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THE CrAssICAL (FuLL) MOMENT PROBLEM

Let g = p() = {B;};EZT denote a m-dimensional real multisequence, and
let K (closed) C R™. The (full) K-moment problem asks for necessary
and sufficient conditions on 3 to guarantee the existence of a positive

Borel measure u supported in K such that
Bi = /xidu (ieZl),

1 is called a rep. meas. for 3.
Associated with 3 is a moment matrix M = M(c0), defined by

Mij = Bivj  (i,j € ZT).
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THE TRUNCATED MOMENT PROBLEM (TMP)

Let 8 = B = {ﬁ;},-ez% li|+|j|<2n denote a m-dimensional real
multisequence, and let K (closed) C R™. The (truncated) K-moment
problem asks for necessary and sufficient conditions on 3 to guarantee the

existence of a positive Borel measure i supported in K such that
5= [xdn Gz lil+ bl <20)

1 is called a rep. meas. for 3.
Associated with 3 is a moment matrix M = M(n), defined by

M,'j = 5,'+_,' (i,jEZm, |I|+|j|§2n)
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Basic PosiTiviTy CONDITION

P, : polynomials p over R with degp < n

e Given p € P,, p(x) = ZOSiJer" aix’,

0 < / p(x)2dp(x)
= Za,-aj/ I+Jd/J, Za,ajﬁ,ﬂ.
ij
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Basic PosiTiviTy CONDITION

P, : polynomials p over R with degp < n

o Given p € Pp, p(x) =Y o<t jcndiX’,

0< / p(x)?dpu(x)
:Za,—aj/ ’J”d,u Za,aj,ﬁ’,ﬂ
ij

@ Now recall that we're working in d real variables. To understand this
“matricial” positivity, we introduce the following lexicographic order

on the rows and columns of M(n):

LX1, oo, Xy X2, X0 X1, ..., X2
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The entries are given by

Then

RAUL Curro (IWOTA,

M(n)ij := Bi+j-

(matricial positivity) Z ajajfBiyj >0
ij

< M(n) = M(n)(B) > 0.
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The entries are given by

M(n)ij := Bi+j-
Then
(matricial positivity) Z ajajfBiyj >0
ij
< M(n) = M(n)(B) > 0.

Positivity Condition is not sufficient:

By modifying an example of K. Schmiidgen, several years ago we were able
to build a family o0, 501,510, ---; S06, ---, 60 With positive invertible
moment matrix M(3) but no rep. meas. Later on, we also did this for

n =2 (in this case M(2) is not invertible).
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For example, for moment problems in R?,

Boo Bor Bio
M@1) = | Bor Box Bu |
B0 P11 Poo
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For example, for moment problems in R?,

Boo Bor Bio
M@1) = | Bor Box Bu |
B0 P11 Poo

Boo Bor B Poz Piu1 Bao
Bor Boz B Pos Bz P
Pro Pun B2 P12 P Bso
Bo2 Bos P12 Poa P13 P2
1 P2 Par P13 P2 B3
B2 P21 Bso B2 P31 Pao
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@ In general,

B* C
Similarly, one can build M(o0) = M(o0)(8) = M(B).

M(n+1) = < M) B)
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@ In general,

M(n) B )

M(n+1):< N

Similarly, one can build M(o0) = M(o0)(8) = M(B).

@ The link between TMP and FMP is provided by a result of Stochel
(2001):

THEOREM (STOCHEL'S THEOREM)

() has a rep. meas. supported in a closed set K C R? if and only if, for

each n, B?") has a rep. meas. supported in K.
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For moment problems in C,

1z zZ z22 7z 722 : 78 772> 727 Z3
Y0 o1 710 Y02 Vi1 Y20 703 Y12 721 Y30
Y10 Vi1 Y20 Y12 Y21 Y30 1 Y3 Y22 Y31 Y40
Yor Yo2 Y1 703 Yi2 Y21 ¢ o4 Y13 Y22 Y31
Y20 Y21 730 Y22 Y31 Y40 Y23 Y2 Y4l Y50
M(3) = 1Yz Y21 M3 Y22 Y31 1 Y14 Y23 Y32 Y4t
Y02 Y03 Y12 704 Y13 Y22 ¢ 705 Y14 Y23 )32
Y30 Y31 740 32 Y41 Y50 Y33 Y42 Y51 Y60
Yo1 Y22 Y31 23 Y32 YAl ¢ Y24 Y33 Y42 sl
Y2 Y13 Y22 Y14 Y23 Y32 Y15 Y4 V33 Y42
Y03 Y04 713 705 Y14 Y23 706 Y15 - V24 Y33 /
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For moment problems in R?,

1 X Y X2 XY Y2 X3 X’y XYy? y3
Boo Bor P Boa P Bao 1 Bos Pz Pa Pao
Bor Boz Bu Pos Pz B i Poa Pz P2 P
Bro P Bao P2 Par B i Pz P B Pao
Bo2 Po3 P12 Boa P13 P2 i Pos P Pz P
M(3) Bu P2 Par Pz Pz B i P Pz P2 Pa
Boo Po1 PBs0 Paz Ba1 Pao ¢ Baz P2 Bar Bso

Bos Poa P13 Pos Pia Bz Pos Pis  Poa B3
Bz P13 P2 Pra Poz P2 i Pis Poa P33 Paz
Bor Po2 B P2z P32 PBar i Poa Pz faz Pa
B0 P31 Pao B2 Par Pso Pz Par P 56 o)
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GENERAL IDEA TO STUDY TMP

@ TMP is more general than FMP:

fewer moments = less data

RECURSIVELY DETERMINATE TMP



GENERAL IDEA TO STUDY TMP

@ TMP is more general than FMP:

fewer moments = less data

o Stochel: link between TMP and FMP

RAUL Curro (IWOTA, 7/17/12) RECURSIVELY DETERMINATE TMP



GENERAL IDEA TO STUDY TMP

@ TMP is more general than FMP:

fewer moments = less data
@ Stochel: link between TMP and FMP
o Existing approaches are directed at enlarging the data by acquiring

new moments, and eventually making the problem into one of flat

data type (i.e., with intrinsic recursiveness).
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GENERAL IDEA TO STUDY TMP

@ TMP is more general than FMP:

fewer moments = less data

Stochel: link between TMP and FMP

Existing approaches are directed at enlarging the data by acquiring
new moments, and eventually making the problem into one of flat

data type (i.e., with intrinsic recursiveness).

This naturally leads to a full MP.

If such a flat extension of the initial data cannot be accomplished,

then TMP has no representing measure.
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GENERAL IDEA TO STUDY TMP

@ TMP is more general than FMP:

fewer moments = less data
o Stochel: link between TMP and FMP

o Existing approaches are directed at enlarging the data by acquiring
new moments, and eventually making the problem into one of flat

data type (i.e., with intrinsic recursiveness).
@ This naturally leads to a full MP.

o If such a flat extension of the initial data cannot be accomplished,

then TMP has no representing measure.

@ Helpful tool: Smul’jan's Theorem on positivity of 2 x 2 matrices
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PosiTiviTy OF BLOCK MATRICES

THEOREM

(Smul’jan, 1959)

A>0
A B
>0& B = AW
B* C
C > W*AW

A B
Moreover, rank =rank A& C = W*AW.
B* C

RAUL Curro (IWOTA, 7/17/12)
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COROLLARY

A
Assume rank - = rank A. Then
A B
A>0& > 0.
B* C
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ABSTRACT OF NEW RESULTS

A theorem of Bayer and Teichmann [BT] implies that if a finite real
multisequence 8 = 829 has a representing measure, then the associated

moment matrix My admits positive, recursively generated moment matrix
extensions Mgi1, Mgyo,.. ..
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ABSTRACT OF NEW RESULTS

A theorem of Bayer and Teichmann [BT] implies that if a finite real
multisequence 8 = 829 has a representing measure, then the associated
moment matrix My admits positive, recursively generated moment matrix
extensions My11, Mgyo,.... For a bivariate recursively determinate My,
we show that the existence of positive, recursively generated extensions

Myi1, ..., Mag_1 is sufficient for a measure.
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ABSTRACT OF NEW RESULTS

A theorem of Bayer and Teichmann [BT] implies that if a finite real
multisequence 8 = 829 has a representing measure, then the associated
moment matrix My admits positive, recursively generated moment matrix
extensions My11, Mgyo,.... For a bivariate recursively determinate My,
we show that the existence of positive, recursively generated extensions
Myi1, ..., Mag_1 is sufficient for a measure. Examples illustrate that all
of these extensions may be required to show that 5 has a measure.

We describe in detail a constructive procedure for determining whether

such extensions exist.
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ABSTRACT OF NEW RESULTS

A theorem of Bayer and Teichmann [BT] implies that if a finite real
multisequence 8 = 829 has a representing measure, then the associated
moment matrix My admits positive, recursively generated moment matrix
extensions My11, Mgyo,.... For a bivariate recursively determinate My,
we show that the existence of positive, recursively generated extensions
Myi1, ..., Mag_1 is sufficient for a measure. Examples illustrate that all
of these extensions may be required to show that 5 has a measure.

We describe in detail a constructive procedure for determining whether
such extensions exist. Under mild additional hypotheses, we show that
My admits an extension My 1 which has many of the properties of a

positive, recursively generated extension.
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SOME APPLICATIONS OF TMP

@ Subnormal Operator Theory (unilateral weighted shifts)
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SOME APPLICATIONS OF TMP

@ Subnormal Operator Theory (unilateral weighted shifts)
@ Physics (determination of contours)

e Computer Science (image recognition and reconstruction)
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SOME APPLICATIONS OF TMP

@ Subnormal Operator Theory (unilateral weighted shifts)

Physics (determination of contours)

Computer Science (image recognition and reconstruction)

Geography (location of proposed distribution centers)

Probability (reconstruction of p.d.f.’s)

e Environmental Science (oil spills, via quadrature domains)
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e Engineering (tomography)
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e Engineering (tomography)

e Geophysics (inverse problems, cross sections)
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e Engineering (tomography)
e Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at
different angles, collecting the information on a screen. One then seeks to
obtain a constructive, optimal way to approximate the body, or in some

cases to reconstruct the body.

RAUL Curro (IWOT. / RECURSIVELY DETERMINATE TMP



FuncTioNAL CALCULUS

For p € Py, p(X,¥) = 3 0<ivj<n a;ix'yJ define
p(X,Y) = a;X'Y/ = M(n)p,

where [3 = (300 ce+don- a,,o)T.
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FuncTioNAL CALCULUS

For p € Py, p(X,¥) = 3 0<ivj<n a;ix'yJ define
p(X,Y) = a;X'Y/ = M(n)p,

where [3 = (300 ce+don- a,,o)T.

If there exists a rep. meas. pu, then

p(X,Y) =0« supp pu C Z, = {(x,y) € R?: p(x,y) = 0}.
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FuncTioNAL CALCULUS

For p € Py, p(X,¥) = 3 0<ivj<n a;ix'yJ define
p(X,Y) = a;X'Y/ = M(n)p,

where [3 = (300 ce+don- a,,o)T.

If there exists a rep. meas. pu, then
p(X,Y)=0<xsupp pu C Z, = {(x,y) € R?: p(x,y) = 0}.
The following is our analogue of recursiveness for the TCMP
(RG) Ifp,q,pqg € Ppn,and p(X,Y) =0,

then (pg)(X,Y)=0.
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TRUNCATED MOMENT PROBLEMS IN TwO REAL

VARIABLES

algebraic variety

TMP Complex Real
moments vii € C, vji = i Bij €R
moment matrix M(n) M(n)
functional calculus p(Z,2) p(X,Y)

V(v) = mp(z,Z)zo Zp | V(B) = np(x,y):o Zp

RAUL Curro (IWOTA, 7/17/12)
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SINGULAR TMP; REAL CASE

o Given a finite family of moments, build moment matrix
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SINGULAR TMP; REAL CASE

o Given a finite family of moments, build moment matrix

o Identify all column relations
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SINGULAR TMP; REAL CASE

o Given a finite family of moments, build moment matrix
o Identify all column relations

e Build algebraic variety

where Z,, is the zero set of p.
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SINGULAR TMP; REAL CASE

o Given a finite family of moments, build moment matrix
o Identify all column relations

o Build algebraic variety
V=y(@E)=V(M@n) = () 2
where Z,, is the zero set of p.
o Always true:
r:=rank M(n) < card supp u < v :=card V(p),

so if the variety is finite there's a natural candidate for supp p, i.e.,
supp 1 = V(p3)
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SINGULAR TMP

o Finite rank case
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SINGULAR TMP

o Finite rank case

o Flat case
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SINGULAR TMP

o Finite rank case
o Flat case

@ Extremal case

RAUL Curro (IWOT. RECURSIVELY DETERMINATE TMP



SINGULAR TMP

Finite rank case

Flat case

@ Extremal case

Recursively generated relations
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SINGULAR TMP

Finite rank case

Flat case

@ Extremal case

Recursively generated relations

Strategy: Build positive extension, repeat, and eventually extremal
rank M(n) <rank M(n+1) <card V(M(n+ 1)) < card V(M(n))
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SINGULAR TMP

Finite rank case

Flat case

@ Extremal case

Recursively generated relations

Strategy: Build positive extension, repeat, and eventually extremal
rank M(n) <rank M(n+1) <card V(M(n+ 1)) < card V(M(n))

@ General case.
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LOoCALIZING MATRICES

Consider the full, complex MP
/E’Zj dp =y (i,j >0),
where supp p C K, for K a closed subset of C.

@ The Riesz functional is given by

M(ZZ) =5 (ij > 0).
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LOoCALIZING MATRICES

Consider the full, complex MP
/E’Zj dp =y (i,j >0),
where supp p C K, for K a closed subset of C.

e The Riesz functional is given by

M(ZZ) =5 (ij > 0).

@ Riesz-Haviland:
There exists ;o with supp 1 C K < A, (p) > 0 for all p such that
plk = 0.
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If g is a polynomial in z and z, and
K=K;:={ze€C:q(z,z) > 0},
then Lg(p) := L(gp) must satisfy Lq(pp) > 0 for u to exist. For,

Lq(pP) =/ qpp dp >0 (all p).

Kq

e K. Schmiidgen (1991): If K, is compact, A,(pp) > 0 and
Lq(pp) > 0 for all p, then there exists p with supp 1 C K.
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QUuick OVERVIEW OF KNOWN RESULTS FOR TCMP

@ We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp 1 C R Hamburger TMP)
Stieltjes TMP)
Hausdorff TMP)

Toeplitz TMP)

supp 1 C [0, 00)
supp 1 C [a, b]

~—~ ~~ ~~

supp p C T
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QUuick OVERVIEW OF KNOWN RESULTS FOR TCMP

@ We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp # C R Hamburger TMP)
Stieltjes TMP)
Hausdorff TMP)

Toeplitz TMP)

supp p C [0, 00)
supp 1 C [a, b]
supp p C T

~ ~~ ~

o Along the way we have developed new machinery for analyzing

TMP's in one or several real or complex variables.
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@ Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.
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@ Our techniques also give concrete algorithms to provide finitely-atomic
rep. meas. whose atoms and densities can be explicitly computed.

@ We obtain applications to quadrature problems in numerical analysis.
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@ Our techniques also give concrete algorithms to provide finitely-atomic
rep. meas. whose atoms and densities can be explicitly computed.

e We obtain applications to quadrature problems in numerical analysis.

@ We have obtained a duality proof of a generalized form of the
Tchakaloff-Putinar Theorem on the existence of quadrature rules for

positive Borel measures on RY.
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@ Our techniques also give concrete algorithms to provide finitely-atomic
rep. meas. whose atoms and densities can be explicitly computed.

e We obtain applications to quadrature problems in numerical analysis.

@ We have obtained a duality proof of a generalized form of the
Tchakaloff-Putinar Theorem on the existence of quadrature rules for
positive Borel measures on RY.
Our results have been applied by

@ S. McCullough to obtain a dilation-type structure theorem in

Fejér-Riesz factorization theory;
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Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.

e We obtain applications to quadrature problems in numerical analysis.

@ We have obtained a duality proof of a generalized form of the
Tchakaloff-Putinar Theorem on the existence of quadrature rules for
positive Borel measures on RY.

Our results have been applied by

@ S. McCullough to obtain a dilation-type structure theorem in
Fejér-Riesz factorization theory;

o J. Lasserre to obtain concrete necessary and sufficient conditions on

RAUL

the coefficients of a polynomial so that all of its zeros lie in a

prescribed semi-algebraic subset of the plane; and
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RAUL

Our techniques also give concrete algorithms to provide finitely-atomic
rep. meas. whose atoms and densities can be explicitly computed.
We obtain applications to quadrature problems in numerical analysis.
We have obtained a duality proof of a generalized form of the
Tchakaloff-Putinar Theorem on the existence of quadrature rules for
positive Borel measures on RY.

Our results have been applied by

S. McCullough to obtain a dilation-type structure theorem in
Fejér-Riesz factorization theory;

J. Lasserre to obtain concrete necessary and sufficient conditions on
the coefficients of a polynomial so that all of its zeros lie in a
prescribed semi-algebraic subset of the plane; and

J. Lasserre, M. Laurent and others to convert polynomial

optimization into an instance of semidefinite programming.
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@ More recently, we have begun to use our methods to solve FULL
moment problems, by first solving truncated MP's, and then applying

J. Stochel’s limiting argument.
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@ More recently, we have begun to use our methods to solve FULL
moment problems, by first solving truncated MP’s, and then applying
J. Stochel’s limiting argument.

@ Our matrix extension approach works equally well to localize the

support of a rep. meas.
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@ More recently, we have begun to use our methods to solve FULL
moment problems, by first solving truncated MP’s, and then applying
J. Stochel’s limiting argument.

@ Our matrix extension approach works equally well to localize the

support of a rep. meas.

@ In the specific case of K := supp u, a semi-algebraic set determined

by a finite collection of complex polynomials P = {p; (z,z)};, i.e.,
K=Kp:={z€C:pi(z,z) >0,1 <i<m},

we obtain an existence criterion expressed in terms of positivity and
extension properties of the moment matrix M (n) (y) associated to ~y

and of the localizing matrix M, corresponding to each p;.
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CASE OF FLAT DATA

Recall: If 1 is a rep. meas. for M(n), then rank M(n) < card supp pu.

B is flat if M(n) = ( W"jlf/'l’(;_l)l) n;l " >
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CASE OF FLAT DATA

Recall: If 1 is a rep. meas. for M(n), then rank M(n) < card supp pu.

Bisflatif M(m) = [ M1 Mn=DW
WM(n—1) WM )W )

(RC-L. Fialkow, 1996) If § is flat and M(n) > 0, then M(n) admits a

unique flat extension of the form M(n+ 1).
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CASE OF FLAT DATA

Recall: If 1 is a rep. meas. for M(n), then rank M(n) < card supp pu.

Bisflatif M(m) = [ M1 Mn=DW
WM(n—1) WM )W )

THEOREM
(RC-L. Fialkow, 1996) If § is flat and M(n) > 0, then M(n) admits a

unique flat extension of the form M(n+ 1).

| \

THEOREM
(RC-L. Fialkow, 1996) The truncated moment sequence [3 has a

rank M(n)-atomic rep. meas. if and only if M(n) > 0 and M(n) admits a
flat extension M(n + 1).
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CASE OF FLAT DATA

Recall: If 1 is a rep. meas. for M(n), then rank M(n) < card supp pu.

Bisflatif M(m) = [ M1 Mn=DW
WM(n—1) WM )W )

THEOREM
(RC-L. Fialkow, 1996) If § is flat and M(n) > 0, then M(n) admits a

unique flat extension of the form M(n+ 1).

| \

THEOREM
(RC-L. Fialkow, 1996) The truncated moment sequence [3 has a

rank M(n)-atomic rep. meas. if and only if M(n) > 0 and M(n) admits a

flat extension M(n + 1).

To find 1 concretely, let r :=rank M(n) and look for the relation
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Z'=cl+aZ+..+¢ 12 %

We then define
p(z) =z —(co+ ...+ 1271

and solve the Vandermonde equation

1 1 Po Y00
20t Zr-1 P1 - o1
r—1 -1

4 er_l Pr—1 Yor—1

Then
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LOCALIZATION OF SUPPORT: MAIN THEOREM

(RC-LF, 2000) Let M(n) > 0 and suppose deg(q) = 2k or 2k — 1 for
some k < n. Then 3 pv with rank M(n) atoms and supp p C Kq if and
only if 3 a flat extension M(n+ 1) for which Mg(n+ k) > 0. In this case,
3 p with exactly rank M(n) — rank My(n+ k) atoms in Z(q).
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LOCALIZATION OF SUPPORT: MAIN THEOREM

(RC-LF, 2000) Let M(n) > 0 and suppose deg(q) = 2k or 2k — 1 for
some k < n. Then 3 pv with rank M(n) atoms and supp p C Kq if and
only if 3 a flat extension M(n+ 1) for which Mg(n+ k) > 0. In this case,
3 p with exactly rank M(n) — rank My(n+ k) atoms in Z(q).

M. Laurent (2005) has found an alternative proof, using ideas from real

algebraic geometry.
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THE QUARTIC MOMENT PROBLEM: COMPLEX CASE

Recall the lexicographic order on the rows and columns of M(2):
1,2,7,7°,27,7°

e Z=A1 (Dirac measure)
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THE QUARTIC MOMENT PROBLEM: COMPLEX CASE

Recall the lexicographic order on the rows and columns of M(2):
1,2,7,7°,27,7°

o Z=A1 (Dirac measure)
e Z=A1+BZ (supp pC line)
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THE QUARTIC MOMENT PROBLEM: COMPLEX CASE

Recall the lexicographic order on the rows and columns of M(2):
1,2,7,7°,27,7°
o Z=A1 (Dirac measure)

e Z=A1+BZ (supp pC line)
@ Z2=A1+ B Z+ C Z (flat extensions always exist)
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THE QUARTIC MOMENT PROBLEM: COMPLEX CASE

Recall the lexicographic order on the rows and columns of M(2):

1,2,7,7°,27,7°

Z = A1 (Dirac measure)
Z=A1+B2Z (supp u C line)
o Z2= A1+ B Z + C Z (flat extensions always exist)

ZZ=A1+BZ+CZ+DZ?

]
D = 0=7ZZ=A1+BZ+BZandC=8B
= (Z-B)(Z-B)=A+|B)?
_ Z—-B
= WW =1 (circle), for W :=

\/A+|BJ?
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The functional calculus we have constructed is such that p(Z,Z) =0

implies supp u C Z(p).
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The functional calculus we have constructed is such that p(Z,Z) =0
implies supp u C Z(p).

When {1, 7,272,722, ZZ} is a basis for Cp(2), the associated algebraic
variety is the zero set of a real quadratic equation in

x = Re[z] and y := Im][z].
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The functional calculus we have constructed is such that p(Z,Z) =0
implies supp u C Z(p).

When {1, 7,272,722, ZZ} is a basis for Cp(2), the associated algebraic
variety is the zero set of a real quadratic equation in

x = Re[z] and y := Im][z].

Using the flat data result, one can reduce the study to cases corresponding

to the following four real conics:
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The functional calculus we have constructed is such that p(Z,Z) =0
implies supp u C Z(p).

When {1, 7,272,722, ZZ} is a basis for Cp(2), the associated algebraic
variety is the zero set of a real quadratic equation in

x = Re[z] and y := Im][z].

Using the flat data result, one can reduce the study to cases corresponding

to the following four real conics:

(a) W2 = 2iW +2iW — W? —2WW parabola; y = x?

(b) W2 = —4i1+ W? hyperbola; yx =1

(c) W?=Ww? pair of intersect. lines; yx = 0
(d) WW = unit circle; x> + y? = 1.
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THEOREM (THE QUARTIC MP: COMPLEX CASE)

(RC-L. Fialkow, 2005) Let ~*) be given, and assume M(2) > 0 and
{1,2,2,2%,ZZ} is a basis for Cpyz). Then ~4) admits a rep. meas. p.
Moreover, it is possible to find 1 with card supp p = rank M (2), except
in some cases when V() is a pair of intersecting lines; in such cases,

there exist p with card supp p < 6.
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THEOREM (THE QUARTIC MP: COMPLEX CASE)

(RC-L. Fialkow, 2005) Let v*) be given, and assume M(2) > 0 and
{1,2,2,72,Z7} is a basis for Cpy(p). Then v(*) admits a rep. meas. pu.
Moreover, it is possible to find p with card supp p = rank M (2), except
in some cases when V() is a pair of intersecting lines; in such cases,

there exist p with card supp p < 6.

COROLLARY
Assume that M(2) > 0 and that rank M(2) < card V(+*). Then M(2)

admits a representing measure.

| \
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EXTREMAL MP; r=v

Recall that the algebraic variety of [ is
V=V(B):= ﬂ Zp,
p(X,Y)=0

where Z,, is the zero set of p.
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EXTREMAL MP; r=v

Recall that the algebraic variety of [ is

V=V(B):= ﬂ Zp,

p(X,Y)=0

where Z,, is the zero set of p.

o If B admits a representing measure p, then

p € Pp satisfies M(n)p =0 < supp p C 2,
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EXTREMAL MP; r=v

Recall that the algebraic variety of [ is

V=V(B):= ﬂ Zp,

p(X,Y)=0

where Z,, is the zero set of p.

o If B admits a representing measure p, then

p € P, satisfies M(n)p =0 < supp pu C Z,
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EXTREMAL MP; r=v

Recall that the algebraic variety of [ is

v=v(@)= [ 2.

p(X,Y)=0

where Z,, is the zero set of p.

o If B admits a representing measure p, then
p € P, satisfies M(n)p =0 < supp pu C Z,
Thus supp p €V, so r :=rank M(n) and v := card V satisfy

r < card supp pu < v.
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EXTREMAL MP; r=v

Recall that the algebraic variety of [ is

v=v(@)= [ 2.

p(X,Y)=0

where Z,, is the zero set of p.

o If B admits a representing measure p, then
p € P, satisfies M(n)p =0 < supp pu C Z,
Thus supp p €V, so r :=rank M(n) and v := card V satisfy

r < card supp pu < v.

If p € Pan and plyy =0, then A(p) = [ p du = 0.
Here A is the Riesz functional, given by A(x'y/) := j3;
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BASIC NECESSARY CONDITIONS FOR THE EXISTENCE

OF A REPRESENTING MEASURE

(Positivity) M(n) > 0
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BASIC NECESSARY CONDITIONS FOR THE EXISTENCE

OF A REPRESENTING MEASURE

(Positivity) M(n) > 0

(Consistency) p € Pap, ply =0= A(p) =0
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BASIC NECESSARY CONDITIONS FOR THE EXISTENCE

OF A REPRESENTING MEASURE

(Positivity) M(n) > 0

(Consistency) p € Pap, ply =0= A(p) =0

(Variety Condition) r < v, i.e., rank M(n) < card V.
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BASIC NECESSARY CONDITIONS FOR THE EXISTENCE

OF A REPRESENTING MEASURE

(Positivity) M(n) > 0

(Consistency) p € Pap, ply =0= A(p) =0

(Variety Condition) r < v, i.e., rank M(n) < card V.

Consistency implies

(Recursiveness) p, q, pq € Py, M(n)p =0 == M(n)(pq)= 0.
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In general, Positivity, Consistency and the Variety Condition are not

sufficient. However,

THEOREM (THE EXTREMAL CASE)

(RC, L. Fialkow and M. Méller, 2005) For 3 = 3(?") extremal, i.e., r = v,
the following are equivalent:

(i) B has a representing measure;

(i) B has a unique representing measure, which is rank M(n)-atomic
(minimal);

(iii) M(n) > 0 and (3 is consistent.
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A BASIC ALGORITHM

The extension of this result to general representing measures follows from
a theorem of C. Bayer and J. Teichmann: If 5 has a representing measure,

then it has a finitely atomic representing measure.

RAUL CUrRTO (IWOT/
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A BASIC ALGORITHM

The extension of this result to general representing measures follows from
a theorem of C. Bayer and J. Teichmann: If 5 has a representing measure,
then it has a finitely atomic representing measure.

Also, rank M(n) <rank M(n+1) < card V(n+ 1) < card V(n).

Thus, eventually, a soluble TMP must be flat or extremal.
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A BASIC ALGORITHM

The extension of this result to general representing measures follows from

a theorem of C. Bayer and J. Teichmann: If 5 has a representing measure,
then it has a finitely atomic representing measure.

Also, rank M(n) <rank M(n+1) < card V(n+ 1) < card V(n).

Thus, eventually, a soluble TMP must be flat or extremal.

At present, for a general moment matrix, there is no known concrete test

for the existence of a flat extension My ji1.
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A BASIC ALGORITHM

The extension of this result to general representing measures follows from
a theorem of C. Bayer and J. Teichmann: If 5 has a representing measure,
then it has a finitely atomic representing measure.

Also, rank M(n) <rank M(n+1) < card V(n+ 1) < card V(n).

Thus, eventually, a soluble TMP must be flat or extremal.

At present, for a general moment matrix, there is no known concrete test
for the existence of a flat extension My ji1.

For the class of bivariate recursively determinate moment matrices, we
now present a detailed analysis of an algorithm that can be used in
numerical examples to determine the existence or nonexistence of flat

extensions (and representing measures).
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This algorithm determines the existence or nonexistence of positive,
recursively generated extensions My11,..., Mag_1, at least one of which

must be a flat extension in the case when there is a measure.
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This algorithm determines the existence or nonexistence of positive,
recursively generated extensions My11,..., Mag_1, at least one of which

must be a flat extension in the case when there is a measure.

One of our main results shows that there are sequences 3(29) for which the
first flat extension occurs at M»y_1, so all of the above extensions must be

computed in order to recognize that there is a measure.
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This algorithm determines the existence or nonexistence of positive,
recursively generated extensions My11,..., Mag_1, at least one of which

must be a flat extension in the case when there is a measure.

One of our main results shows that there are sequences 3(29) for which the
first flat extension occurs at M»y_1, so all of the above extensions must be

computed in order to recognize that there is a measure.

This result stands in sharp contrast to traditional truncated moment
theorems (concerning representing measures supported in R, [a, b],
[0, +00), or in a planar curve of degree 2), which express the existence of a

measure in terms of tests closely related to the original moment data.
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Here we see that, at least within the framework of moment matrix
extensions, we may need to go far from the original data to resolve the

existence of a measure.
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Here we see that, at least within the framework of moment matrix
extensions, we may need to go far from the original data to resolve the

existence of a measure.

We will show that under mild additional hypotheses on M, the
implementation of each extension step, from My, ; to My, 1, leading to
a flat extension My k11, consists of simply verifying a matrix positivity

condition.
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RECURSIVELY DETERMINATE MATRICES

A bivariate moment matrix M is recursively determinate if there are

column dependence relations of the form
X"=p(X,Y) (p€Pn-1, n<d)

and

Y™ =q(X,Y) (g€ Pm, qhasnoy™ term, m < d),

or with similar relations with the roles of p and g reversed.
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We next present an example which illustrates the algorithm in a case
leading to a measure.

Example. Let d = 3 and consider

10 0 1 2 5 0 0 0 0
01 2 0 O 2 5 14 42
0 2 5 0 0 O 5 14 42 132
10 0 2 5 14 0

M; = 2 0 0 5 14 42 0
5 0 0 14 42 132 O
0 2 5 0 0 O 5 14 42 132
0 5 14 0 0 0 14 42 132 429
0 14 42 0 0 0 42 132 429
0 42 132 0 0 0 132 429 ¢
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We have M3 = 0, M, = 0, and

rank Ms = 8 <= § = 2026881 — 2844c + .
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We have M3 = 0, M, = 0, and
rank Ms = 8 <= § = 2026881 — 2844c + ¢
When rank M3 = 8, then the two column relations are

xX3i=vy
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We have M3 = 0, M, = 0, and
rank M3 = 8 <= § = 2026881 — 2844c + c>.
When rank M3 = 8, then the two column relations are
X3=Y

and
Y3 =¢q(X,Y),
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We have M3 = 0, M, = 0, and
rank Ms = 8 <= § = 2026881 — 2844c + ¢
When rank M3 = 8, then the two column relations are
X3=vy
and
Y3 =¢q(X,Y),
where g(x,y) =
(5715 — 4c)x + 10(—1428 + c)y — 3(—2853 + 2¢)x?y + (—1422 + c)xy?.
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We have M3 = 0, M, = 0, and
rank M3 = 8 <= § = 2026881 — 2844c + c°.
When rank M3 = 8, then the two column relations are
X3=Y
and
Y3 =q(X,Y),

where g(x,y) =
(5715 — 4c)x + 10(—1428 + c)y — 3(—2853 + 2¢)x?y + (—1422 + c)xy?.

Let
n(x,y)=y—x
and

n(x,y) =y>—a(x,y).
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With these two column relations in hand, our results guarantees the
existence of a unique RG extension M,. To test the positivity of My, we
calculate the determinant of the 9 x 9 matrix consisting of the rows and
columns of M, indexed by the monomials 1, x, y, x2, xy, y2, X%y, xy?, x*y>.
A straightforward calculation using Mathematica shows that three cases

arise:
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With these two column relations in hand, our results guarantees the
existence of a unique RG extension M,. To test the positivity of My, we
calculate the determinant of the 9 x 9 matrix consisting of the rows and
columns of M, indexed by the monomials 1, x, y, x2, xy, y2, X%y, xy?, x*y>.
A straightforward calculation using Mathematica shows that three cases
arise:

(i) ¢ < 1429: here My % 0, so M3 admits no representing measure;
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With these two column relations in hand, our results guarantees the
existence of a unique RG extension M,. To test the positivity of My, we
calculate the determinant of the 9 x 9 matrix consisting of the rows and
columns of M, indexed by the monomials 1, x, y, x2, xy, y2, X%y, xy?, x*y>.
A straightforward calculation using Mathematica shows that three cases
arise:

(i) ¢ < 1429: here My i/ 0, so M3 admits no representing measure;

(i) ¢ = 1429: here M, is a flat extension of M3, so M3 admits an

8-atomic representing measure;
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(iii) ¢ > 1429: here My is a positive RG extension of M3 with rank 9.
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(iii) ¢ > 1429: here My is a positive RG extension of M3 with rank 9.
Although M, is not a flat extension of M3, it nevertheless satisfies the
hypotheses of our Theorem, so M, admits a flat extension Ms, and
therefore M3 has a 9-atomic representing measure. Moreover, since the
original algebraic variety V = V(M3) associated with M3, Z,, () Z,,, can
have at most 9 points (by Bézout's Theorem), it follows that ¥V = V(Ms).
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(iii) ¢ > 1429: here My is a positive RG extension of M3 with rank 9.
Although M, is not a flat extension of M3, it nevertheless satisfies the
hypotheses of our Theorem, so M, admits a flat extension Ms, and
therefore M3 has a 9-atomic representing measure. Moreover, since the
original algebraic variety V = V(M3) associated with M3, Z,, () Z,,, can
have at most 9 points (by Bézout's Theorem), it follows that ¥V = V(Ms).
This algebraic variety must have exactly 9 points, and thus constitutes the

support of the unique representing measure for Ms.
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To illustrate this case, we take the special value ¢ = 1430, so that
q(x,y) = —5x + 20y — 21x%y + 8xy?. Let a = %\/ 5—2¢/5 and
vi= V5a.
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To illustrate this case, we take the special value ¢ = 1430, so that
q(x,y) = —5x + 20y — 21x%y + 8xy?. Let a = jm and

v :=+/5a. A calculation shows that V = {(x;, x*)}?_,, where x; = 0,
x = 3(—1—+/5) ~ —1.618, x3 = 3(1 — V/5) ~ —0.618,

xg = —x3 ~ 0.618, x5 = —x0 = 1.618, x6 = —a — v =~ —1.176,
x7=—a—+7~0.449, xg = —x7 = —0.449 and xg = —xp ~ 1.176.

RAUL Curro (IWOTA, 7/17/12) RECURSIVELY DETERMINATE TMP



To illustrate this case, we take the special value ¢ = 1430, so that
q(x,y) = —5x + 20y — 21x%y + 8xy?. Let a = jm and

v :=+/5a. A calculation shows that V = {(x;, x*)}?_,, where x; = 0,
x = 3(—1—+/5) ~ —1.618, x3 = 3(1 — V/5) ~ —0.618,

xg = —x3 ~ 0.618, x5 = —x0 = 1.618, x6 = —a — v =~ —1.176,
x7=—a—+7~0.449, xg = —x7 = —0.449 and xg = —xp ~ 1.176.

Ms satisfies the hypothesis of our Theorem with n = m = 3, so we

proceed to generate the RG extension M.
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This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)
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This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)
XY = Y2 (fromX3=Y)
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This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)
XY = Y2 (fromX3=Y)
XY? = (xq)(X,Y) (from Y* = q(X,Y))
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This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)

XY = Y2 (fromX3=Y)

XY® = (xq)(X,Y) (from Y* = g(X, Y))
Y = (yg)(X,Y) (from Y* = q(X,Y))

RAUL Curro (IWOTA, 7/17/12) RECURSIVELY DETERMINATE TMP



This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)

XY = Y2 (fromX3=Y)

XY® = (xq)(X,Y) (from Y* = g(X, Y))
Y = (yg)(X,Y) (from Y* = q(X,Y))

(firstin (M5 B(a) ).
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This extension is uniquely determined by imposing the column relations

X* = XY (from X3 =Y)

XY = Y2 (fromX3=Y)

XY® = (xq)(X,Y) (from Y* = g(X, Y))
Y = (yg)(X,Y) (from Y* = q(X,Y))

(first in ( Ms B(4) ) then in ( B(4)T C(4) ))
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A calculation shows that, as expected, these relations unambiguously

define a positive moment matrix M, with

rank My =9 (> 8 = rank M3).
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A calculation shows that, as expected, these relations unambiguously

define a positive moment matrix M, with

rank My =9 (> 8 = rank M3).

It follows that M3 admits no flat extension My, so we proceed to construct

the RG extension Ms, uniquely determined by imposing the relations

RAUL Curro (IWOTA, 7 p RECURSIVELY DETERMINATE TMP



RAUL Curro (IWOTA, 7/17/12)

x> = X2v,

XY = Xy?
xX3y? = vy?3
X2Y? = (x%q)(X,Y),

(
XY* = (xya)(X,Y),
Y? = (
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A calculation of these columns (first in ( M, B(5) ) then in

( B(5)T C(5) )) shows that, as again expected, they do fit together to

unambiguously define a moment matrix Ms.
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A calculation of these columns (first in ( M, B(5) ) then in

( B(5)T C(5) )) shows that, as again expected, they do fit together to
unambiguously define a moment matrix Ms. From the form of g(x,y), we
see that Ms is actually a flat extension of My, in keeping with the above
discussion. Corresponding to this flat extension is the unique, 9-atomic,

representing measure i = [ip.
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Clearly, supp =YV, so p is of the form p = Z?:l p,-é(XhX;). To compute
the densities, we use the Vandermonde method and find p; = % =0.2,
p2 = ps = =25 % 0.069, p3 = pa = 125 ~ 0.181,

8v5 8v5
p6 = po = % ~ 0.131, and p7 = pg = _237%5 ~ 0.019.
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Clearly, supp =YV, so p is of the form p = Z?:l pi(s(x,-,x.3)' To compute
the densities, we use the Vandermonde method and find p; = % =0.2,
p2 = ps = =25 % 0.069, p3 = pa = 125 ~ 0.181,

8v5 8v5
p6 = po = % ~ 0.131, and p7 = pg = —451;7%5 ~ 0.019. Thus, the

existence of a representing measure for 5(®) is established on the basis of
the extensions M, and Ms. Note that in this case, the actual number of
extensions leading to a flat extension can be computed as either
n+m—-d—-1=3+3-2-1=2oras

1+ card ¥V —rank M3 =1+ 9 — 8 = 2, which is consistent with our earlier

discussion. O
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THEOREM

Suppose the bivariate moment matrix My(3) is positive and recursively
generated, with column dependence relations generated entirely the
monomials X" and Y™ via recursiveness and linearity. Then there exists a
unique moment matrix block B(d + 1) such that (Md B(d + 1)) is
recursively generated and Ran B(d + 1) C Ran M.
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COROLLARY

If My satisfies the hypotheses of the previous Theorem, then there exists a
unique moment matrix block C = C(n + 1) consistent with the structure

of an RG extension My41.
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COROLLARY

If My satisfies the hypotheses of the previous Theorem, then there exists a
unique moment matrix block C = C(n + 1) consistent with the structure

of an RG extension My41.

By combining the previous Theorem and Corollary, we immediately obtain

the first of our main results, which follows.

If My is positive, with column relations generated entirely by X" and Y™
via recursiveness and linearity, then My admits a unique RG extension

Myy1, i.e., Ran B(n+ 1) C Ran My, and My.1 is recursively generated.
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COROLLARY

If My satisfies the above mentioned hypotheses and d = n+ m — 2, then
My admits a flat moment matrix extension My11 (and 8 admits a

rank My-atomic representing measure).
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We continue with an example which shows that our Theorem is no longer
valid if we permit column dependence relations in My in addition to those
generated by X” and Y.
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We continue with an example which shows that our Theorem is no longer
valid if we permit column dependence relations in My in addition to those
generated by X” and Y.

Example. We define M3 by setting

Boo = B2o=Po2=1
P11 = Bz =B =P3=0

P2 = Pao =2
Bs1 = P13 =0
Bro = 5

Poa = 22

Bso = -1
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Bar = -2

B3 = 13
fo3 = 3
894
514 = E
336
Bos = 5
Beo = 178
Ps1 = 139
Ba2 = 159
1657
BT
4298
BT g
Bis = r
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443272376768 — 2742712830r — 482680912
41327767 ’

Boe = 7
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443272376768 — 2742712830r — 482680912

e = 0= 41327767
Thus, we have

10 0 1 O 1 0 2
010 0 0 2 2
001 0 2 0 0 5 0 2
100 2 0 5 -1 -2 13 3

m_|002 0 5 0 —2 13 3 &
120 5 0 22 13 3 8 3%
02 0 -1 -2 13 178 139 159 1857
00 5 -2 13 3 139 159 1657 42%
2 5 0 13 3 % 159 % % ,
0 0 220 3 84 3% 1657 4208 ,
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It is straightforward to check that Mj is positive, recursively generated,

and recursively determinate, with M > 0,
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It is straightforward to check that Mj is positive, recursively generated,
and recursively determinate, with My > 0, rank M3 = 7 and column

dependence relations
X3=p(X,Y):=40-1—-24X +4Y —53X% —2XY +13Y?,

X2Y =t(X,Y):=35-1—-22X — Y —46X? +3XY +11Y?,
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It is straightforward to check that Mj is positive, recursively generated,
and recursively determinate, with My > 0, rank M3 = 7 and column

dependence relations
X3=p(X,Y):=40-1—-24X +4Y —53X% —2XY +13Y?,

X2Y =t(X,Y):=35-1—-22X — Y —46X? +3XY +11Y?,

and

Y3=q(X,Y):=d - 14+ X+ d3Y +dyX? + ds XY + dg Y2 + dr XY?,

_ 3(487658—1651r) _ 3(—342075+1157r) _ 2(—2131598+6591r)
where d; = 1447 , oy = 1447 , d3 = 18811 '
__ —2000094+6773r __ 2338519—6591r _ 2(—316575+1079r)
dy = — 147 ds = 18811 , do = 1447
_ —48015+169r
dr = 1447 :
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A calculation shows that

—49462 + 169r

<(yp)(X, Y) - (Xt)(X7 Y)? XY2> = 13 )

so for r # %, X3Y is not well-defined.
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A calculation shows that

—49462 + 169r

<(yp)(X, Y) - (Xt)(X7 Y)? XY2> = 13 )

so for r # %, X3Y is not well-defined. Thus, the conclusions of our

Theorem do not hold for M3 (and thus there is no representing

measure).
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Therefore, we have been able to build a concrete example which shows

that our Theorem is no longer valid if we permit column dependence

relations in My in addition to those generated by X” and Y.
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By contrast, we prove that if My € RD, with all column dependence

relations of strictly lower degree, then M, does admit an RG extension.
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By contrast, we prove that if My € RD, with all column dependence

relations of strictly lower degree, then M, does admit an RG extension.

THEOREM
Suppose My is positive and recursively generated, and satisfies

X"=p(X,Y) (p€Pn-1, n<d)
and

Y™ =q(X,Y) (g€ Pm-1, q hasnoy™ term, m < d).
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By contrast, we prove that if My € RD, with all column dependence

relations of strictly lower degree, then M, does admit an RG extension.

THEOREM
Suppose My is positive and recursively generated, and satisfies

X"=p(X,Y) (p€Pn-1, n<d)
and
Y™ =q(X,Y) (g€ Pm-1, q hasnoy™ term, m < d).

If each column relation in My can be expressed as X'YJ = r(X,Y) with

deg r < i+ j, then My admits a unique RG extension.
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FAILURE AT THE SECOND STAGE

We now construct a positive, recursively generated, recursively determinate
M4(3®)) which admits a positive, recursively generated extension Ms, but
such that M fails to admit a positive, recursively generated extension M.

By the Bayer-Teichmann Theorem, 3(8) has no representing measure.
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We define M, by defining its component blocks in the decomposition

M;  B(4)
B(4)T C(4)
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We define M, by defining its component blocks in the decomposition
M B(4
Ma — R CAN
B(4)T C(4)

Boo = B20 = Po2 = B2 =1,
Bao = Bos = Baz = Pos = 2,

Beo = Bos = 5,

We set

and all other moments up to degree 6 set to 0, so that
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1 001010000

01 00O0O0O2O010

001 000O01CO02

1002010000
0 0001O0O0O0O0TDO
1 001020000

0200005020

001 00O0O0CZ2T©0 2
01 00O0O02¢020
00200002065
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We next set

2010 2
00000
0000 0
502 0 2

3(4)202020,
2020 5
a b 00O
b 00O O
0000 g
000 g h

where 870 = a, Be1 = b, 16 = &, Bor = h, and all other degree 7

moments equal 0.
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We complete the definition of a recursively determinate M, by extending

the basic relations to the columns of (B(4)T C(4)) , leading to

13+a°+b> ab 5 0 4
ab 5 0 4
C(4) = 5 0 4 0 5
4 0 5 gh
0 5 gh 13+ g2+ A2
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We complete the definition of a recursively determinate M, by extending

the basic relations to the columns of (B(4)T C(4)) , leading to

13+a°+b> ab 5 0 4
ab 5 0 4
C(4) = 5 0 4 0 5
4 0 5 gh
0 5 gh 13+ g2+ A2

Since M3 > 0 (positive and invertible), we see that My > 0 with rank 13 if

and only if
A(4) = C(4) — B(4)"M;B(4) =~ 0.
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This positivity is equivalent to the positivity of the compression of A(4) to
rows and columns indexed by X3Y, X2Y?, XY3 ie,

1-b2 0 0
[AM#)]x3v x2v2,xv4y = 0 1 0 = 0.
0 0 1-g2
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Thus, if b and g satisfy 1 — b?> > 0 and 1 — g2 > 0, then M, is positive,
recursively generated, and recursively determinate, with rank My = 13, so

My satisfies the hypotheses of our main Theorem.
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Thus, if b and g satisfy 1 — b?> > 0 and 1 — g2 > 0, then M, is positive,
recursively generated, and recursively determinate, with rank My = 13, so
My satisfies the hypotheses of our main Theorem. We next seek to extend
M, to a positive and recursively generated Ms. In view of the basic

hypotheses, this can only be accomplished by defining
X% = (xp)(X, ¥)

and

Y = (ya)(X, V).
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This leads to a unique B(5) and C(5), and the resulting M(5) is positive
semi-definite. One can then define, uniquely, the recursively generated
extension M(6), which fails to be positive semi-definite for some choices of

band g.
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MAXIMUM NUMBER OF EXTENSION STEPS

THEOREM

For d > 1, there exists a moment matrix My, satisfying the conditions of

our main Theorem, for which the extension algorithm determines
successive positive, recursively generated extensions Myy1, ..., Mag_1,
and for which the first flat extension occurs at Mry_1. Moreover, each
extension My, ; satisfies the conditions of the Theorem, so to continue the

sequence it is only necessary to verify that the RG extension My, i1 is

positive semidefinite.
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MAXIMUM NUMBER OF EXTENSION STEPS

THEOREM

For d > 1, there exists a moment matrix My, satisfying the conditions of

our main Theorem, for which the extension algorithm determines
successive positive, recursively generated extensions Myy1, ..., Mag_1,
and for which the first flat extension occurs at Mry_1. Moreover, each
extension My, ; satisfies the conditions of the Theorem, so to continue the

sequence it is only necessary to verify that the RG extension My, i1 is

positive semidefinite.

Proof uses the Division Algorithm of Algebraic Geometry in a nontrivial

way.
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LEMMA

(The Division Algorithm in R[xq,- -+ ,xn]) Fix a monomial order > on
Z%q and let F = (fi,--- , fs) be an ordered s-tuple of polynomials in

R[x1, - ,xn]. Then every f € R[x1,--- , xn] can be written as
f=ah+ - -+afs+r,

where a;, € R[xy,- -+, xp], and either r =0 or r is a linear combination,
with coefficients in R, of monomials, none of which is divisible by any of

the leading terms in f1,--- , fs.

Furthermore, if ajf; # 0, then we have multideg (f) > multideg (a;f;).
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(T. Sauer, 1997) For N >1 let vq,--- , vy be distinct points in R?, and

consider the multivariable Vandermonde matrix

Vy = (Vlg)lgigN,aeli,laISN—l' of size N x w Then the rank of Vi

equals N.
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COROLLARY

Let x ={x1,...,Xm} andy = {y1,...,yn} be sets of distinct real
numbers, and consider the grid x X'y := {(xi, ¥j) }1<i<m,1<j<n consisting
of N := mn distinct points in R?>. Then the generalized VVandermonde

matrix Vixy, obtained from Vy by removing all columns indexed by

monomials divisible by x™ or y", is invertible.
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The following result is a special case of Alon's Combinatorial

Nullstellensatz.

COROLLARY

Let G =x x y be a grid as in Corollary 20, let N := mn, and let
p € R[x, y] be such that deg, p < m and deg, p < n. Assume also that
pl¢ =0. Then p =0.
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PROPOSITION

Let P(x,y) :==(x —x1)---(x — xq) and let
Q(x,y) =(y—y1) - (y —yq). If p:= multideg (f) > d and
fIV((P,Q)) =0, then there exists u,v € P,_q such that f = uP + vQ.

PROOF.

Let V:=V((P,Q)). By Lemma 18, we can write f = uP + vQ + r,
where multideg (uP) < p and multideg (vQ) < p. It follows that

u,v € P,_g and that r|V = 0. Moreover, r is a linear combination, with
coefficients in R, of monomials, none of which is divisible by any of the
leading terms in P and Q, that is, they are not divisible by x? and y9.
Therefore, r satisfies the hypotheses of Corollary 21 with m=n=d. By
Corollary 21, r =0. Thus, f = uP + vQ, as desired. Ol
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SUMMARY

e We obtain new sufficient conditions for the existence of RG

extensions.
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SUMMARY

e We obtain new sufficient conditions for the existence of RG

extensions.

@ We show that the number of steps leading to a flat extension is often

proportional to the degree of the TMP.
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SUMMARY

e We obtain new sufficient conditions for the existence of RG

extensions.

@ We show that the number of steps leading to a flat extension is often

proportional to the degree of the TMP.

@ We cover a wide spectrum of TMP’s,
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SUMMARY

e We obtain new sufficient conditions for the existence of RG

extensions.

@ We show that the number of steps leading to a flat extension is often

proportional to the degree of the TMP.
@ We cover a wide spectrum of TMP’s,

@ Our new results subsumes several known results.
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SUMMARY

e We obtain new sufficient conditions for the existence of RG

extensions.

@ We show that the number of steps leading to a flat extension is often

proportional to the degree of the TMP.
@ We cover a wide spectrum of TMP’s,

@ Our new results subsumes several known results.

But our new results stop short of covering some important cases,

even for a class of moment matrices M(3).
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SUMMARY

RAUL

We obtain new sufficient conditions for the existence of RG

extensions.

We show that the number of steps leading to a flat extension is often

proportional to the degree of the TMP.
We cover a wide spectrum of TMP's.
Our new results subsumes several known results.

But our new results stop short of covering some important cases,

even for a class of moment matrices M(3).

The Basic Algorithm, though, does provide a tool for examining all
TMP's.
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