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6.3 Probabilities with Large Numbers 

!  In general, we can’t perfectly predict any 
single outcome when there are numerous 
things that could happen. 

! But, when we repeatedly observe many 
observations, we expect the distribution of 
the observed outcomes to show some 
type of pattern or regularity. 
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Tossing a coin 

! One flip 
" It’s a 50-50 chance whether it’s a head or tail. 

!  100 flips   
" I can’t predict perfectly, but I’m not going to 

predict 0 tails, that’s just not likely to happen. 
" I’m going to predict something close to 50 tails 

and 50 heads.  That’s much more likely than 0 
tails or 0 heads. 
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Tossing a coin many times 

!  Let      represent the proportion of heads 
that I get when I toss a coin many times. 

" If I toss 45 heads on 100 flips, then 

"       is pronounced “p-hat”.  It is the relative 
frequency of heads in this example.  

" If I toss 48 heads on 100 flips, then 

p̂

p̂ = 45
100

= 0.45

p̂ = 48
100

= 0.48

p̂
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Tossing a coin many times 

!  I expect     (the proportion of heads) to be 
somewhere near 50% or 0.50. 

! What if I only toss a coin two times? 
" The only possible values for      are… 

!  1)       = 0/2 = 0.00 
!  2)       = 1/2 = 0.50 
!  3)       = 2/2 = 1.00 

p̂

p̂
p̂
p̂
p̂

Pretty far from the  
true probability of 
flipping a head on a 
fair coin (0.5). 



5 

Tossing a coin many MANY times 
!  It turns out… 

" If I toss it 100 times I expect to be near 0.50 

" If I toss it 1000 times I expect to be even 
nearer to 0.50 

" If I toss it 10,000 times I expect to be even 
nearer to 0.50 than in the 1000 coin toss. 
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Tossing a coin many MANY times 
! This shows a very possible observed 

situation… 

" Toss it 100 times, 45 heads. 

" Toss it 1000  times, 485 heads. 

" Toss it 10,000 times, 4955 heads.  

p̂ = 485
1000

= 0.4850

p̂ = 45
100

= 0.4500

p̂ = 4955
10000

= 0.4955

!  With more tosses, the closer      gets to the truth of 
0.50 (it’s “zero-ing in” on the truth). 

p̂
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Law of Large Numbers 
! For repeated independent trials, the long run 

(i.e. after many many trials) relative 
frequency of an outcome gets closer and 
closer to the true probability of the outcome. 

" If you’re using your trials to estimate a 
probability (i.e. empirical probability), you’ll do a 
better job at estimating by using a larger number 
of trials. 

 



Computer simulation of rolling a die.   
We’ll keep track of the proportion of 1’s. 
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Number of rolls getting larger # 
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Law of Large Numbers 
! Suppose you don’t know if a coin is fair. 

" Let      represent the true probability of a head. 
 from n=10 trials 

is an OK estimate for    .  

from n=1000 trials 
is a better estimate for    .  

from n=10,000 trials 
is an even better estimate  
for    .  

p̂

p̂

p̂
p

p

p

60.0
10
6ˆ ==p

513.0
1000
513ˆ ==p

p̂ = 5014
10000

= 0.5014

p



$  In the coin flip example, your estimate with 
n=10 may hit the truth right on the nose, 
but you have a better chance of      being 
very close to              when you have a 
much larger n.  
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Law of Large Numbers (LLN) 

5.0=p
p̂
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!  LLN let’s insurance companies do a pretty 
good job of estimating costs in the coming 
year for large groups (i.e. when they have 
LOTS and LOTS of insurees). 

" Hard to predict for one person, but we can do 
a pretty good job of predicting total costs or 
total proportion of people who will have an 
accident for a group. 

Law of Large Numbers (LLN) 



Example: 
! The Binary Computer Company 

manufactures computer chips used in DVD 
players.  Those chips are made with 0.73 
defective rate. 

" A) When one chip is drawn, list the possible 
outcomes. 

" B) If one chip is randomly selected, find the 
probability that it is good. 

" C) If you select 100,000 chips, how many 
defects should you expect? 
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" A) Two possible outcomes: defective or good. 

" B) P(good)=1-P(defective) = 1-0.73=0.27 

" C) If you select 100,000 chips, how many 
defects should you expect? 
!  As the number of chips sampled gets larger, the 

proportion of defects in the sample approaches the 
true proportion of defects (which is 0.73).  So, with 
this large of a sample, I would expect about 73% of 
the sample to be defects, or 0.73 x 100,000= 73,000. 

!  I used the Law of Large numbers in the above. 
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Answers: 



Expected Value 
! Game based on the roll a die:   

" If a 1 or 2 is thrown, the player gets $3.  If a 
3, 4, 5, or 6 is thrown, the house wins (you 
get nothing). 

" Would you play if it cost $5 to join the game? 

" Would you play if it cost $1 to join the game? 

" What do you EXPECT to gain (or lose) from 
playing? 

14 We’ll return to this example later… 



Expected Value 
! There are alternative ways to compute 

expected values (all with the same result).  
I will focus on those where the probabilities 
of the possible events sum to 1. 
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Expected Value 
!  Life insurance companies depend on the 

law of large numbers to stay solvent (i.e. 
be able to pay their debts).  

!  I pay $1000 annually for life insurance for a 
$500,000 policy (in the event of a death). 

! Suppose they only insured me. 
" If I live (high probability), they make $1000. 
" If I die (low probability), they lose $499,000!! 

! Should they gamble that I’m not going to 
die?  Not sound business practice.  
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Expected Value 
!  It’s hard to predict the outcome for one 

person, but much easier to predict the 
‘average’ of outcomes among a group of 
people.  

!  Insurance is based on the probability of 
events (death, accidents, etc.), some of 
which are very unlikely. 
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Expected Value 
! For the upcoming year, suppose: 

" P(die) = 1/500 = 0.002 
" P(live) = 499/500 = 0.998 
" A life insurance policy costs $100 and pays 

out $10,000 in the event of a death 

!  If the company insures a million people, 
what do they expect to gain (or lose)?  
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Expected Value 
! For each policy, one of two things can 

happen… a payout (die) or no payout (live). 
" If the person dies and they pay out, they       

lose $9,900 on the policy. 
(they did collect the $100 regardless of death or not) 

" If the person lives and there’s no payout, they 
gain $100 on the policy. 
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Expected Value = (1/500)*(-$9,900)+(499/500)*($100) = $80  
       (per policy) 

This amounts to a profit of $80,000,000 on sales of 1 million policies 



Expected Value (per policy) 
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Expected Value = (1/500)*(-$9,900)+(499/500)*($100) = $80  
       (per policy) 

This amounts to a profit of $80,000,000 on sales of 
1 million policies (overall expected value of $80,000,000). 

The 
negative 

loss 

The 
positive 

gain 

Probability 
of a loss 

Probability 
of a gain 



Expected Value 
! For the upcoming year, suppose: 

" P(die) = 1/500 = 0.002 
" P(live) = 499/500 = 0.998 
" A life insurance policy costs $1000 and pays 

out $500,000 in the event of a death 
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Expected Value = (1/500)*(-$499,000)+(499/500)*($1000) = $0  
       (per policy) 

They expect to just ‘break even’ (if more people die than expected, they’re  
in trouble).  Charging any less would result in an expected loss. 



Expected Value 
! The law of large numbers comes into play 

for insurance companies because their 
actual payouts will depend on the observed 
number of deaths (some uncertainty).   

! As they observe (or insure) more people, 
the relative frequency of a death will get 
closer and closer to the 1/500 probability on 
which they based their calculations. 
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Calculating Expected Value 
Consider two events, each with its own value and probability. 
The expected value is 

   expected value  =   
  (value of event 1) * (probability of event 1)  
         + (value of event 2) * (probability of event 2) 

This formula can be extended to any number of events by 
including more terms in the sum. 



Expected Value 
! Game based on the roll a die:   

" If a 1 or 2 is thrown, the player gets $3.  If a 
3, 4, 5, or 6 is thrown, the house wins (you 
get nothing). 

" If the game costs $5 to play, what is the 
expected value of a game? 
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Expected Value = (2/6)*(-$2)+(4/6)*(-$5) = -$4  
       (per game) 

No matter what is rolled, you’re losing money. 



Expected Value 
! Game based on the roll a die:   

" If a 1 or 2 is thrown, the player gets $3.  If a 
3, 4, 5, or 6 is thrown, the house wins (you 
get nothing). 

" If the game costs $1 to play, what is the 
expected value of a game? 
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Expected Value = (2/6)*($2)+(4/6)*(-$1) = $0  
       (per game) 

This is a ‘fair game’. 
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Expected Value 

Definition 
The expected value of a variable is the weighted average 
of all its possible events. Because it is an average, we 
should expect to find the “expected value” only when there 
are a large number of events, so that the law of large 
numbers comes into play. 

For the life insurance company, the observed relative 
frequency of deaths approaches the truth (which is 
1/500) as they get more and more insurees. 



Expected Value 
! Game based on the roll of two dice:   

" If a sum of 12 is thrown, the player gets $40.  
If anything else is thrown, the house wins 
(you get nothing). 

" If the game costs $4 to play, what is the 
expected value of a game? 
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Expected Value = (1/36)*($36)+(35/36)*(-$4)  
      = - $2.89 (per game) 

This is a ‘unfair game’ (for the gambler). 
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Everyone who bets any part of 
his fortune, however small, on 
a mathematically unfair game 
of chance acts irrationally… 
 

    -- Daniel Bernoulli, 
    18th century mathematician 

In the long run, you know you’ll lose.  
But perhaps you think you can ‘beat 
the house’ in the short run. 
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The Gambler’s Fallacy 

Definition 
The gambler’s fallacy is the mistaken belief that a  
streak of bad luck makes a person “due” for a streak  
of good luck. 



! Game based on the toss of a fair coin:   
" Win $1 for heads and lose $1 for tails         

(no cost to play). 

" After playing 100 times, you have 45 heads 
and 55 tails (you’re down $10). 

" Thinking things will ‘balance out in the end’ 
you keep playing until you’ve played 1000 
times.  Unfortunately, you now have 480 
heads and 520 tails (you’re down $40). 
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Expected Value = (1/2)*($1)+(1/2)*(-$1)  
      =  $0 (per game) 



! Do these results go against what we know 
about the law of large numbers?  Nope. 

 
" The proportion of heads DID get closer to 0.50 

" But the difference between the number of heads 
and tails got larger, which is reasonable as the 
number of tosses gets larger. 

31 

p̂n=100 =
45
100

= 0.450

p̂n=1000 =
480
1000

= 0.480
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Outcomes	of	coin	tossing	trials	

Number	
of	tosses	

Number	
of	tails	

Number	
of	heads	

Percentage	
of	heads	

Difference		
between	number	of	

heads	and	tails	
100	 55	 45	 45%	 10	

1000	 520	 480	 48%	 40	
10,000	 5,050	 4,950	 49.50%	 100	

100,000	 50,100	 49,900	 49.90%	 200	

!  Though the percentage of heads gets closer to 
50%, the difference in the number of heads and 
tails doesn’t get closer to zero  
"  (and the difference is what relates to the money in 

your pocket). 



Streaks 
! When a sequence of events gives rise to a 

streak, this can also lend itself to the 
gambler’s fallacy. 
" Flip a coin 7 times: HHHHHHH 
" But we know that the above streak is just as 

likely as HTTHTTH because these are equally 
likely outcomes. 

" Perhaps you think a tail is ‘due’ next in the 
first streak, but P(tail)=P(head)=0.50 no 
matter what you tossed in the past. 
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