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1 The inner product

Arithmetic is based on addition and multiplication. Ge-

ometry is based on length and angle.

Using a dot product we obtain length and angle from

addition and multiplication in a relatively simple way.

Definition 1.1 Suppose −→u is an n-dimensional vec-

tor with coordinates {ui} and −→v is an n-dimensional

vector with coordinates {vi} then the inner product

or dot product of −→u and −→v is defined:
−→u · −→v = u1v1 + u2v2 + · · · + unvn

Remark 1.2 If we express a vector as a matrix with

one column the inner product can be expressed in terms

of matrix multiplication as: −→u · −→v = (−→u )T−→v .

So the dot product of −→u =

 1

2

3

 and −→v =

 2

−3

5


can be calculated:

−→u ·−→v = (−→u )T−→v =
(

1 2 3
) 2

−3

5

 = 2−6+15 = 11.
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It is important to note that the dot product of two vec-

tors is a number. This makes it very different from more

familiar multiplications where we multiply two things of

some type and get another thing of that same type.

Other than that, the formal properties for dot product

have the familiar look of multiplication:

Proposition 1.3 Suppose −→u and −→v are n-dimensional

vectors and c a number. Then

1. −→u · −→v = −→v · −→u

2. (−→u +−→v ) · −→w = −→u · −→w +−→v · −→w

3. (c−→u ) · −→v = −→u · (c−→v ) = c(−→u · −→v )

4. 0 ≤ −→u · −→u

5. −→u · −→u = 0 if and only if −→u =
−→
0

Remark 1.4 Note in that last item, there are two dif-

ferent “zeros’—the number zero and the vector zero.
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2 Length of a vector

Definition 2.1 The length (or norm) of a vector −→v
is defined to be

√−→v · −→v ,

A common notation for the length of −→v is ||−→v ||.

Remark 2.2 For two and three dimensional vectors,

the formula agrees with the familiar length formulas.

If −→v =

(
x

y

)
then ||−→v || =

√
x2 + y2. This is the

familiar Pythagorean Theorem in the plane.

If −→v =

 x

y

z

 then ||−→v || =
√
x2 + y2 + z2. This is

the three dimensional version of the Pythagorean Theo-

rem.

For higher dimensions we have If −→v =


x1
x2
...

xn

 then

||−→v || =
√
x21 + x22 + · · · + x2n. This is clearly an ana-

logue version of the Pythagorean Theorem. This allows
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us to define length in any Rn even though we may have

difficulty in visualizing things in high dimensions.

A vector −→v ∈ Rn lies on a line L = t−→v , and our

length is just length as measured in this line.

Example 2.3 So the length of


1

2

3

4

 is

√
12 + 22 + 32 + 42 =

√
1 + 4 + 9 + 16 =

√
30.

Remark 2.4 It is easy to check from the definition that

if c is a number, then ||c−→v || = |c| ||−→v ||.

For example if −→v =

(
x

y

)
then c−→v =

(
cx

cy

)
And so

||c−→v || =
√

(cx)2 + (cy)2 =
√
c2(x2 + y2) =

√
c2
√

(x2 + y2) = |c|
√

(x2 + y2).

Definition 2.5 A vector with length 1 is called a unit

vector.
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Definition 2.6 If −→v is a non zero vector, the vector

( 1
||−→v ||
−→v ) is called the normalization of −→v .

Remark 2.7 If −→v is a non zero vector, then ( 1
||−→v ||)
−→v is

a unit vector since, using Remark 2.4, we see:

∣∣∣∣∣∣∣∣( 1

||−→v ||

)
−→v
∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1

||−→v ||

∣∣∣∣ ||−→v || = ||−→v ||||−→v ||
= 1

Example 2.8 The normalization of


1

2

3

4

 is


1√
30
2√
30
3√
30
4√
30

.

3 Distance in Rn

Definition 3.1 Suppose −→u and −→u are n-dimensional

vectors. We define the distance between −→u and −→u to

be

dist(−→u ,−→v ) = ||−→u −−→v ||
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Remark 3.2 In other words, the distance between two

vectors is length of their difference.

If we write out the formulas we find:

The distance between two vectors is the square root of

the sum of the squares of the differences of the coordi-

nates:

dist(−→u ,−→v ) =

√√√√ n∑
i=1

(u2i − v2i )

Also note we can write:

dist(−→u ,−→v ) =
√

(−→u −−→v ) · (−→u −−→v ).

4 Angles in Rn

The famed Pythagorean Theorem: a2 + b2 = c2 only

holds for right triangles where the angle θ opposite the

side of length c ( that is, the hypotenuse ) is π
2 .

The theorem covering the case when θ 6= π
2 is the Law
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of Cosines:

a2 + b2 = c2 − 2bc cos θ.

Two vectors in the plane R2, −→u and −→v ( for the mo-

ment assume they are linearly independent) determine

a triangle whose vertices are: the origin and two “end-

points” of the vectors. Let θ be the angle of this triangle

at
−→
0 ; we refer to this as the angle between the vectors.

Applying the Law of Cosines to this triangle we obtain:

−→u · −→v = ||−→u || ||−→v || cos θ

It is easy to check that this formula works if −→u and
−→v are not linearly independent.

In the general case suppose we have two vectors in Rn,
−→u and−→v ( for the moment assume they are linearly inde-

pendent). Then they lie in a well defined two-dimensional

subset which contains the origin and is geometrically is

just like R2. In this plane we can measure our angle θ.

And we will find that our formula

−→u · −→v = ||−→u || ||−→v || cos θ

still holds.
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5 Orthogonal vectors

Two line segments joined at a point are called orthogonal

if the meet at a right angle. We can think of these line

segments as giving two vectors. Since cos π2 = 0 we see

from the formula of Section 4 that the dot product of

these two vectors must be zero.

Definition 5.1 Two vectors in Rn, −→u and −→v are or-

thogonal if and only if −→u · −→v = 0.

Example 5.2 So we can see that 1

4

1

 and

 2

1

2


are not orthogonal since their dot product is 2+4+2 6= 0.

Also  1

4

1

 and

 2

−1

2


are orthogonal since their dot product is 2− 4 + 2 = 0.
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Example 5.3 Find a vector of the form

(
a

−1

)
which

is orthogonal to

(
−1

3

)
. The dot product of these vec-

tors is −a− 3, and we need −a− 3 = 0, so we conclude

that a = 3.

6 Orthogonal complements

Definition 6.1 If −→z is a vector in Rn and W a sub-

space we say −→z is orthogonal to W if −→z is or-

thogonal to every vector in W .

Remark 6.2 If−→z is a vector inRn the set of all vectors

orthogonal to −→z is a subspace.

If W is a subspace of Rn the set of all vectors orthog-

onal to some vector in W is a also subspace of Rn. We

denote this subspace as W⊥.

Definition 6.3 If W is a subspace in Rn, the sub-

space W⊥ of all vectors orthogonal to W is called the

orthogonal complement of W .
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Definition 6.4 Let A be an m× n matrix. The row

space, RowA, of A is the subspace of Rm spanned

by the row vectors of A. The column space, ColA,

of A is the subspace of Rn spanned by the column

vectors of A

When we do matrix multiplication AB = C we calcu-

late cij from the i-th row of A and the j-th column of B.

That calculation can be viewed as a dot product of the

i-th row vector of A and the j-th column vector of B.

Now think about an equationA−→x =
−→
0 . We can think

of this as saying that the vector −→x to every row vector

of A. This leads us to the following theorem.

Proposition 6.5 Let A be an m× n matrix. Then

1. (RowA)⊥ = NulA

2. (ColA)⊥ = NulAT

Example 6.6 Find a basis for the orthogonal comple-
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ment of the subspace W spanned by
1

2

3

4

 and


1

0

1

0

 .

By the Proposition 6.5 we need only find the null space

of (
1 2 3 4

1 0 1 0

)
.

We do this by row reducing A to get(
1 2 3 4

0 −2 −2 −4

)
(

1 0 1 0

0 −2 −2 −4

)
(

1 0 1 0

0 1 1 2

)
Letting x4 = s and x3 = t we will have x2 + t+ 2s = 0

and x1 + t = 0, So the null space is all vectors
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−t

−t− 2s

t

s

 = t


−1

−1

1

0

 + s


0

−2

0

1


We conclude that


−1

−1

1

0

 ,


0

−2

0

1




is a basis for W⊥.

7 Problems

1. Let −→v =

 1

2

3

. Find a basis for the subspace of

R3 orthogonal to the subspace spanned by −→v .

2. Find a basis for the orthogonal complement of the
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subspace W spanned by
1

2

3

4

 and


1

1

1

1

 .
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