A JOINT SPECTRAL CHARACTERIZATION OF PRIMENESS FOR C*-ALGEBRAS

RAÚL E. CURTO AND CARLOS HERNÁNDEZ G.

Abstract. We prove that a C*-algebra A is prime iff $\sigma_T((L_a, R_b), A) = \sigma(a) \times \sigma(b)$ for every $a, b \in A$, where σ_T denotes Taylor spectrum and L_a, R_b are the left and right multiplication operators acting on A.

Let A be a unital C*-algebra, let L_a, R_b denote the left and right multiplication operators induced by $a, b \in A$ (i.e., $L_a(x) := ax$, $R_b(x) := xb$, $x \in A$), and set $M_{a,b} := L_a R_b$. We obtain a characterization of primeness for C*-algebras in terms of the spectral theory of (L_a, R_b). Recall that an ideal \mathcal{I} in A is said to be prime if, whenever $\mathcal{I}_1, \mathcal{I}_2$ are ideals in A such that $\mathcal{I}_1 \mathcal{I}_2 \subseteq \mathcal{I}$, it follows that $\mathcal{I}_1 \subseteq \mathcal{I}$ or $\mathcal{I}_2 \subseteq \mathcal{I}$; A is said to be prime if (0) is a prime ideal. In [Ma1], M. Mathieu obtained the following result.

Theorem 1 ([Ma1]). Let A be a unital C*-algebra. The following statements are equivalent.

(i) A is prime.

(ii) $\|M_{a,b}\| = \|a\| \|b\|$ for all $a, b \in A$.

(iii) $\sigma(M_{a,b}) = \sigma(a) \sigma(b)$ for all $a, b \in A$.

In this note we prove a joint spectral analogue of Theorem 1. First, we recall the definition of the (joint) Taylor spectrum of (L_a, R_b). The Koszul complex associated with (L_a, R_b) is

$$\mathcal{K}_{a,b} : 0 \longrightarrow A \overset{D^0_{a,b}}{\longrightarrow} A \overset{D^1_{a,b}}{\longrightarrow} A \longrightarrow 0,$$

where

$$D^0_{a,b}(x) := ax \bigoplus xb \quad (x \in A)$$

and

$$D^1_{a,b}(x \bigoplus y) := -xb + ay \quad (x, y \in A).$$

We say that (L_a, R_b) is Taylor invertible if $\mathcal{K}_{a,b}$ is exact, i.e., if the following three implications hold:

$$\text{Ker} D^0_{a,b} = 0 : \quad x \in A, \ ax = 0 = xb \Rightarrow x = 0;$$
Corollary 3. Let \(\sigma \) be a unital prime \(\sigma \)-algebra. The following statements are equivalent.

(i) \(\sigma \) is prime.
(ii) \(\sigma((L_a, R_b), \mathcal{A}) = \sigma(a) \times \sigma(b) \quad (a, b \in \mathcal{A}). \)

Corollary 3. Let \(\mathcal{A} \) be a unital \(\sigma \)-algebra, and let \(a, b \in \mathcal{A} \). The following statements are equivalent.

(i) \(\sigma((L_a, R_b), \mathcal{A}) = \sigma(a) \times \sigma(b) \quad (a, b \in \mathcal{A}). \)
(ii) \(\sigma(M_{a,b}) = \sigma(a)\sigma(b). \)

Remark 4. (i) Since the implication (i)\(\Rightarrow \) (ii) in Corollary 3 is an easy consequence of the Spectral Mapping Theorem for the Taylor spectrum ([Ta2]), and since (ii) implies the primeness of \(\mathcal{A} \) by Theorem 1, the content of Theorem 2 is really the validity of (i)\(\Rightarrow \) (ii).

(ii) For \(\mathcal{A} = \mathcal{L}(\mathcal{H}) \), the \(\sigma \)-algebra of bounded operators on a Hilbert space \(\mathcal{H} \), Theorem 2 is a special case of [CuF, Theorem 3.1].

(iii) Theorem 2 gives an affirmative answer to a question raised in [Cu2, Problem 5.3; case \(n = 1 \)]; it also sheds new light on the so-called mixed interpolation problem [Har].

For the proof of Theorem 2 we shall need the following lemma. Recall that the (joint) Harte spectrum of \((L_a, R_b) \) is the union of the left and right spectra; alternatively, \((\lambda, \mu) \notin \sigma_H((L_a, R_b), \mathcal{A}) \) if and only if \(D_{a-\lambda, b-\mu}^{1} \) is bounded below and \(D_{a-\lambda, b-\mu}^{0} \) is onto. Clearly \(\sigma_H \subseteq \sigma_T \).

Lemma 5 ([Ma2, Theorem 3.12]). Let \(\mathcal{A} \) be a unital prime \(\sigma \)-algebra, and let \(a, b \in \mathcal{A} \). Then

\[
\sigma_H((L_a, R_b), \mathcal{A}) = [\sigma_L(a) \times \sigma_R(b)] \cup [\sigma_L(a) \times \sigma_R(b)].
\]

Proof of Theorem 2. Let \(\lambda \in \sigma(a), \quad \mu \in \sigma(b) \). We wish to prove that \((\lambda, \mu) \in \sigma_T((L_a, R_b), \mathcal{A}) \). Assume not. Without loss of generality, \(\lambda = \mu = 0 \), and by Lemma 5, we can also assume that either (i) \(0 \in [\sigma_L(a) \setminus \sigma_R(a)], \quad 0 \in [\sigma_L(b) \setminus \sigma_R(b)] \) or (ii) \(0 \in [\sigma_L(a) \setminus \sigma_L(a)], \quad 0 \in [\sigma_R(b) \setminus \sigma_R(b)]. \)

Case (i). Let \(c \) be a right inverse for \(a \), i.e., \(ac = 1 \). Then \(x := 1 - ca \) is such that \(ax = 0 \) and \(x \neq 0 \). Similarly, \(y := 1 - db \) is such that \(by = 0, \ y \neq 0 \), where \(bd = 1 \). Since \(\mathcal{A} \) is prime, \(\|M_{x,y}\| = \|x\|\|y\| > 0 \), which implies that

\[
1 \\
\] for some \(z \in \mathcal{A} \). Then \(D_{a,b}^{1}(0 \bigoplus xz) = axz = 0 \). Since \(K_{a,b} \) is exact, the kernel of \(D_{a,b}^{1} \) must equal the range of \(D_{a,b}^{0} \), that is, \(0 \bigoplus xz = au \bigoplus ub \) for some \(u \in \mathcal{A} \). Then \(au = 0 \) and \(xz = ub \). It follows that \(xzy = uby = 0 \), contradicting (1).
Case (ii). Let \(c', d' \) be left inverses for \(a, b \), respectively. Then \(x' := 1 - ac' \) and \(y' := 1 - bd' \) are such that \(x'a = 0 \), \(y'b = 0 \), \(x' \neq 0 \) and \(y' \neq 0 \). As in the previous case, we can find \(z' \in \mathcal{A} \) such that \(x'z'y' \neq 0 \). Since \(D_{a,b}^1(z'y' \bigoplus 0) = z'y'b = 0 \), there exists \(u' \in \mathcal{A} \) such that \(z'y' \bigoplus 0 = au' \bigoplus u'b \). Then \(z'y' = au' \), which implies \(x'z'y' = x'au' = 0 \), a contradiction.

Remark 6. Although a detailed analysis of the case \(n = 1 \) in [Cu2, Problem 5.3] was sufficient for our purposes here, one wonders if a similar technique might also work for \(n > 1 \). We have attempted this for \(a = (a_1, a_2) \) and \(b = (b_1) \) without success: the argument related to exactness at the middle stage of \(K_{a,b} \) in the proof of Theorem 2 does not easily extend to either of the middle stages of \(K_{(a_1, a_2), b_1} \). At present, we are searching for alternative ways to deal with the intermediate stages of \(K_{(a_1, \ldots, a_n), (b_1, \ldots, b_n)} \).

Acknowledgment

We are indebted to the referee for several useful comments.

References

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
E-mail address: curto@math.uiowa.edu

Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 Mexico, D.F., Mexico
E-mail address: carlosh@servidor.unam.mx