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Abstract. Let T ≡ (T1, · · · , Tn) be a commuting n-tuple of operators on a Hilbert space H, and

let Ti ≡ ViP (1 ≤ i ≤ n) be its canonical joint polar decomposition (i.e., P :=
√

T ∗

1
T1 + · · · + T ∗

nTn,
(V1, · · · , Vn) a joint partial isometry, and

⋂

n

i=1
kerTi =

⋂

n

i=1
kerVi = kerP ). The spherical Aluthge

transform of T is the (necessarily commuting) n-tuple T̂ := (
√
PV1

√
P , · · · ,

√
PVn

√
P ). We prove

that σT (T̂) = σT (T), where σT denotes Taylor spectrum. We do this in two stages: away from the
origin we use tools and techniques from criss-cross commutativity; at the origin we show that the left

invertibility of T or T̂ implies the invertibility of P . As a consequence, we can readily extend our
main result to other spectral systems that rely on the Koszul complex for their definition.

To cite this article: C. Benhida, R.E. Curto, S.H. Lee, J. Yoon, C. R. Acad. Sci. Paris, Ser. I
340 (2005).

Résumé. Soit T ≡ (T1, · · · , Tn) un n-uplet commutatif d’opérateurs sur un espace de Hilbert H, et

soit Ti ≡ ViP (1 ≤ i ≤ n) sa décomposition polaire jointe canonique (i.e., P :=
√

T ∗

1
T1 + · · · + T ∗

nTn,
(V1, · · · , Vn) est une isométrie partielle jointe, et

⋂

n

i=1
kerTi =

⋂

n

i=1
kerVi = kerP ). La transformée

d’Aluthge sphérique de T est le n-uplet (nécessairement commutatif) T̂ := (
√
PV1

√
P , · · · ,

√
PVn

√
P ).

Nous démontrons que σT (T̂) = σT (T), où σT désigne le spectre de Taylor. Nous procédons pour cela
en deux étapes: En dehors de l’origine nous utilisons les outils et les techniques de la commutativité

criss-cross; à l’origine nous prouvons que l’inversibilité à gauche de T ou de T̂ implique l’inversibilité
de P . Comme conséquence, nous pouvons étendre notre résultat à d’autres systèmes spectraux définis
à partir des complexes de Koszul.

Pour citer cet article : C. Benhida, R.E. Curto, S.H. Lee, J. Yoon, C. R. Acad. Sci. Paris, Ser.
I 340 (2005).

1. Introduction

Let H be a complex infinite dimensional Hilbert space, let B(H) denote the algebra of bounded
linear operators on H, and let T ∈ B(H). For T ≡ V |T | the canonical polar decomposition of T , we

let T̃ := |T |1/2V |T |1/2 denote the Aluthge transform of T [1]. It is well known that T is invertible if

and only if T̃ is invertible; moreover, the spectra of T and T̃ are equal. Over the last two decades,
considerable attention has been given to the study of the Aluthge transform; cf. [2]–[5], [11], [16]–[29],
[33], [39]–[42]). Moreover, the Aluthge transform has been generalized to the case of powers of |T |
different from 1

2 ([6], [7], [10], [30]) and to the case of commuting pairs of operators ([16], [17]).
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In this note, we focus on the spherical Aluthge transform [17]. Although our results hold for
arbitrary n > 2, for the reader’s convenience we will focus on the case n = 2; that is, the case of
commuting pairs of Hilbert space operators. Let T ≡ (T1, T2) be a commuting pair of operators

on H. We now consider the canonical polar decomposition of the column operator

(
T1

T2

)
; that

is,

(
T1

T2

)
≡

(
V1

V2

)
P , where P :=

√
T ∗

1 T1 + T ∗

2 T2 and

(
V1

V2

)
is a (joint) partial isometry, and

subject to the constraint
⋂2

i=1 kerTi =
⋂2

i=1 kerVi = kerP .
The spherical Aluthge transform of T is the (necessarily commuting) n-tuple

T̂ := (
√
PV1

√
P , · · · ,

√
PVn

√
P ) ([16], [17]). (1.1)

For a commuting pair T ≡ (T1, T2) of operators on H, the Koszul complex associated with T is
given as

K(T,H) : 0
0→ H

(

T1

T2

)

−→ H⊕H (−T2 T1)−→ H 0−→ 0.

Definition 1.1. A commuting pair T is said to be (Taylor) invertible if its associated Koszul complex
K(T,H) is exact. The Taylor spectrum of T is

σT (T) :=
{

(λ1, λ2) ∈ C
2 : K ((T1 − λ1, T2 − λ2) , H) is not invertible

}
.

The pair T is called Fredholm if each map in the Koszul complex K(T,H) has closed range and all
the homology quotients are finite-dimensional. The Taylor essential spectrum is

σTe(T) :=
{

(λ1, λ2) ∈ C
2 : (T1 − λ1, T2 − λ2) is not Fredholm

}
.

J.L. Taylor showed in [36] and [37] that, if H 6= {0}, then σT (T) is a nonempty, compact subset of
the polydisc of multiradius r(T) := (r(T1), r(T2)), where r(Ti) is the spectral radius of Ti (i = 1, 2).
(For additional facts about these joint spectra, the reader is referred to [12]–[15] and [38].)

As shown in [13] and [14], the Fredholmness of T can be detected in the Calkin algebra Q(H) :=
B(H)/K(H). (Here K denotes the closed two–sided ideal of compact operators; we also let π :
B(H) −→ Q(H) denote the quotient map.) Concretely, T is Fredholm on H if and only if the pair of
left multiplication operators Lπ(T) := (Lπ(T1), Lπ(T2)) is Taylor invertible when acting on Q(H). In
particular, T is left Fredholm on H if and only if Lπ(T) is bounded below on Q(H).

Problem 1.2. Let T ≡ (T1, T2) be a commuting pair of operators.

(i) Assume that T be (Taylor) invertible (resp. Fredholm). Is T̂ also (Taylor) invertible (resp.
Fredholm)?

(ii) Is the Taylor spectrum (resp. Taylor essential spectrum) of T̂ equal to that of T?

We first prove that σT (T̂) = σT (T). We do this in two stages: away from the origin we use tools
and techniques from criss-cross commutativity; at the origin we show that the left invertibility of T or

T̂ implies the invertibility of P ; P then helps establish an isomorphism between the relevant Koszul
complexes. As a consequence, we can readily extend the above result to other spectral systems that
rely on the Koszul complex for their definition, including spectral systems on Q(H).

2. Main Results

Recall the joint polar decomposition of T and the spherical Aluthge transform of T; cf. (1.1). We
now state our first main result.
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Theorem 2.1. Assume that T or T̂ is left invertible; that is, the associated Koszul complex is exact
at the left stage, and the range of the corresponding boundary map is closed. Then the operator P is
invertible.

Proof. Case 1. If T is left invertible, then T ∗

1 T1 + T ∗

2 T2 is invertible, and therefore P is invertible.

Case 2. If T̂ is left invertible, then it is bounded below; that is, there exists a constant c > 0 such
that ∥∥∥

√
PV1

√
Px

∥∥∥
2

+
∥∥∥
√
PV2

√
Px

∥∥∥
2
≥ c2 ‖x‖2 .

Since (V1, V2) is a joint partial isometry, it readily follows that
∥∥∥
√
Px

∥∥∥
2

+
∥∥∥
√
Px

∥∥∥
2
≥ c2

‖P‖ ‖x‖2 .

As a result,
√
P is bounded below, so P is invertible. �

We are now ready to state our second main result.

Theorem 2.2. Let T = (T1, T2) be a commuting pair of operators on H. Then

T is (Taylor) invertible ⇐⇒ T̂ is (Taylor) invertible.

We now recall the notion of criss-cross commutativity.

Definition 2.3. Let A ≡ (A1, · · · , An) and B ≡ (B1, · · · , Bn) be two n-tuples of operators on H. We
say that A and B criss-cross commute (or that A criss-cross commutes with B) if AiBjAk = AkBjAi

and BiAjBk = BkAjBi for all i, j, k = 1, · · · , n. Observe that we do not assume that A or B is
commuting.

Definition 2.4. Given two n-tuples A and B we define AB := (A1B1, · · · , AnBn) and BA :=
(B1A1, · · · , BnAn).

Remark 2.5. It is an easy consequence of Definition 2.3 that, if A and B criss-cross commute and
AB is commuting, then BA is also commuting.

Lemma 2.6. Let T ≡ (T1, T2) be a commuting pair of operators on H, let P :=
√

T ∗

1 T1 + T ∗

2 T2, and

let T̂ be its spherical Aluthge transform. Then A ≡ (A1, A2) := (
√
P ,

√
P ) and B ≡ (B1, B2) :=

(V1

√
P , V2

√
P ) criss-cross commute. As a consequence, T̂(= BA) is commuting.

Lemma 2.7. (cf. [8] and [9]) Let A criss-cross commute with B on H, and assume that AB is
commuting. Then σT (BA) \ {0} = σT (AB) \ {0}.

We now prove our third main result.

Theorem 2.8. Let T = (T1, T2) be a commuting pair of operators on H. Then

σT (T) = σT (T̂).

Proof. Let λ ∈ C
2. If λ = (0, 0), use Theorem 2.2; if λ 6= (0, 0), use Lemma 2.7. �

Remark 2.9. (i) Theorems 2.1, 2.2 and 2.8 can be easily extended to other spectral systems whose
definition is given in terms of the Koszul complex; e.g., the left k-spectral systems σπ,k defined by

W. S lodkowski and W. Żelazko ([34], [35]). For, the Proof of Theorem 2.1 (which uses only left

invertibility of the relevant Koszul complex) works well in case T or T̂. Once we know that
√
P is

invertible, the Koszul complexes of T and T̂ are isomorphic, so 0 /∈ σπ,k(T) if and only if 0 /∈ σπ,k(T̂).
(ii) Similarly, Theorem 2.7 admits an easy extension to S lodkowski’s left k-spectra (cf. [8], [9]),
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since the Proof of Theorem 2.7 relies on the isomorphism of the Koszul complexes for T and T̂,
implemented by

√
P .

(iii) On the other hand, the above results cannot be extended to S lodkowski’s right k-spectra; for,
consider the adjoint U∗

+ of the (unweighted) unilateral shift U+. It is easy to see that U∗

+ is onto

while Û∗

+ is not.

Our final main result deals with Fredholmness.

Theorem 2.10. Let T = (T1, T2) be a commuting pair of operators on H. Then

σTe(T) = σTe(T̂).

Moreover, for each λ /∈ σTe(T) we have

ind (T− λ) = ind (T̂− λ),

where ind denotes the Fredholm index.

Sketch of Proof. In Theorem 2.1 one can replace “left invertible” for the Koszul complex with “left
Fredholm” and “invertible” for P with “Fredholm.” A similar adjustment works for Theorems 2.2
and 2.8. In the analog of Theorem 2.2 one first proves that

√
P is bounded below in the orthogonal

complement of kerT1 ∩ kerT2; since this kernel is finite dimensional, it follows that
√
P is Fredholm.

In Theorem 2.8 one needs to replace Lemma 2.7 with the results for Fredholmness proved in [8], [9],

[31] and [32]. While Li’s results only guarantee that ind (T− λ) = ind (T̂− λ) whenever λ 6= (0, 0),
the continuity of the Fredholm index (cf. [13]) does the rest. �
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