Section 1.2: Sampling

- Idea 1: Examine a part of the whole.
Idea 1: Examine a part of the whole.

Population – Entire group of individuals that we want to make a statement about.

Sample – Part of the population we actually examine.

e.g.

Population: My 9am statistics class

Sample: The group defined by all students sitting in a seat with a seat number ending in a ‘2’.
What about a census?

Would a census of the population be a better way to go?

- Often difficult to do
 - time, money, resources, non-responders, etc.

- Populations are often dynamic
 - They’re changing as you’re collecting the data

- Can be complex, who gets missed?
Properties of a Sample

■ Would like the sample to be representative of the population.

Suppose you want to taste (or sample) your soup.

If you leave it sitting for 2 hours and spoon off the top, would that be representative of the soup as a whole? Will you miss some important parts?

If you stir it thoroughly and then take a taste, would that be more representative of the soup as a whole?
Properties of a Sample

- A **representative sample** is a sample in which the relevant characteristics of the sample members are generally the same as the characteristics of the population.
Properties of a Sample

Getting a perfectly representative sample may not be possible, but we would at least like a sample that is not biased.

Biased Sample – the sample is ‘out of step’ with the full population. A biased sample differs in a ‘specific way’ from the population.
Are we Introducing bias? How?

- **Response**: Grade Point Average (GPA)
 - Population (whole): STAT1010 class
 - Sample (subset): All students in last 3 rows
 - Is it a representative sample?
Are we Introducing bias? How?

- Response: Hotel quality
 - Population (whole): All users of the hotel
 - Sample (subset): Users who took the time to upload review on internet
 - Is it a representative sample?
Are we Introducing bias? How?

- Response: Defect rate of a product
 - Population (whole): all products produced
 - Sample (subset): products produced on Friday from 3-5pm
 - Is it a representative sample?
Are we Introducing **bias**? How?

- A good statistical study MUST have a representative sample. Otherwise the sample is biased and conclusions from the study are not trustworthy.

- Gallup poll was very ‘off’ in presidential election prediction in 2012.

 - *Post-election examination determined “that part of the poll’s overstatement of Romney support arose from too few phone interviews in the Eastern and Pacific time zones… overstating the white vote…”*

 - (See link to article in USA Today on course website)
Sample Surveys

- Idea 2: Choosing randomly

- Selecting items for the sample should be done at random so as to reduce the chance of getting a biased sample.

- We can’t always ‘perfectly’ use random choice, but we do the best we can for the matter at hand.
Simple Random Sample (SRS)

- Want a representative sample but will settle for one that is not biased.

- SRS of size n=400
 - Give each individual in the population a number, then randomly generate 400 numbers as the ‘chosen’ individuals.
 - Each combination of 400 individuals has the same chance of being selected.
Simple Random Sample

- If one were to do this more than once...
 - Different random numbers will give different samples of 400 students.
 - We have introduced variability by sampling!

See web-based GUI applet on sampling words from the Gettysburg Address and observed word length:
http://www.rossmanchance.com/applets/OneSample.html

268 words in the population (whole)
10 chosen... Which were chosen

Population information

One sample’s information

Cumulative results over 5 different simulations
Other Sampling Plans

- Systematic Sampling
 - Select in a systematic way from the sampling frame.
 - e.g. Every 60th student (arranged alphabetically) on the list from the Registrar for opinion survey.
 - Use a random start point.
 - Caution- the order must be random...
 - Every Friday on assembly line, not a good idea.
 - Every 15 minutes at museum entry seems fine.
Other Sampling Plans

- Stratified Sampling

- Divide population into strata (subpopulations) and select a SRS from each strata.
 - e.g. SRS from each county in Iowa.
 - Example strata: race, income, age, sex, etc.

- Lets you make sure you’re getting a certain amount of input from each strata or group.
 - All strata will be represented.
Other Sampling Plans

Cluster

- Divide population into clusters, randomly select some of the clusters, choose all members (not SRS) from selected clusters as your sample.
- Might be more practical than SRS.

- Note that ALL individuals from a chosen cluster are sampled compared to only some individuals from each strata in stratified sampling.
Other Sampling Plans

- Convenience

 - Use a sample that is convenient to attain.
 - e.g. Last 3 rows of students to represent class.
 - e.g. Voluntary responses on internet hotel survey.

 - In general, not a good idea.
 - Often gives biased results.
 - Could be justified in some cases, but try to use a different sampling plan if possible.
Other problems

- Question bias/Response bias
- Things that influence the response
 - Question could be worded negatively
 - Would you favor or oppose a law that would take away your constitutional right to own guns?
 - Would you favor or oppose a law that would reduce gun violence in your neighborhood?
 - Respondents don’t like the interviewer
 - Respondents are embarrassed to tell truth and give false information
Other problems

- Non response
 - Is there a reason a group doesn’t respond?
 - Critical thinking useful here.
 - If it’s a health survey, will unhealthy people be less likely to respond?
 - Non response is a BIG issue in sample surveys.
Is there an association between breast cancer and abortion?

- Studies include women who have and who have not had breast cancer.
 - An observational study found there was an association.
 - Which group of women is more likely to be TOTALLY honest about their personal health?

 - Refuted the reliability of the study.
Variability in Samples

- Results from a **sample** provide **estimates** of the truth about a **population**.
- 2 different samples will give 2 different estimates (recall word length sampling example).
 - Why? Because we used random chance to select the sample.
 - This allows us to use probability to determine how large of an error we are likely to make – we’ll talk more on this later.
- Larger samples give more accurate estimates than smaller samples.
Some main topics from Sections 1.1-1.2

- Parameter (usually a greek letter) vs. Statistic
 - Population vs. Sample
- Choose sample *at random*
 - Helps avoid getting a biased sample
- Sampling methods
 - Simple Random Sample (SRS)
 - Stratified sampling
 - Cluster sampling
 - Convenience sampling (proceed with caution)
 - Systematic sampling