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6.3 Probabilities with Large Numbers

m In general, we can’t perfectly predict any
single outcome when there are numerous
things that could happen.

m But, when we repeatedly observe many
observations, we expect the distribution of
the observed outcomes to show some
type of pattern or regularity.
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Tossing a coin

m One flip

It's a 50-50 chance whether it's a head or tail.

m 100 flips
| can’t predict perfectly, but I'm not going to
predict O tails, that's just not likely to happen.

I’'m going to predict something close to 50 tails
and 50 heads. That's much more likely than O
tails or O heads.
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Tossing a coin many times

m et f? represent the proportion of heads
that | get when | toss a coin many times.

45

If | toss 45 heads on 100 flips, then 7 =7-5=045

]A? IS pronounced “p-hat”. It is the relative
frequency of heads in this example.

48

If | toss 48 heads on 100 flips, then p = 00" 0.48
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Tossing a coin many times

m | expect p (the proportion of heads) to be
somewhere near 50% or 0.50.

m What if | only toss a coin two times?
The only possible values for p are...

m1) p =0/2=0.00 <——_ Prettyfarfromthe

true probability of

- 2) lz C e / flipping a head on a
= 3) P = 212 =1.00 fair coin (0.5).
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Tossing a coin many MANY times

m |t turns out...

If | toss it 100 times | expect to be near 0.50

If | toss it 1000 times | expect to be even
nearer to 0.50

If | toss it 10,000 times | expect to be even
nearer to 0.50 than in the 1000 coin toss.
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Tossing a coin many MANY times

m This shows a very possible observed
situation...

Toss it 100 times, 45 heads. b= % —0.4500
Toss it 1000 times, 485 heads 5o 485 _ 0.4850
! P 000
Toss it 10,000 times, 4955 heads. p =222 - (.4955
10000

m With more tosses, the closer p gets to the truth of
0.50 (it's “zero-ing in” on the truth).
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Law of Large Numbers

m For repeated independent trials, the long run
(i.e. after many many trials) relative
frequency of an outcome gets closer and
closer to the true probability of the outcome.

If you're using your trials to estimate a
probability (i.e. empirical probability), you'll do a
better job at estimating by using a larger number
of trials.
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Computer simulation of rolling a die.
We'll keep track of the proportion of 1's.
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Law of Large Numbers

m Suppose you don’t know if a coin is fair.
Let p represent the true probability of a head.

f? from n=10 trials

. 6
Is an OK estimate for p. D= 0" 0.60
D from n=1000 ’Frials 513
IS a better estimate for p. D= 1000 0.513

p from n=10,000 trials

IS an even better estimate 014 - 05014
for p. 10000
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Law of Large Numbers (LLN)

* |n the coin flip example, your estimate with
n=10 may hit the truth right on the nose,
but you have a better chance of p being
very close to p = 0.5 when you have a
much larger n.
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Law of Large Numbers (LLN)

m LLN let's insurance companies do a pretty
good job of estimating costs in the coming
year for large groups (i.e. when they have
LOTS and LOTS of insurees).

Hard to predict for one person, but we can do
a pretty good job of predicting total costs or
total proportion of people who will have an

accident for a group.
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Example:

m The Binary Computer Company
manufactures computer chips used in DVD
players. Those chips are made with 0.73
defective rate.

A) When one chip is drawn, list the possible
outcomes.

B) If one chip is randomly selected, find the
probability that it is good.

C) If you select 100,000 chips, how many
defects should you expect?
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Answers:

A) Two possible outcomes: defective or good.

B) P(good)=1-P(defective) = 1-0.73=0.27

C) If you select 100,000 chips, how many
defects should you expect?

m As the number of chips sampled gets larger, the
proportion of defects in the sample approaches the
true proportion of defects (which is 0.73). So, with
this large of a sample, | would expect about 73% of
the sample to be defects, or 0.73 x 100,000= 73,000.

m | used the Law of Large numbers in the above.
13
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Expected Value

m Game based on the roll a die:

If a 1 or 2 is thrown, the player gets $3. Ifa
3, 4, 5, or 6 is thrown, the house wins (you
get nothing).

Would you play if it cost $5 to join the game?

Would you play if it cost $1 to join the game?

What do you EXPECT to gain (or lose) from
playing?

We’'ll return to this example later... .,
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Expected Value

m There are alternative ways to compute
expected values (all with the same resuilt).
| will focus on those where the probabilities
of the possible events sum to 1.
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Expected Value

m Life insurance companies depend on the
law of large numbers to stay solvent (i.e.
be able to pay their debts).

m | pay $1000 annually for life insurance for a
$500,000 policy (in the event of a death).

m Suppose they only insured me.
If | live (high probability), they make $1000.
If | die (low probability), they lose $499,000!!

m Should they gamble that I'm not going to
die? Not sound business practice.
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Expected Value

m [t's hard to predict the outcome for one
person, but much easier to predict the
‘average’ of outcomes among a group of
people.

m Insurance is based on the probability of
events (death, accidents, etc.), some of
which are very unlikely.
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Expected Value

m For the upcoming year, suppose:
P(die) = 1/500 = 0.002
P(live) = 499/500 = 0.998

A life insurance policy costs $100 and pays
out $10,000 in the event of a death

m [f the company insures a million people,
what do they expect to gain (or lose)?
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Expected Value

m For each policy, one of two things can
happen... a payout (die) or no payout (live).
If the person dies and they pay out, they

lose $9,900 on the policy.
(they did collect the $100 regardless of death or not)

If the person lives and there’s no payout, they
gain $100 on the policy.

Expected Value = (1/500)*(-$9,900)+(499/500)*($100) = $80
(per policy)

This amounts to a profit of $80,000,000 on sales of 1 million policies
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Expected Value (per policy)

Probability Probability
of a loss of a gain

L

Expected Value = (1/500)*(-$9,900)+(499/500)*($100) = $80

per policy) | | | |

The The
negative positive
loss gain

This amounts to a profit of $80,000,000 on sales of
1 million policies (overall expected value of $80,000,000). ,,



" J
Expected Value

m For the upcoming year, suppose:
P(die) = 1/500 = 0.002
P(live) = 499/500 = 0.998

A life insurance policy costs $1000 and pays
out $500,000 in the event of a death

Expected Value = (1/500)*(-$499,000)+(499/500)*($1000) = $0
(per policy)

They expect to just ‘break even’ (if more people die than expected, they're

in trouble). Charging any less would result in an expected loss. ”y
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Expected Value

m The law of large numbers comes into play
for insurance companies because their
actual payouts will depend on the observed
number of deaths (some uncertainty).

m As they observe (or insure) more people,
the relative frequency of a death will get
closer and closer to the 1/500 probability on
which they based their calculations.
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Calculating Expected Value

Consider two events, each with its own value and probability.
The expected value is

expected value =
(value of event 1) * (probability of event 1)

+ (value of event 2) * (probability of event 2)

This formula can be extended to any number of events by
iIncluding more terms in the sum.

23
Copyright © 2009 Pearson Education, Inc.



" J
Expected Value

m Game based on the roll a die:

If a 1 or 2 is thrown, the player gets $3. If a
3, 4, 5, or 6 is thrown, the house wins (you
get nothing).

If the game costs $5 to play, what is the
expected value of a game?

Expected Value = (2/6)*(-$2)+(4/6)*(-$5) = -$4

(per game)

No matter what is rolled, you're losing money. 24
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Expected Value

m Game based on the roll a die:

If a 1 or 2 is thrown, the player gets $3. If a
3, 4, 5, or 6 is thrown, the house wins (you
get nothing).

If the game costs $1 to play, what is the
expected value of a game?

Expected Value = (2/6)*($2)+(4/6)*(-$1) = $0

(per game)

This is a ‘fair game’. 25
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Expected Value

Definition

The expected value of a variable is the weighted average
of all its possible events. Because it is an average, we
should expect to find the “expected value” only when there
are a large number of events, so that the law of large
numbers comes into play.

For the life insurance company, the observed relative
frequency of deaths approaches the truth (which is
1/500) as they get more and more insurees.
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Expected Value

m Game based on the roll of two dice:

If a sum of 12 is thrown, the player gets $40.
If anything else is thrown, the house wins

(you get nothing).

If the game costs $4 to play, what is the
expected value of a game?

Expected Value = (1/36)*($36)+(35/36)*(-$4)
(per game) =-$2.89

This is a ‘unfair game’ (for the gambler). 27



Everyone who bets any part of
his fortune, however small, on
a mathematically unfair game
of chance acts irrationally...

-- Daniel Bernoulli,
18" century mathematician

In the long run, you know you'll lose.
But perhaps you think you can ‘beat
the house’ in the short run.
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The Gambler’s Fallacy

Definition

The gambler’s fallacy is the mistaken belief that a
streak of bad luck makes a person “due” for a streak
of good luck.

Copyright © 2009 Pearson Education, Inc.
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@ Game based on the toss of a fair coin:

Win $1 for heads and lose $1 for tails
(no cost to play).

Expected Value = (1/2)*($1)+(1/2)*(-$1)
(per game) — $O

After playing 100 times, you have 45 heads
and 55 tails (you're down $10).

Thinking things will ‘balance out in the end’
you keep playing until you've played 1000
times. Unfortunately, you now have 480
heads and 520 tails (you're down $40).
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m Do these results go against what we know
about the law of large numbers? Nope.

. 45
=——=0450
Pr-100 100
. 480
=—=0.480
Pr-1000 1000

The proportion of heads DID get closer to 0.50

But the difference between the number of heads

and tails got larger, which is reasonable as the
number of tosses gets larger.
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Outcomes of coin tossing trials

Difference
Number|Number Number| Percentage | between number of
of tosses| of tails |of heads| of heads heads and tails

100 55 45 45% 10
1000 520 480 48% 40
10,0000 5,050 4,950 49.50% 100
100,000 50,100 49,900 49.90% 200

m [hough the percentage of heads gets closer to
50%, the difference in the number of heads and

tails doesn’t get closer to zero

(and the difference is what relates to the money in
your pocket).
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Streaks

m \When a sequence of events gives rise to a
streak, this can also lend itself to the

gambler’s fallacy.
Flip a coin 7 times: HHHHHHH

But we know that the above streak is just as
likely as HTTHTTH because these are equally
likely outcomes.

Perhaps you think a tail is ‘due’ next in the

first streak, but P(tail)=P(head)=0.50 no
matter what you tossed in the past.
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