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1 When does a 2× 2 matrix have an inverse?

If A =

(
a11 a12
a21 a22

)
we have found that A is invertible if

and only if the determinant

a11a22 − a12a21

is not zero. This was part of a homework problem and the

method was to use our method of calculating inverse and

pay attention to the algebra at the end of the calculation.

So the calculation begins with constructing

If (
a11 a12 1 0

a21 a22 0 1

)
.

Assume that a11 ∕= 0; then we can multiply the top row

by 1
a11

. (If it is 0 we will need an argument for this case,

but we will omit this detail here.)(
1 a12

a11

1
a11

0

a21 a22 0 1

)
.

Next we multiply row 1 by −a21 and add to row 2 and

get (
1 a12

a11

1
a11

0

0 (a22 − a21
a12
a11

) −a21
a11

1

)
.
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Rewriting the expression in the second row we get

(
1 a12

a11

1
a11

0

0 a11a22−a21a12
a11

−a21
a11

1

)
.

Our next step would be to multiply row 2 by a11
a11a22−a21a12

which would give us a 1 in the second column of the

second row. HOWEVER we can only do if and only if

a11a22 − a21a12 ∕= 0. This expression a11a22 − a21a12 is

our determinant. At this point we have determined our

condition for deciding whether or not A has an inverse.

2 Determinant of a 3× 3 matrix

Let A =

⎛⎝ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠. We ask: For what values of

the aij will be invertible?

We can do the same thing—it is just a longer calcula-

tion.

1. Assume that a11 ∕= 0; then we can multiply the top
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row by 1
a11

2. Next multiply row 1 by −a21 and add to row 2

3. Then multiply row 1 by −a31 and add to row 3

4. . . .

If we did this we would find that we can invert A if

and only if

−a13a22a31+a12a23a31+a13a21a32−a11a23a32−a12a21a33+a11a22a33 ∕= 0

Definition 2.1 If A is a 3 × 3 matrix, the determi-

nant △ of A is defined

△ = −a13a22a31+a12a23a31+a13a21a32−a11a23a32−a12a21a33+a11a22a33

Remark 2.2 If we examine the terms of this expression

for △ we can observe:

1. each the six terms is a product of three numbers say

a, b, and c

2. no two of these numbers are in the same column, no

two are in the same row

3. half (three) the terms appear with a “+” and half

with a “−”
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We ask: what is a rule which could tell us which of the

terms appear with a “+” and which with a “−”?

3 The Determinant in the n× n case

There are some interesting ways to define a sign conven-

tion to these terms. Also we can extend the definition

of determinant for the n× n case. Our text chooses the

following (inductive) definition:

Definition 3.1 If A is an n×n matrix, let Aij denote

the (n−1)× (n−1) matrix formed by deleting the i-th

row and the j-th column from A. The determinant

of A, denoted detA is defined:

detA = (−1)i+j
n∑

j=1

a1jA1j

Remark 3.2 To understand the sign (−1)i+j it is help-

ful to note that this is positive if i+j is even and negative

if i + j is odd and that if we mark locations in a matrix

with “+” and “-” accordingly we get a “checkerboard”

pattern:
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⎛⎜⎜⎜⎝
+ − + ⋅ ⋅ ⋅
− + − ⋅ ⋅ ⋅
+ − + ⋅ ⋅ ⋅
... ... ... . . .

⎞⎟⎟⎟⎠
In our definition the first row of A has been singled out

for special attention. There is no need for this. We could

alternatively used any row as the next theorem shows. In

fact we could also have a rule based on columns. First

we introduce a definition.

Definition 3.3 Given a square matrix A, the (i, j)-

cofactor of A is

Cij = (−1)i+j detAij

Proposition 3.4 If A is an n × n matrix, then we

can calculate detA using a formula based on any row

and any column as follows:

The calculation based on the i-th row is:

detA =

n∑
j=1

aijCij
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The calculation based on the j-th column is:

detA =

n∑
i=1

aijCij

Notation: a second common notation for detA is ∣A∣.
Thus for a 2× 2 matrix we write:

∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc

Example 3.5 We first calculate using the definition:∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣ = 1

∣∣∣∣ 5 6

8 9

∣∣∣∣− 2

∣∣∣∣ 4 6

7 9

∣∣∣∣ + 3

∣∣∣∣ 4 5

7 8

∣∣∣∣
= 1(45−48)−2(36−42)+3(32−35) = 3−2(−6)+3(−3) = 0

We began discussion of determinant as a way of decid-

ing if a matrix had an inverse. Since the determinant of

our matrix is zero we conclude that the matrix is not in-

vertible. In a way this is something that we have already

seen.
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Consider the set of equations:

x + 2y + 3z = 0

4x + 5y + 6z = 0

7x + 8y + 9z = 0

and suppose we ask: does this set of equations have a

unique solution? This has a matrix M:⎛⎝ 1 2 3

4 5 6

7 8 9

⎞⎠
We have seen in previous class notes that the row re-

duced form of this is:

⎛⎝ 1 0 −1

0 1 2

0 0 0

⎞⎠
and we conclude that M does not have a unique solu-

tion.

We could have concluded the fact that M does not

have a unique solution as follows. We calculated that
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the determinant was zero. This implies that M is not

invertible and this implies (using one of the conclusions

of the Inverse Theorem) that our equation M−→x =
−→
0

does not have a unique solution.

Getting back the the calculation of the determinant,

we could use the second row to calculate:∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣ = −4

∣∣∣∣ 2 3

8 9

∣∣∣∣ + 5

∣∣∣∣ 1 3

7 9

∣∣∣∣− 6

∣∣∣∣ 1 2

7 8

∣∣∣∣
= −4(18−24)+5(9−21)−6(8−14) = −4(−6)+5(−12)−6(−6) =

24− 60 + 36 = 0

Here is a calculation based on the last column:

∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣ = 3

∣∣∣∣ 4 5

7 8

∣∣∣∣− 6

∣∣∣∣ 1 2

7 8

∣∣∣∣ + 9

∣∣∣∣ 1 2

4 5

∣∣∣∣
= 3(32−35)−6(8−14)+9(5−8) = 3(−9)−6(−6)+9(−3) = 0

Example 3.6 Next we calculate the determinant of a

4 × 4 matrix. Note in the matrix the second column is
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mostly zeros. This can simplify the calculation a little if

we base or calculation on this column:

∣∣∣∣∣∣∣∣∣
1 0 −2 1

1 2 −2 1

−2 0 −1 −3

1 0 1 2

∣∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 −2 1

−2 −1 −3

1 1 2

∣∣∣∣∣∣ = 2(−2) = −4

But even if we base calculation on first column, we get

same answer:

∣∣∣∣∣∣∣∣∣
1 0 −2 1

1 2 −2 1

−2 0 −1 −3

1 0 1 2

∣∣∣∣∣∣∣∣∣ =

1

∣∣∣∣∣∣
2 −2 1

0 −1 −3

0 1 2

∣∣∣∣∣∣−1

∣∣∣∣∣∣
0 −2 1

0 −1 −3

0 1 2

∣∣∣∣∣∣+(−2)

∣∣∣∣∣∣
0 −2 1

2 −2 1

0 1 2

∣∣∣∣∣∣−1

∣∣∣∣∣∣
0 −2 1

2 −2 1

0 −1 −3

∣∣∣∣∣∣ =

(1)(2)(−2+3)−1(0)+(−2)(−2)(−4−1)−1(−2)(6+1) =

2− 0− 20 + 14 = −4
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4 Determinants of matrices with an organized

pattern of zeros

Definition 4.1 In a square matrix A = (aij) the main

diagonal of A are the locations where i = j. Visu-

ally this is a diagonal that goes from the upper left to

the lower right corners.

A diagonal matrix is one whose non diagonal

elements are all zero. A matrix is upper trian-

gular if all the entries below the main diagonal are

zero. A matrix is lower triangular if all the en-

tries above the main diagonal are zero. A matrix is

triangular if it is either an upper triangular matrix

or a lower triangular matrix.

Because of all the zeros, It is easy calculate determi-

nants of these matrices:

Proposition 4.2 If M is a diagonal matrix then det(M)

is the product of all of the entries on the diagonal.

and similarly that

Proposition 4.3 If M is a triangular matrix then
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det(M) is the product of all of the entries on the di-

agonal.

Example 4.4∣∣∣∣∣∣∣∣∣
1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 5 8 10

0 2 6 9

0 0 3 7

0 0 0 4

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0 0 0

−3 2 0 0

−100 13 3 0

66 1028 −999 4

∣∣∣∣∣∣∣∣∣ = 1⋅2⋅3⋅4 = 24

Question 4.5 There are 6 alternate ways to calculate

the determinant of the 4 × 4 matrix given in Example

3.6. Show these in detail as done in that example.
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