JOINT SPECTRA OF SPHERICAL ALUTHGE TRANSFORMS OF COMMUTING *n*-TUPLES OF HILBERT SPACE OPERATORS

CHAFIQ BENHIDA, RAÚL E. CURTO, SANG HOON LEE, AND JASANG YOON

ABSTRACT. Let $\mathbf{T} \equiv (T_1, \dots, T_n)$ be a commuting *n*-tuple of operators on a Hilbert space \mathcal{H} , and let $T_i \equiv V_i P$ $(1 \leq i \leq n)$ be its canonical joint polar decomposition (i.e., $P := \sqrt{T_1^* T_1 + \dots + T_n^* T_n}$, (V_1, \dots, V_n) a joint partial isometry, and $\bigcap_{i=1}^n \ker T_i = \bigcap_{i=1}^n \ker V_i = \ker P$. The spherical Aluthge transform of \mathbf{T} is the (necessarily commuting) *n*-tuple $\hat{\mathbf{T}} := (\sqrt{P}V_1\sqrt{P}, \dots, \sqrt{P}V_n\sqrt{P})$. We prove that $\sigma_T(\hat{\mathbf{T}}) = \sigma_T(\mathbf{T})$, where σ_T denotes Taylor spectrum. We do this in two stages: away from the origin we use tools and techniques from criss-cross commutativity; at the origin we show that the left invertibility of \mathbf{T} or $\hat{\mathbf{T}}$ implies the invertibility of P. As a consequence, we can readily extend our main result to other spectral systems that rely on the Koszul complex for their definition.

To cite this article: C. Benhida, R.E. Curto, S.H. Lee, J. Yoon, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé. Soit $\mathbf{T} \equiv (T_1, \dots, T_n)$ un n-uplet commutatif d'opérateurs sur un espace de Hilbert \mathcal{H} , et soit $T_i \equiv V_i P$ $(1 \leq i \leq n)$ sa décomposition polaire jointe canonique (i.e., $P := \sqrt{T_1^* T_1 + \dots + T_n^* T_n}$, (V_1, \dots, V_n) est une isométrie partielle jointe, et $\bigcap_{i=1}^n \ker T_i = \bigcap_{i=1}^n \ker V_i = \ker P$). La transformée d'Aluthge sphérique de \mathbf{T} est le *n*-uplet (nécessairement commutatif) $\hat{\mathbf{T}} := (\sqrt{P}V_1\sqrt{P}, \dots, \sqrt{P}V_n\sqrt{P})$. Nous démontrons que $\sigma_T(\hat{\mathbf{T}}) = \sigma_T(\mathbf{T})$, où σ_T désigne le spectre de Taylor. Nous procédons pour cela en deux étapes: En dehors de l'origine nous utilisons les outils et les techniques de la commutativité criss-cross; à l'origine nous prouvons que l'inversibilité à gauche de \mathbf{T} ou de $\hat{\mathbf{T}}$ implique l'inversibilité de P. Comme conséquence, nous pouvons étendre notre résultat à d'autres systèmes spectraux définis à partir des complexes de Koszul.

Pour citer cet article : C. Benhida, R.E. Curto, S.H. Lee, J. Yoon, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. INTRODUCTION

Let \mathcal{H} be a complex infinite dimensional Hilbert space, let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} , and let $T \in \mathcal{B}(\mathcal{H})$. For $T \equiv V|T|$ the canonical polar decomposition of T, we let $\tilde{T} := |T|^{1/2}V|T|^{1/2}$ denote the Aluthge transform of T [1]. It is well known that T is invertible if and only if \tilde{T} is invertible; moreover, the spectra of T and \tilde{T} are equal. Over the last two decades, considerable attention has been given to the study of the Aluthge transform; cf. [2]–[5], [11], [16]–[29], [33], [39]–[42]). Moreover, the Aluthge transform has been generalized to the case of powers of |T|different from $\frac{1}{2}$ ([6], [7], [10], [30]) and to the case of commuting pairs of operators ([16], [17]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20, 47B37, 47A13, 28A50; Secondary 44A60, 47-04, 47A20.

Key words and phrases. spherical Aluthge transform, Taylor spectrum, Taylor essential spectrum, Fredholm pairs, Fredholm index.

The first named author was partially supported by Labex CEMPI (ANR-11-LABX-0007-01).

The second named author was partially supported by NSF Grant DMS-1302666.

The third named author was partially supported by NRF (Korea) grant No. 2016R1D1A1B03933776.

The fourth named author was partially supported by a grant from the University of Texas System and the Consejo Nacional de Ciencia y Tecnología de México (CONACYT).

In this note, we focus on the spherical Aluthge transform [17]. Although our results hold for arbitrary n > 2, for the reader's convenience we will focus on the case n = 2; that is, the case of commuting pairs of Hilbert space operators. Let $\mathbf{T} \equiv (T_1, T_2)$ be a commuting pair of operators on \mathcal{H} . We now consider the canonical polar decomposition of the column operator $\begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$; that

is,
$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} \equiv \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} P$$
, where $P := \sqrt{T_1^* T_1 + T_2^* T_2}$ and $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$ is a (joint) partial isometry, and subject to the constraint $\bigcap_{i=1}^2 \ker T_i = \bigcap_{i=1}^2 \ker V_i = \ker P$.

The spherical Aluthge transform of \mathbf{T} is the (necessarily commuting) *n*-tuple

$$\widehat{\mathbf{T}} := (\sqrt{P}V_1\sqrt{P}, \cdots, \sqrt{P}V_n\sqrt{P}) \quad ([16], [17]).$$
(1.1)

For a commuting pair $\mathbf{T} \equiv (T_1, T_2)$ of operators on \mathcal{H} , the Koszul complex associated with \mathbf{T} is given as

$$K(\mathbf{T},\mathcal{H}): 0 \xrightarrow{0} \mathcal{H} \stackrel{\left(\begin{array}{c} T_1\\ T_2 \end{array}\right)}{\longrightarrow} \mathcal{H} \oplus \mathcal{H} \stackrel{\left(-T_2 T_1\right)}{\longrightarrow} \mathcal{H} \xrightarrow{0} 0.$$

Definition 1.1. A commuting pair \mathbf{T} is said to be (Taylor) invertible if its associated Koszul complex $K(\mathbf{T}, \mathcal{H})$ is exact. The Taylor spectrum of \mathbf{T} is

$$\sigma_T(\mathbf{T}) := \{ (\lambda_1, \lambda_2) \in \mathbb{C}^2 : K \left((T_1 - \lambda_1, T_2 - \lambda_2), \mathcal{H} \right) \text{ is not invertible} \}.$$

The pair \mathbf{T} is called Fredholm if each map in the Koszul complex $K(\mathbf{T}, \mathcal{H})$ has closed range and all the homology quotients are finite-dimensional. The Taylor essential spectrum is

$$\sigma_{Te}(\mathbf{T}) := \left\{ (\lambda_1, \lambda_2) \in \mathbb{C}^2 : (T_1 - \lambda_1, T_2 - \lambda_2) \text{ is not Fredholm} \right\}.$$

J.L. Taylor showed in [36] and [37] that, if $\mathcal{H} \neq \{0\}$, then $\sigma_T(\mathbf{T})$ is a nonempty, compact subset of the polydisc of multiradius $r(\mathbf{T}) := (r(T_1), r(T_2))$, where $r(T_i)$ is the spectral radius of T_i (i = 1, 2). (For additional facts about these joint spectra, the reader is referred to [12]–[15] and [38].)

As shown in [13] and [14], the Fredholmness of \mathbf{T} can be detected in the Calkin algebra $\mathcal{Q}(\mathcal{H}) := \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$. (Here \mathcal{K} denotes the closed two-sided ideal of compact operators; we also let $\pi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{Q}(\mathcal{H})$ denote the quotient map.) Concretely, \mathbf{T} is Fredholm on \mathcal{H} if and only if the pair of left multiplication operators $L_{\pi(\mathbf{T})} := (L_{\pi(T_1)}, L_{\pi(T_2)})$ is Taylor invertible when acting on $\mathcal{Q}(\mathcal{H})$. In particular, \mathbf{T} is left Fredholm on \mathcal{H} if and only if $L_{\pi(\mathbf{T})}$ is bounded below on $\mathcal{Q}(\mathcal{H})$.

Problem 1.2. Let $\mathbf{T} \equiv (T_1, T_2)$ be a commuting pair of operators.

(i) Assume that \mathbf{T} be (Taylor) invertible (resp. Fredholm). Is $\widehat{\mathbf{T}}$ also (Taylor) invertible (resp. Fredholm)?

(ii) Is the Taylor spectrum (resp. Taylor essential spectrum) of $\widehat{\mathbf{T}}$ equal to that of \mathbf{T} ?

We first prove that $\sigma_T(\widehat{\mathbf{T}}) = \sigma_T(\mathbf{T})$. We do this in two stages: away from the origin we use tools and techniques from criss-cross commutativity; at the origin we show that the left invertibility of \mathbf{T} or $\widehat{\mathbf{T}}$ implies the invertibility of P; P then helps establish an isomorphism between the relevant Koszul complexes. As a consequence, we can readily extend the above result to other spectral systems that rely on the Koszul complex for their definition, including spectral systems on $\mathcal{Q}(\mathcal{H})$.

2. Main Results

Recall the joint polar decomposition of \mathbf{T} and the spherical Aluthge transform of \mathbf{T} ; cf. (1.1). We now state our first main result.

Theorem 2.1. Assume that \mathbf{T} or $\widehat{\mathbf{T}}$ is left invertible; that is, the associated Koszul complex is exact at the left stage, and the range of the corresponding boundary map is closed. Then the operator P is invertible.

Proof. Case 1. If **T** is left invertible, then $T_1^*T_1 + T_2^*T_2$ is invertible, and therefore *P* is invertible. Case 2. If $\hat{\mathbf{T}}$ is left invertible, then it is bounded below; that is, there exists a constant c > 0 such that

$$\left\|\sqrt{P}V_1\sqrt{P}x\right\|^2 + \left\|\sqrt{P}V_2\sqrt{P}x\right\|^2 \ge c^2 \|x\|^2.$$

Since (V_1, V_2) is a joint partial isometry, it readily follows that

$$\left\|\sqrt{P}x\right\|^{2} + \left\|\sqrt{P}x\right\|^{2} \ge \frac{c^{2}}{\|P\|} \|x\|^{2}.$$

As a result, \sqrt{P} is bounded below, so P is invertible.

We are now ready to state our second main result.

Theorem 2.2. Let $\mathbf{T} = (T_1, T_2)$ be a commuting pair of operators on \mathcal{H} . Then

T is (Taylor) invertible $\iff \widehat{\mathbf{T}}$ is (Taylor) invertible.

We now recall the notion of criss-cross commutativity.

Definition 2.3. Let $\mathbf{A} \equiv (A_1, \dots, A_n)$ and $\mathbf{B} \equiv (B_1, \dots, B_n)$ be two n-tuples of operators on \mathcal{H} . We say that \mathbf{A} and \mathbf{B} criss-cross commute (or that \mathbf{A} criss-cross commutes with \mathbf{B}) if $A_i B_j A_k = A_k B_j A_i$ and $B_i A_j B_k = B_k A_j B_i$ for all $i, j, k = 1, \dots, n$. Observe that we do not assume that \mathbf{A} or \mathbf{B} is commuting.

Definition 2.4. Given two n-tuples **A** and **B** we define $AB := (A_1B_1, \dots, A_nB_n)$ and $BA := (B_1A_1, \dots, B_nA_n)$.

Remark 2.5. It is an easy consequence of Definition 2.3 that, if **A** and **B** criss-cross commute and **AB** is commuting, then **BA** is also commuting.

Lemma 2.6. Let $\mathbf{T} \equiv (T_1, T_2)$ be a commuting pair of operators on \mathcal{H} , let $P := \sqrt{T_1^* T_1 + T_2^* T_2}$, and let $\widehat{\mathbf{T}}$ be its spherical Aluthge transform. Then $\mathbf{A} \equiv (A_1, A_2) := (\sqrt{P}, \sqrt{P})$ and $\mathbf{B} \equiv (B_1, B_2) := (V_1 \sqrt{P}, V_2 \sqrt{P})$ criss-cross commute. As a consequence, $\widehat{\mathbf{T}} (= \mathbf{B} \mathbf{A})$ is commuting.

Lemma 2.7. (cf. [8] and [9]) Let **A** criss-cross commute with **B** on \mathcal{H} , and assume that **AB** is commuting. Then $\sigma_T(\mathbf{BA}) \setminus \{\mathbf{0}\} = \sigma_T(\mathbf{AB}) \setminus \{\mathbf{0}\}.$

We now prove our third main result.

Theorem 2.8. Let $\mathbf{T} = (T_1, T_2)$ be a commuting pair of operators on \mathcal{H} . Then

$$\sigma_T(\mathbf{T}) = \sigma_T(\widehat{\mathbf{T}}).$$

Proof. Let $\lambda \in \mathbb{C}^2$. If $\lambda = (0,0)$, use Theorem 2.2; if $\lambda \neq (0,0)$, use Lemma 2.7.

Remark 2.9. (i) Theorems 2.1, 2.2 and 2.8 can be easily extended to other spectral systems whose definition is given in terms of the Koszul complex; e.g., the left k-spectral systems $\sigma_{\pi,k}$ defined by W. Słodkowski and W. Żelazko ([34], [35]). For, the Proof of Theorem 2.1 (which uses only left invertibility of the relevant Koszul complex) works well in case \mathbf{T} or $\hat{\mathbf{T}}$. Once we know that \sqrt{P} is invertible, the Koszul complexes of \mathbf{T} and $\hat{\mathbf{T}}$ are isomorphic, so $0 \notin \sigma_{\pi,k}(\mathbf{T})$ if and only if $0 \notin \sigma_{\pi,k}(\hat{\mathbf{T}})$. (ii) Similarly, Theorem 2.7 admits an easy extension to Słodkowski's left k-spectra (cf. [8], [9]),

since the Proof of Theorem 2.7 relies on the isomorphism of the Koszul complexes for \mathbf{T} and $\widehat{\mathbf{T}}$, implemented by \sqrt{P} .

(iii) On the other hand, the above results cannot be extended to Słodkowski's right k-spectra; for, consider the adjoint U_+^* of the (unweighted) unilateral shift U_+ . It is easy to see that U_+^* is onto while \widehat{U}_+^* is not.

Our final main result deals with Fredholmness.

Theorem 2.10. Let $\mathbf{T} = (T_1, T_2)$ be a commuting pair of operators on \mathcal{H} . Then

$$\sigma_{Te}(\mathbf{T}) = \sigma_{Te}(\mathbf{T}).$$

Moreover, for each $\lambda \notin \sigma_{Te}(\mathbf{T})$ we have

ind
$$(\mathbf{T} - \lambda) = ind \ (\mathbf{T} - \lambda),$$

where ind denotes the Fredholm index.

Sketch of Proof. In Theorem 2.1 one can replace "left invertible" for the Koszul complex with "left Fredholm" and "invertible" for P with "Fredholm." A similar adjustment works for Theorems 2.2 and 2.8. In the analog of Theorem 2.2 one first proves that \sqrt{P} is bounded below in the orthogonal complement of ker $T_1 \cap \ker T_2$; since this kernel is finite dimensional, it follows that \sqrt{P} is Fredholm. In Theorem 2.8 one needs to replace Lemma 2.7 with the results for Fredholmness proved in [8], [9], [31] and [32]. While Li's results only guarantee that ind $(\mathbf{T} - \lambda) = \operatorname{ind} (\hat{\mathbf{T}} - \lambda)$ whenever $\lambda \neq (0, 0)$, the continuity of the Fredholm index (cf. [13]) does the rest.

References

- [1] A. Aluthge, On p-hyponormal Operators for 0 , Integral Equations Operator Theory, 13(1990), 307-315.
- [2] T. Ando, Aluthge transforms and the convex hull of the spectrum of a Hilbert space operator, in *Recent Advances in Operator Theory and Its Applications, Oper. Theory Adv. Appl.* 160(2005), 21-39.
- [3] T. Ando and T. Yamazaki, The iterated Aluthge transforms of a 2 × 2 matrix converge, *Linear Algebra Appl.* 375(2003), 299-309.
- [4] A.J. Antezana, P. Massey and D. Stojanoff, λ-Aluthge transforms and Schatten ideals, *Linear Algebra Appl.* 405(2005), 177-199.
- [5] Ben Taher, M. Rachidi and E.H. Zerouali, On the Aluthge transforms of weighted shifts with moments of Fibonacci type. Application to subnormality, Integral Equations Operator theory 82(2015), 287-299.
- [6] C. Benhida, Mind Duggal transforms, preprint 2016, http://arxiv.org/abs/1804.00877.
- [7] C. Benhida, M. Chō, E. Ko, J. Lee, On the generalized mean transforms of (skew)-symmetric complex operators, in preparation.
- [8] C. Benhida and E.H. Zerouali, On Taylor and other joint spectra for commuting n-tuples of operators. J. Math. Anal. Appl. 326(2007), 521-532.
- [9] C. Benhida and E.H. Zerouali, Spectral properties of commuting operations for n-tuples, Proc. Amer. Math. Soc. 139(2011), 4331-4342.
- [10] F. Chabbabi, Product commuting maps with the λ -Aluthge transform, preprint 2016, submitted.
- M. Chō, I. B. Jung and W. Y. Lee, On Aluthge Transforms of p-hyponormal Operators, Integral Equations Operator Theory 53(2005), 321-329.
- [12] R.E. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J. 29(1980), 393-406.
- [13] R.E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266(1981), 129-159.
- [14] R. Curto, Applications of several complex variables to multi-parameter spectral theory, in Surveys of Recent Results in Operator Theory, Vol. II, J.B. Conway and B.B. Morrel, editors, Longman Publishing Co., London, 1988, 25-90.
- [15] R. Curto, Spectral theory of elementary operators, in *Elementary Operators and Applications*, M. Mathieu, ed., World Sci. Publishing, River Edge, NJ, 1992; pp. 3-52.
- [16] R. Curto and J. Yoon, Toral and spherical Aluthge transforms of 2-variable weighted shifts, C. R. Acad. Sci. Paris 354(2016), 1200-1204.

- [17] R. Curto and J. Yoon, Aluthge transforms of 2-variable weighted shifts, Integral Equations Operator Theory (2018), 90:52; 32 pp.
- [18] K. Dykema and H. Schultz, Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, Trans. Amer. Math. Soc. 361(2009), 6583-6593.
- [19] G.R. Exner, Aluthge transforms and n-contractivity of weighted shifts, J. Operator Theory 61(2009), 419-438.
- [20] C. Foiaş, I.B. Jung, E. Ko and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforms. *Pacific J. Math.* 209(2003), 249-259.
- [21] S. R. Garcia, Aluthge transforms of complex symmetric operators, Integral Equations Operator Theory 60(2008), 357-367.
- [22] I.B. Jung, E. Ko, and C. Pearcy, Aluthge transform of operators, Integral Equations Operator Theory 37(2000), 437-448.
- [23] I.B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40(2001), 52-60.
- [24] I.B. Jung, E. Ko and C. Pearcy, The iterated Aluthge transform of an operator, Integral Equations Operator Theory 45(2003), 375-387.
- [25] I.B. Jung, E. Ko and C. Pearcy, Complete contractivity of maps associated with Aluthge and Duggal transforms, *Pacific Journal of Mathematics* 209(2003), 249-259.
- [26] J. Kim and J. Yoon, Aluthge transforms and common invariant subspaces for a commuting n-tuple of operators, Integral Equations Operator Theory 87(2017) 245-262.
- [27] M.K. Kim and E. Ko, Some connections between an operator and its Aluthge transform. Glasg. Math. J. 47(2005), 167-175.
- [28] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory 50(2004), 375-384.
- [29] S. H. Lee, W. Y. Lee and J. Yoon, Subnormality of Aluthge transform of weighted shifts, Integral Equations Operator Theory 72(2012), 241-251.
- [30] S.H. Lee, W.Y. Lee, and J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. Appl. 410(2014), 70-81.
- [31] S. Li, On the commuting properties of Taylor's spectrum, Chinese Sci. Bull. 37 (1992), 1849-1852.
- [32] S. Li, Taylor spectral invariance for crisscross commuting pairs on Banach spaces, Proc. Amer. Math. Soc. 124(1996), 2069-2071.
- [33] K. Rion, Convergence properties of the Aluthge sequence of weighted shifts, Houston J. Math. 42(2016), 1271-1226.
- [34] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61(1977), 239–255.
- [35] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, *Studia Math.* 50(1974), 127-148.
- [36] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6(1970), 172-191.
- [37] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125(1970), 1-48.
- [38] F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, D. Reidel Publishing Co., Dordretch-Boston-London, 1982.
- [39] P. Y. Wu, Numerical range of Aluthge transform of operator, *Linear Algebra Appl.* 357(2002), 295-298.
- [40] T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Sci. Math. (Szeged) 67(2001) 809--820.
- [41] T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341(2002), 111--117.
- [42] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130(2002), 1131-1137.

UFR de Mathématiques, Université des Sciences et Technologies de Lille, F-59655 Villeneuve-d'Ascq Cedex, France

Email address: chafiq.benhida@univ-lille.fr

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242 *Email address:* raul-curto@uiowa.edu

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJEON, 34134, REPUBLIC OF KOREA *Email address:* slee@cnu.ac.kr

School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA

Email address: jasang.yoon@utrgv.edu