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In this article we obtain a criterion for k-hyponormality via weak subnor-

mality. Using this criterion we recapture Spitkovskii’s subnormality criterion and give a
simple proof of the main result in [Gu], which describes a gap between k-hyponormality
and (k + 1)-hyponormality for Toeplitz operators. In addition, we notice that the min-

imal normal extension of a subnormal operator is exactly the inductive limit of its
minimal partially normal extensions.

Introduction

Let H and K be separable complex Hilbert spaces, let L(H,K) be the set of bounded
linear operators from H to K and write L(H) := L(H,H). An operator T ∈ L(H)
is said to be normal if T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and subnormal if
T = N |H, where N is normal on some Hilbert space K ⊇ H. Thus an operator T is

subnormal if and only if there exist operators A and B such that T̂ :=

(
T A

0 B

)
is

normal, i.e.,

(0.1)





[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

An operator T ∈ L(H) is said to be weakly subnormal ([CuL2]) if there exist operators
A ∈ L(H,H′) andB ∈ L(H′) such that the first two conditions in (0.1) hold: [T ∗, T ] =

AA∗ and A∗T = BT ∗, or equivalently, there is an extension T̂ of T such that

(0.2) T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.

The operator T̂ is said to be a partially normal extension (briefly, p.n.e.) of T . Note

that the condition (0.2) implies ||T̂ f || = ||T̂ ∗f || for all f ∈ H, and that if (0.2) holds

for all f ∈ H ⊕H′, then T̂ becomes normal, so T is in that case subnormal. We

also say that T̂ ∈ K is a minimal partially normal extension (briefly, m.p.n.e.) of
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a weakly subnormal operator T if K has no proper subspace containing H to which

the restriction of T̂ is also a partially normal extension of T . It is known [CuL2,

Lemma 2.5] that if T̂ is a partially normal extension of T ∈ L(H) on K then T̂ is

minimal if and only if K =
∨
{T̂ ∗kh : h ∈ H, k = 0, 1}. Clearly, subnormal =⇒

weakly subnormal =⇒ hyponormal; however, the converses are not true in general
(cf. [CuL2]).

On the other hand, the Bram–Halmos criterion for subnormality states that an
operator T is subnormal if and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections

x0, x1, · · · , xk ∈ H ([Bra],[Con, II.1.9]). It is easy to see that this is equivalent to the
following positivity test:

(0.3)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).

Condition (0.3) provides a measure of the gap between hyponormality and subnormal-
ity. In fact, the positivity condition (0.3) for k = 1 is equivalent to the hyponormality
of T , while subnormality requires the validity of (0.3) for all k. If we denote by
[A,B] := AB −BA the commutator of two operators A and B, and if we define T to
be k–hyponormal whenever the k × k operator matrix

(0.4) Mk(T ) := ([T ∗j , T i])ki,j=1

is positive, or equivalently, the (k + 1) × (k + 1) operator matrix in (0.3) is positive
(via the operator version of Choleski’s Algorithm), then the Bram–Halmos criterion
can be rephrased as saying that T is subnormal if and only if T is k–hyponormal for
every k ≥ 1 ([CMX]). The classes of k-hyponormal operators have been studied in an
attempt to bridge the gap between subnormality and hyponormality ([Cu1], [Cu2],
[CuF1], [CuF2], [CuF3], [CuL1], [CuL2], [CuL3], [CMX], [DPY], [McCP]).

In this paper we obtain a new, different criterion for k-hyponormality via weak
subnormality. Our criterion is sometimes more helpful because it avoids the poten-
tially complicated verification of positivity needed for (0.4). Using this criterion we
recapture Spitkovskii’s subnormality criterion [Spi] and give a simple proof of the
main result in [Gu], which describes a gap between k-hyponormality and (k + 1)-
hyponormality for Toeplitz operators.

1. A New Criterion for k-Hyponormality

Given a bounded sequence of positive numbers α : α0, α1, · · · (called weights), the
(unilateral) weighted shift Wα associated with α is the operator on `2(Z+) defined
by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal basis
for `2. It is straightforward to check that Wα can never be normal, and that Wα is
hyponormal if and only if αn ≤ αn+1 for all n ≥ 0.

In 1966, Stampfli [Sta] explicitly exhibited for a subnormal weighted shift A0 its
minimal normal extension

(0.5) N :=




A0 B1 0
A1 B2

A2
. . .

0
. . .


 ,
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where An is a weighted shift with weights {a(n)
0 , a

(n)
1 , · · · }, Bn := diag{b(n)

0 , b
(n)
1 , · · · },

and these entries satisfy:

(I) (a
(n)
j )2 − (a

(n)
j−1)

2 + (b
(n)
j )2 ≥ 0 (b

(0)
j = 0 for all j);

(II) b
(n)
j = 0 =⇒ b

(n)
j+1 = 0;

(III) there exists a constantM such that |a(n)
j | ≤M and |b(n)

j | ≤M for n = 0, 1, · · ·
and j = 0, 1, · · · , where

b
(n+1)
j := [(a

(n)
j )2 − (a

(n)
j−1)

2 + (b
(n)
j )2]

1
2 and a

(n+1)
j := a

(n)
j

b
(n+1)
j+1

b
(n+1)
j

(if b
(n)
j0

= 0, then a
(n)
j0

is taken to be 0).

On the other hand, in 1982, I. Spitkovskii [Spi] gave the following subnormality
criterion for arbitrary operators. (In 1985, J. Ma and S. Zhou [MaZ] independently
proved the same result.)

Theorem 1 ([Spi]). Let A0 ∈ L(H0), where H0 is a separable complex Hilbert space.
Then A0 is subnormal if and only if the following conditions hold for all nonnegative
integers n.

(I′) Dn ≥ 0;
(II′) An−1(KerDn−1) ⊆ KerDn−1 (n ≥ 1);

(III′) there exists a constant M such that ||An||, ||Dn|| ≤M , where

D0 := [A∗

0, A0], Dn+1 := Dn|Hn+1
+ [A∗

n+1, An+1], Hn+1 := Ran (Dn),

and An+1 denotes the bounded extension of D
1
2
nAnD

−
1
2

n to Ran (Dn)(= Hn+1)
from Ran (Dn).

In this case, the minimal normal extension of A0 is given by the operator N in (0.5)

with D
1
2
n−1 in place of Bn.

In 1988, P. Fan [Fan] noticed that if A0 is a weighted shift, then (I) and (I′), (II)
and (II′), and (III) and (III′) are equivalent, respectively. Consequently, Theorem 1
is a natural generalization to general operators of Stampfli’s subnormality criterion
for weighted shifts.

It was shown in [CuL2] that every 2-hyponormal weighted shift is weakly sub-
normal, but whether the same implication holds for arbitrary operators was left
open. Very recently, R. Curto, I.B. Jung and S.S. Park [CJP] showed that every
2-hyponormal operator is indeed weakly subnormal. This follows from a special case
of a more general result:

Lemma 2 ([CJP, Theorems 2.7 and 3.2]).

(i) If T ∈ L(H) is 2-hyponormal then [T ∗, T ]
1
2 T [T ∗, T ]−

1
2 |Ran[T∗,T ] is bounded;

(ii) T ∈ L(H) is (k + 1)-hyponormal if and only if T is weakly subnormal and

T̂ := m.p.n.e.(T ) is k-hyponormal.

In particular, it was shown in [CuL2, Lemma 2.8] that if A0 ∈ L(H0) is weakly
subnormal then the minimal partially normal extension of A0 can be obtained as

Â0 =

(
A0 D0

0 A1

)
: H0 ⊕H1 → H0 ⊕H1,
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where H1 ≡ Ran [A∗
0, A0] and D0 is the restriction of [A∗

0, A0]
1
2 to H1 satisfying

D0A0 = A1D0. Note that

(2.1)
∨

{Â0

∗k
h0 : h0 ∈ H0, k = 0, 1} = H0 ⊕H1.

By using Lemma 2(ii) inductively, we can see that if A0 is k-hyponormal then we can
define

Â0

(n)
:=

̂
Â0

(n−1)
for n = 1, · · · , k − 1; Â0

(0)
:= A0.

Our criterion on k-hyponormality now follows:

Theorem 3. An operator A0 ∈ L(H0) is k-hyponormal if and only if the following
three conditions hold for all n such that 0 ≤ n ≤ k − 1:

(In) Dn ≥ 0;
(IIn) An−1(KerDn−1) ⊆ KerDn−1 (n ≥ 1);

(IIIn) D
1
2
n−1An−1D

−
1
2

n−1|Ran (Dn−1) (n ≥ 1) is bounded,

where

D0 := [A∗

0, A0], Dn+1 := Dn|Hn+1
+ [A∗

n+1, An+1], Hn+1 := Ran (Dn)

and An+1 denotes the bounded extension of D
1
2
nAnD

−
1
2

n to Ran (Dn)(= Hn+1) from
Ran (Dn).

Proof. Suppose A0 is k-hyponormal. We now use induction on k. If k = 2 then A0

is 2-hyponormal, and so D0 := [A∗
0, A0] ≥ 0. By Lemma 2(i), D

1
2
0 A0D

−
1
2

0 |Ran (D0) is

bounded. Let A1 be the bounded extension of D
1
2
0 A0D

−
1
2

0 from Ran (D0) to H1 :=

Ran (D0) and D1 := D0|H1
+ [A∗

1, A1]. Writing Â0 :=

(
A0 D

1
2
0

0 A1

)
, we have Â0 =

m.p.n.e. (A0), which is hyponormal by Lemma 2(ii). Thus

[Â0

∗

, Â0] =

(
0 0
0 D0|H1

+ [A∗
1, A1]

)
≥ 0.

and hence D1 ≥ 0. Also by [CuL2, Lemma 2.2], A0(KerD0) ⊆ KerD0 whenever A0

is 2-hyponormal. Thus (In), (IIn), and (IIIn) hold for n = 0, 1. Assume now that if
A0 is k-hyponormal then (In),(IIn) and (IIIn) hold for all 0 ≤ n ≤ k − 1. Suppose
A0 is (k + 1)-hyponormal. We must show that (In),(IIn) and (IIIn) hold for n = k.
Define

S :=




A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .
. . . D

1
2

k−2

0 Ak−1




:
k−1⊕

i=0

Hi −→
k−1⊕

i=0

Hi.

By our inductive assumption, Dk−1 ≥ 0. Writing T̂ (n) := m.p.n.e.(T̂ (n−1)) when it

exists, we can see by our assumption that S = Â0

(k−1)
. But since by our assump-

tion A0 is (k + 1)-hyponormal it follows from Lemma 2(ii) that S is 2-hyponormal.

Thus by Lemma 2(i), [S∗, S]
1
2S[S∗, S]−

1
2 |Ran ([S∗,S]) is bounded, which says that

D
1
2

k−1Ak−1D
−

1
2

k−1|Ran (Dk−1) is bounded, proving (IIIn) for n = k. Observe that Ak, Hk
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and Dk are well-defined. Writing Ŝ :=

(
S D

1
2
k−1

0 Ak

)
, we can see that Ŝ = m.p.n.e.(S),

which is hyponormal, again by Lemma 2(ii). Thus since [Ŝ∗, Ŝ] =

(
0 0
0 Dk

)
≥ 0, we

have Dk ≥ 0, proving (In) for n = k. On the other hand, since S is 2-hyponormal,

it follows that S(Ker[S∗, S]) ⊆ Ker[S∗, S]. Since [S∗, S] =

(
0 0
0 Dk−1

)
, we have

Ker [S∗, S] =
⊕k−2

i=0 Hi

⊕
Ker (Dk−1). Thus, since




A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .
. . . D

1
2

k−2

0 Ak−1







H0

H1
...

Hk−2

Ker (Dk−1)




⊆




H0

H1
...

Hk−2

Ker (Dk−1)



,

we must have that Ak−1(Ker (Dk−1)) ⊆ Ker (Dk−1), proving (IIn) for n = k. This
proves the necessity condition.

Toward sufficiency, suppose that conditions (In), (IIn) and (IIIn) hold for all n
such that 0 ≤ n ≤ k − 1. Define

Sn :=




A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .
. . . D

1
2
n−2

0 An−1




(1 ≤ n ≤ k − 1).

Then Sk−2 is weakly subnormal and Sk−1 = m.p.n.e. (Sk−2). Since by assumption

[S∗

k−1, Sk−1] =
(

0 0

0 Dk−1

)
≥ 0, it follows from Lemma 2(ii) that Sk−2 is 2-hyponormal.

Note that Sn = m.p.n.e. (Sn−1) for n = 1, · · · , k − 1 (S0 := A0). Thus, again by
Lemma 2(ii), Sk−3 is 3-hyponormal. Now repeating this argument, we can conclude
that S0 ≡ A0 is k-hyponormal. This completes the proof. �

We now present a strengthened version of Spitkovskii’s subnormality criterion.

Corollary 4. An operator A0 ∈ L(H0) is subnormal if and only if the conditions
(In), (IIn), and (IIIn) hold for all n ≥ 0. In this case, the minimal normal extension
N of A0 is given by

N =




A0 D
1
2
0 0

A1 D
1
2
1

A2
. . .

0
. . .




:
∞⊕

i=0

Hi →
∞⊕

i=0

Hi.

Proof. The first assertion follows from Theorem 3 together with the fact that A0

is subnormal if and only if A0 is k-hyponormal for all k ≥ 1. Toward the second
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assertion, observe by a straightforward calculation that N ∗N = NN∗, i.e., N is a
(possibly unbounded) normal operator. For the boundedness of N , observe that

(i) 


A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .
. . . D

1
2
n−1

0 An




= Â0

(n)
;

(ii) ||A0|| = ||Â0

(n)
|| for all n ≥ 1 (see [CJP, Corollary 3.3]).

Thus we can see that ||An||, ||D
1
2
n−1|| ≤ ||A0|| for all n ≥ 1. Therefore evidently, N is

bounded. For the minimality of N we must show that

(4.1)
∞⊕

i=0

Hi =
∨

{N∗kh0 : h0 ∈ H0, k ≥ 0}.

To show this it will suffice to prove that

(4.2)
n⊕

i=0

Hi =
∨{

(Â0

(n)
)∗kh0 : h0 ∈ H0, k = 0, 1, · · · , n

}
for all n ≥ 1.

We use induction on n. Since Â0 = m.p.n.e. (A0) it follows from (2.1) that

H0 ⊕H1 =
∨

{Â0

∗k
h0 : h0 ∈ H0, k = 0, 1},

which proves (4.2) for n = 1. We assume that (4.2) holds for n = m. Note that
(
Â0

(m+1)
)∗(m+1)

=

(
∗ ∗

D
1
2
mD

1
2
m−1 · · ·D

1
2
0 ∗

)
:

(
H0

⊕m+1
i=1 Hi

)
→
(

H0

⊕m+1
i=1 Hi

)
.

Thus, we have

∨{(
Â0

(m+1)
)∗k

h0 : h0 ∈ H0, k = 0, 1, · · · ,m+ 1

}

=
∨{{(

Â0

(m+1)
)∗k

h0 : h0 ∈ H0, k = 0, 1, · · · ,m
}
,

(
Â0

(m+1)
)∗(m+1)

(H0)

}

=
∨{

m⊕

i=0

Hi,

(
Â0

(m+1)
)∗(m+1)

(H0)

}

=
∨{(

m⊕

i=0

Hi

)⊕
D

1
2
mD

1
2
m−1 · · ·D

1
2
0 (H0)

}
=

m+1⊕

i=0

Hi,

which proves (4.2) for n = m+ 1. This completes the proof. �

It is interesting to note that Corollary 4 is a strengthened version of Spitkovskii’s
criterion in the sense that Spitkovskii’s criterion requires the uniform boundedness of
{An} and {Dn} for subnormality of A0, while our criterion drops this condition. In
fact, the uniform boundedness condition follows automatically from the construction
of the minimal partially normal extension via weak subnormality as we saw in the
proof of Corollary 4. This is an advantage of using weak subnormality.



A NEW CRITERION FOR k-HYPONORMALITY 7

2. Gaps between k-hyponormality and

Subnormality for Toeplitz Operators

Recall that the Hilbert space L2(T) has a canonical orthonormal basis given by the
trigonometric functions en(z) = zn, for all n ∈ Z, and that the Hardy space H2(T)
is the closed linear span of {en : n = 0, 1, · · · }. An element f ∈ L2(T) is said to
be analytic if f ∈ H2(T), and co-analytic if f ∈ L2(T) 	 H2(T). If P denotes the
orthogonal projection from L2(T) to H2(T), then for every ϕ ∈ L∞(T) the operator
Tϕ on H2(T) defined by

Tϕg := P (ϕg) (g ∈ H2(T))

is called the Toeplitz operator with symbol ϕ.
It was recently shown in [CLL] that there exists a gap between 2-hyponormality and

subnormality for Toeplitz operators. Subsequently, C. Gu [Gu] gave a more general
result: there exists a gap between k-hyponormality and (k + 1)-hyponormality for
Toeplitz operators for each k ≥ 1.

Theorem 5 ([Gu, Theorem 3.5]). Let 0 < α < 1 and let ψ be the conformal map of
the unit disk onto the interior of the ellipse with vertices ±(1+α)i and passing through
±(1 − α). Let ϕ = ψ + λψ̄ and let Tϕ be the corresponding Toeplitz operator on H2.

Then Tϕ is k-hyponormal if and only if λ is in the circle
∣∣∣λ− α(1−α2j)

1−α2j+2

∣∣∣ = αj(1−α2)
1−α2j+2

for j = 0, 1, · · · , k − 2 or in the closed disk
∣∣∣λ− α(1−α2(k−1))

1−α2k

∣∣∣ ≤ αk−1(1−α2)
1−α2k .

Gu’s proof of Theorem 5 relies on intricate and explicit computations using a special
case of Smul’jan’s Theorem [Smu]. We here give a simple proof using our criterion
(Theorem 3). This illustrates that our criterion on k-hyponormality is more effective
than the positivity conditions (0.3) or (0.4).

For 0 < α < 1, let T ≡ Wβ be the weighted shift with weight sequence β =
{βn}∞n=0, where (cf. [Cow2, Proposition 9])

(5.1) βn := (
n∑

j=0

α2j)
1
2 for n = 0, 1, · · · .

Let D be the diagonal operator, D = diag (αn), and let Sλ ≡ T +λT ∗ (λ ∈ C). Then
we have that

[T ∗, T ] = D2 = diag (α2n) and [S∗

λ, Sλ] = (1 − |λ|2)[T ∗, T ] = (1− |λ|2)D2.

Define

Al := αl T +
λ

αl
T ∗ (l = 0,±1,±2, · · · ).

It follows that A0 = Sλ and

(5.2) DAl = Al+1D and A∗

lD = DA∗

l+1 (l = 0,±1,±2, · · · ).

The following theorem is the essence of C. Gu’s argument [Gu], which consists of
a complicated computation. By contrast our proof is shorter and more insightful.
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Theorem 6 ([Gu, Theorem 3.3]). Let 0 < α < 1 and T ≡ Wβ be the weighted
shift with weight sequence β = {βn}∞n=0, where

βn = (
n∑

j=0

α2j)
1
2 for n = 0, 1, · · · .

Then A0 = T + λT ∗ is k-hyponormal if and only if |λ| ≤ αk−1 or |λ| = αj for some
j = 0, 1, · · · , k − 2.

Proof. Observe that

[A∗

l , Al] = [αlW ∗ +
λ

αl
W,αlW +

λ

αl
W ∗]

= α2l[W ∗,W ] − |λ|2
α2l

[W ∗,W ] =

(
α2l − |λ|2

α2l

)
D2.(6.1)

Since KerD = {0} and DAn = An+1D, it follows that Hn = H for all n, and if we
use Al for the operator An in Theorem 3. Thus we have, by (6.1) and the definition
of Dj , that

Dj = Dj−1 + [A∗

j , Aj ] = Dj−2 + [A∗

j−1, Aj−1] + [A∗

j , Aj ] = · · ·

= [A∗

0, A0] + [A∗

1, A1] + · · · + [A∗

j , Aj ] = (1 − |λ|2)D2 + · · · +
(
α2j − |λ|2

α2j

)
D2

=

(
1 − α2(j+1)

1 − α2

)(
1 − |λ|2

α2j

)
D2.

By Theorem 3, A0 is k-hyponormal if and only if Dk−1 ≥ 0 or Dj = 0 for some j
such that 0 ≤ j ≤ k− 2 (in this case A0 is subnormal). Note that Dj = 0 if and only
if |λ| = αj . On the other hand, if Dj > 0 for j = 0, 1, · · · , k − 2, then

Dk−1 =

(
1− α2k

1 − α2

)(
1− |λ|2

α2(k−1)

)
D2 ≥ 0

if and only if |λ| ≤ αk−1. Therefore A0 is k-hyponormal if and only if |λ| ≤ αk−1 or
|λ| = αj for j = 0, 1, · · · , k − 2. �

We are ready for:

Proof of Theorem 5. It was shown in [CoL] that Tψ+αψ̄ is unitarily equivalent to

(1−α2)
3
2T , where T is the weighted shift in Theorem 6. Thus Tψ is unitarily equivalent

to (1− α2)
1
2 (T − αT ∗), so Tϕ is unitarily equivalent to

(1− α2)
1
2 (1 − λα)(T +

λ− α

1 − λα
T ∗) (cf. [Cow1, Theorem 2.4]).

Applying Theorem 6 with λ−α
1−λα

in place of λ, we have that for k = 0, 1, 2, · · · ,
∣∣∣∣
λ− α

1 − λα

∣∣∣∣ ≤ αk ⇐⇒ |λ− α|2 ≤ α2k|1 − λα|2

⇐⇒ |λ|2 − α(1 − α2k)

1 − α2k+2
(λ+ λ̄) +

α2 − α2k

1 − α2k+2
≤ 0

⇐⇒
∣∣∣∣λ− α(1 − α2k)

1 − α2k+2

∣∣∣∣ ≤
αk(1− α2)

1 − α2k+2
.

This completes the proof. �



A NEW CRITERION FOR k-HYPONORMALITY 9

3. k-Hyponormality of Weighted Shifts

If A0 is a weighted shift then by Theorem 3 and the remarks following Theorem 1
we know that the following are equivalent:

(i) A0 is k-hyponormal;
(ii) conditions (I), (II), (III) hold for all 0 ≤ n ≤ k − 1.

In [Cu1, Theorem 4], it was shown that the k-hyponormality for a weighted shift
Wα with α ≡ {αn}∞n=0 can be tested by the positivity of a (k + 1) × (k + 1) Hankel
matrix A(n; k) built in terms of the moment γn of Wα, where

β0 := 1, βn+1 := αnβn (n ≥ 0), and γn := β2
n (n ≥ 0)

and

A(n; k) :=




γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k


 (n ≥ 0).

Thus we have:

Corollary 7 (k-Hyponormality of Weighted Shifts). Let A0 be a weighted shift
with weight sequence {αn}∞n=0. Then the following are equivalent:

(i) A0 is k-hyponormal;
(ii) A(n; k) ≥ 0 for all n ≥ 0;
(iii) conditions (I), (II) and (III) hold for all 0 ≤ n ≤ k − 1.

Sometimes the equivalence (i) ⇔ (iii) is more helpful than the equivalence (i) ⇔
(ii). The following example illustrates this fact.

Example 8. For x > 0, let Tx be the weighted shift whose weight sequence is given
by

α0 := x, αn =

√
n+ 1

n+ 2
(n ≥ 1).

Then Tx is k-hyponormal if and only if x ≤ k+1√
2k(k+2)

. In particular, Tx is subnormal

if and only if x ≤
√

1
2
; that is, the Bergman shift is extremal amongst all subnormal

weighted shifts of the form Tx.

Proof. We use the equivalence (i) ⇔ (iii) in Corollary 7. Write a
(0)
j := αj (j ≥ 0).

First, observe that

Tx is k-hyponormal ⇐⇒ (b
(k)
j )2 := (a

(k−1)
j )2−(a

(k−1)
j−1 )2 +(b

(k−1)
j )2 ≥ 0 for all j ≥ 0.

Since Tx has, beginning with n = 1, a Bergman tail, it follows that

Tx is k-hyponormal ⇐⇒ (b
(k)
k )2 := (a

(k−1)
k )2 − (a

(k−1)
k−1 )2 + (b

(k−1)
k )2 ≥ 0.

We now claim that

(8.1) (b
(k)
k )2 =

k

2(2k+ 1)
· (k + 1)2 − 2k(k+ 2)x2

k2 − 2(k − 1)(k+ 1)x2
.
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Indeed, using the fact that for j ≥ k + 1

(8.2) (b
(k)
j )2 =

k2

(j + k)(j + k + 1)
and (a

(k)
j )2 =

(j + 1)2

(j + k + 1)(j + k + 2)
,

induction on k proves (9.1). Therefore Tx is k-hyponormal ⇐⇒ x ≤ k+1√
2k(k+2)

. �
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