) mechanisms
used to make the control program reliable and efficient thus evolving it to the Solve
action?

Solution sketch: Hardware mechanisms: (1) Mode Bit (MB), Interrupt mecha-
nism, Protection Memory (PM), Protection Key (PK) in PSW, used to ensure relia-
bility; (2) Disk systems where JDS can be accessed directly, used to ensure efficiency
by overlapping processor, I/Devices, and users, operations.

Software mechanisms: system call (supervisor call), table of functions performing
services, a dispatcher program that is initiated when a supervisor call is issued by a user
program, and Job Summary Table (JST) that summarize the JDS. JST is organized
as a linked list and is maintained in main memory. JobFile is split into three queues:

(a) InList, which holds the new jobs arrived in the system, InList is manipulated by
a long-term scheduling algorithm usually called InSpooler;

(b) OutList, which hold the jobs that are ready to depart from the system; OutList is
manipulated by a long-term scheduling algorithms usually called an OutSpooler;

(c) ReadyList which hold the jobs that are currently competing for processor execu-
tion. Ready list is manipulated by a short-term scheduler algorithm.

2. (20 points) Explain the communication protocol enforced by the hardware and software
mechanisms that makes Solve reliable and efficient.

Solution sketch: Communication protocol: System programs run in supervisor
mode (MB =1) while programs initiated by the control program run in user mode

8

(MB=0). MB splits the instructions performed by the processor in two disjoint classes:
privileged instruction (PI) and non-privileged instructions (NP). If an instructions
i ∈ NP is initiated while MB = 1 an interrupt is generated by the processor and
the control is transferred to the control-program. This allows the system programs
access to the entire repertoire of instructions executed by the processor while the user
programs can perform only non-privileged instructions. A special privileged instruction
called supervisory call, SC, is provided which allows the user program to ask the
control program to execute a function on its behalf. Thus, a user program can ask
the CP to perform a service on his behalf issuing a supervisor call which takes as
parameter the service requested. Similarly, PK and PM allow the system to control
the memory access, thus protecting the programs that share the memory against each
other unauthorized actions.

3. (50 points) The performance of the system was defined as the ratio ProcessorT ime
TotalT ime

where
ProcessorT ime is the time used effectively by the processor performing user compu-
tations and TotalT ime is the total time used by the computer to solve a problem.

(a) Explain the concept of overlapping processing performed by BOS (10 points). How
is the system performance affected by overlapping processing? (10 points).

Solution sketch: Overlapping processing: is the processing mode performed
by BOS where I/O operations of a program are performed by I/O devices in
parallel with the processing operations of the same program performed by the
control processor. The system performance can be improved by buffering. The
performance improvement is however limited by the difference in speed between
I/O devices and processor.

(b) Explain the concept of multiprogramming system that implements the action Solve
(10 points). How is the system performance affected by multiprogramming pro-
cessing? (10 points).

Solution sketch: Multiprogramming system: is the processing mode per-
formed by Solve where I/O operations of a program can be overlapped with pro-
cessing operations of another program. This is achieved by using disk systems and
maintaining the JobFile into three lists as explained above. The performance of
multiprogramming system can be increased with the number of programs main-
tained in the ReadyList which is called multiprogramming degree.

(c) Explain the concept of the thrashing state of a multiprogramming system (10
points).

Solution sketch: Thrashing state: when the multiprogramming degree in-
creases above certain number, called threshold, the system performance decreases
dramatically. The processor become busy switching jobs among the queues ex-
istent in the system rather than performing user computations. The state of
the system where performance start decreasing as number of programs in the

9

ReadyList increases is called thrashing state. To maintain system performance
high the multiprogramming degree needs to be kept below the threshold.

10

