
Symmetry Breaking

and

Synchrony Breaking

Martin Golubitsky

Department of Mathematics

Mathematical Biosciences Institute

Ohio State

– p. 1/45



Why Study Patterns I

Patterns are surprising and pretty

– p. 2/45



Mud Plains
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Leopard Spots
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Sand Dunes in Namibian Desert
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Zebra Stripes
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Porous Plug Burner Flames (Gorman)

burner

Air & fuel Inert gas

Flame front

Cooling coils

Dynamic patterns

A film in two parts
rotating patterns

standing patterns
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Why Study Patterns II

1) Patterns are surprising and pretty

2) Science behind patterns
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Columnar Joints on Staffa near Mull
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Columns along Snake River
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Irish Giants Causeway
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Experiment on Corn Starch

Goehring and Morris, 2005
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Why Study Patterns III

1) Patterns are surprising and pretty

2) Science behind patterns

3) Change in patterns provide tests for models
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A Brief History of Navier-Stokes

Navier-Stokes equations for an incompressible fluid

ut = ν∇2u − (u · ∇)u − 1

ρ∇p

0 = ∇ · u

u = velocity vector ρ = mass density
p = pressure ν = kinematic viscosity

Navier (1821); Stokes (1856); Taylor (1923)
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The Couette Taylor Experiment

Ω Ωo i

Ωi = speed of inner
cylinder

Ωo = speed of outer
cylinder

Andereck, Liu, and Swinney (1986)

Couette Taylor Spiral
time independent time periodic
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G.I. Taylor: Theory & Experiment (1923)
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Why Study Patterns IV

1) Patterns are surprising and pretty

2) Science behind patterns

3) Change in patterns provide tests for models

4) Model independence

Mathematics provides menu of patterns
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Planar Symmetry-Breaking

Euclidean symmetry: translations, rotations, reflections

Symmetry-breaking from translation invariant state in
planar systems with Euclidean symmetry leads to

Stripes: invariant under translation in one direction

Sand dunes, zebra

Spots: states centered at lattice points

mud plains, leopard
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Circle Symmetry-Breaking Oscillation

There exist two types of time-periodic solutions

near a circularly symmetric equilibrium

Rotating waves:

Time evolution is the same as spatial rotation

Standing waves:

Fixed lines of symmetry for all time

Examples: Gorman’s flame experiments

PDE systems on interval with periodic boundary
conditions
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Primer on Steady-State Bifurcation

Solve ẋ = f(x, λ) = 0 where f : Rn × R → R
n

Local theory: Assume f(0, 0) = 0 – find solns near (0, 0)

If J = (dxf)0,0 nonsingular, IFT implies unique soln x(λ)

Bifurcation of steady states ⇐⇒ ker J 6= {0}
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Equivariant Steady-State Bifurcation

Let γ : R
n → R

n be linear

γ is a symmetry iff γ(soln)=soln iff f(γx, λ) = γf(x, λ)

Chain rule =⇒ Jγ = γJ =⇒ ker J is γ-invariant

Theorem: Fix Γ. Generically ker J is an
absolutely irreducible representation of Γ

i.e. only commuting matrices are multiples of identity

Reduction implies that there is a unique steady-state
bifurcation theory for each absolutely irreducible rep
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Primer on Hopf Bifurcation
[

ẋ

ẏ

]

=

[

λ 1

−1 λ

] [

x

y

]

− (x2 + y2)

[

x

y

]

Origin is an equilibrium for all values of λ
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Primer on Hopf Bifurcation
[

ẋ

ẏ

]

=

[

λ 1

−1 λ

] [

x

y

]

− (x2 + y2)

[

x

y

]

λ = −1 λ = 1
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Primer on Hopf Bifurcation
[

ẋ

ẏ

]

=

[

λ 1

−1 λ

] [

x

y

]

− (x2 + y2)

[

x

y

]

Origin goes from spiral sink to spiral source as λ ր 0

Let r2 = x2 + y2. Then ṙ = (λ − r2)r

1) Unique branch of periodic trajectories (for λ > 0)

2) Amplitude growth of periodic solution is λ
1

2
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Primer on Hopf Bifurcation
[

ẋ

ẏ

]

=

[

λ 1

−1 λ

] [

x

y

]

− (x2 + y2)

[

x

y

]

Origin goes from spiral sink to spiral source as λ ր 0

Let r2 = x2 + y2. Then ṙ = (λ − r2)r

1) Unique branch of periodic trajectories (for λ > 0)

2) Amplitude growth of periodic solution is λ
1

2

Hopf Theorem: Generically (1) and (2) hold when
pair of eigenvalues of Jacobian on imaginary axis
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Primer on Equivariant Hopf Bifurcation

Hopf bifurcation ⇐⇒ J has eigenvalues ±ωi

Suppose
R

n = V1 ⊕ · · · ⊕ Vℓ

where Vj are distinct absolutely irreducible

Then

J : Vj → Vj is a real multiple of IVj

all eigenvalues of J are real

Hopf bifurcation is not possible.
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Primer on Equivariant Hopf Bifurcation

Hopf bifurcation ⇐⇒ J has eigenvalues ±ωi

Representation on Ec is Γ-simple iff either

Ec = V ⊕ V where V is absolutely irreducible, or

Γ acts nonabsolutely irreducibly on Ec

Theorem: Fix Γ. At Hopf bifurcation, generically, Γ acts
Γ-simply on center subspace Ec

Reduction implies that there is a unique Hopf
bifurcation theory for each irreducible rep
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Spatiotemporal Symmetries

What kind of symmetries do periodic solutions have?

Let x(t) be a time-periodic solution

K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

γ ∈ H =⇒ θ ∈ S
1 such that γx(t) = x(t + θ)
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Spatiotemporal Symmetries

Let x(t) be a time-periodic solution

K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

γ ∈ H =⇒ θ ∈ S
1 such that γx(t) = x(t + θ)

Example: Γ = O(2); Ec = R
2 ⊕ R

2

Two periodic solutions types emanate from bifurcation

rotating waves: H = SO(2); K = 1

standing waves: H = Z2(κ) ⊕ Z2(Rπ); K = Z2(κ),
where κ is a reflection
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Spatiotemporal Symmetries

Let x(t) be a time-periodic solution

K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

γ ∈ H =⇒ θ ∈ S
1 such that γx(t) = x(t + θ)

H/K is cyclic or S
1 since

γ 7→ θ is a homomorphism with kernel K
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Summary on Pattern Formation

There is a codimension one steady-state bifurcation
from a group invariant equilibrium corresponding to
each absolutely irreducible subspace

There is a codimension one Hopf bifurcation from a
group invariant equilibrium corresponding to each
irreducible subspace
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Summary on Pattern Formation

There is a codimension one steady-state bifurcation
from a group invariant equilibrium corresponding to
each absolutely irreducible subspace

There is a codimension one Hopf bifurcation from a
group invariant equilibrium corresponding to each
irreducible subspace

Mathematics leads to a menu of patterns

This menu is model independent

Physics & Biology choose from that menu

This choice is model dependent
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Quadruped Gaits

Bound of the Siberian Souslik

Amble of the Elephant

Trot of the Horse

– p. 26/45



Standard Gait Phases
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The Pronk
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Gait Symmetries

Gait Spatio-temporal symmetries

Trot (Left/Right, 1

2
) and (Front/Back, 1

2
)

Pace (Left/Right, 1

2
) and (Front/Back, 0)

Walk (Figure Eight, 1

4
)

Three gaits are different

Assumption: There is a network in the nervous system that
produces the characteristic rhythms of each gait

Design simplest network to produce walk, trot, and pace
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Central Pattern Generators (CPG)
Use gait symmetries to construct coupled network

1) walk =⇒ four-cycle ω in symmetry group
2) pace or trot =⇒ transposition κ in symmetry group

Simplest network has Z4(ω) × Z2(κ) symmetry

LF

LH RH

RF

LH

LF RF

RH

1 2

3 4

5 6

7 8
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Primary Gaits: Hopf from Stand

Six Irreducible Representations of Z4(ω) × Z2(κ)

Phase Diagram Gait
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The Jump

Average Right Rear to Right Front = 31.2 frames

Average Right Front to Right Rear = 11.4 frames

31.2
11.4 = 2.74
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Two Identical Cells

1 2 ẋ1 = f(x1, x2)

ẋ2 = f(x2, x1)

where x1, x2 ∈ R
k

Time-periodic solutions exist robustly where
two cells oscillate a in phase

x2(t) = x1(t)

Time-periodic solutions exist robustly where
two cells oscillate a half-period out of phase

x2(t) = x1(t +
1

2
)
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Two Identical Cells

1 2

ẋ1 = f(x1, x2, λ)

ẋ2 = f(x2, x1, λ)

0 = f(0, 0, λ)

x1, x2 ∈ R
k

J(λ) =

[

α(λ) β(λ)

β(λ) α(λ)

]

;

[

x

x

]

,

[

x

−x

]

invariant subsp’s

eigenvalues of J are eigenvalues of α + β and α − β
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Two Identical Cells

1 2

ẋ1 = f(x1, x2, λ)

ẋ2 = f(x2, x1, λ)

0 = f(0, 0, λ)

x1, x2 ∈ R
k

J(λ) =

[

α(λ) β(λ)

β(λ) α(λ)

]

;

[

x

x

]

,

[

x

−x

]

invariant subsp’s

eigenvalues of J are eigenvalues of α + β and α − β

α + β critical: synchronous periodic solutions

α − β critical: periodic solutions where two cells are
half-period out of phase x2(t) = x1(t + T

2
)
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Three-Cell Unidirectional Ring: Γ = Z3

1

2 3

ẋ1 = f(x1, x3)

ẋ2 = f(x2, x1)

ẋ3 = f(x3, x2)

Discrete rotating waves
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Three-Cell Bidirectional Ring: Γ = S3

1

2 3

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1) f(x2, x1, x3) = f(x2, x3, x1)

ẋ3 = f(x3, x1, x2)

Discrete rotating waves

In-phase periodic solutions: x3(t) = x1(t)

Out-of-phase periodic solutions:

x3(t) = x1

(

t + T
2

)

and x2(t) = x2

(

t + T
2

)

G. and Stewart (1986)
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Bidirectional Three-Cell Ring (2)
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Three-Cell Feed-Forward Network

1 2 3
ẋ1 = f(x1, x1, λ)

ẋ2 = f(x2, x1, λ)

ẋ3 = f(x3, x2, λ)

J =

2

6

6

4

α + β 0 0

β α 0

0 β α

3

7

7

5

100
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Three-Cell Feed-Forward Network

1 2 3
ẋ1 = f(x1, x1, λ)

ẋ2 = f(x2, x1, λ)

ẋ3 = f(x3, x2, λ)

J =

2

6

6

4

α + β 0 0

β α 0

0 β α

3

7

7

5

Network supports solution by Hopf bifurcation where
x1(t) equilibrium x2(t), x3(t) time periodic

x2(t) ≈ λ1/2 x3(t) ≈ λ1/6
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G., Nicol, and Stewart (2004); Elmhirst and G. (2005)
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Quasiperiodic Solutions in FF Network

Network supports solution where

x1(t) equilibrium, x2(t) time periodic, x3(t) quasiperiodic

f(y1, y2) = (i + 0.3 − |y1|2)y1 − y2 − 1.83|y2|2y2 + (2.33 + 4.71i)|y2|2y1
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Forced Feed Forward Network

εg(wt) 1 2 3

forcing at frequency ωf and amplitude ε

network tuned near Hopf bifurcation with frequency ωh

λ < 0 so that equilibrium is stable

Three parameters: λ, ǫ, ωf − ωh
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Numerics with Aronson

g(t) = ε(eiωF t + 2e2iωF t − 0.5e3iωF t) λ = −0.1 ε = 0.01
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McCullen-Mullin Experiment
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More Precisely

ωf = 5, λ = −0.109, ε = 0.1, γ = 10

ż = (λ + ωH i − (1 + iγ)|z|2)z + εe2πiωf t
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wh

r

– p. 43/45



Best Guess

Fix λ < 0 and ε > 0 near 0

For all γ > γc there is a region of multiple small
amplitude periodic solutions near ω0 as ωF is varied

ω0 → ωH and γc →
√

3 as λ, ε → 0

Postlethwaite and G. (2008)
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Many Thanks To Ian Stewart

Feedforward

Toby Elmhirst Cook’s U
Matt Nicol Houston
Nick McCullen Bath
Tom Mullin Manchester
Don Aronson Minnesota

Quadrupedal Gaits

Luciano Buono Oshawa
Jim Collins Boston U

Coupled Cells

Reiner Lauterbach Hamburg
Maria Leite Oklahoma
Marcus Pivato Trent
Andrew Török Houston

Pictures of Patterns

Mike Gorman Houston
Steve Morris Toronto
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