
Clustering for Bioinformatics via Matrix Optimization∗

Suely Oliveira
Department of Computer Science

University of Iowa
Iowa City, Iowa 52242, USA
oliveira@cs.uiowa.edu

David E. Stewart
Department of Mathematics

University of Iowa
Iowa City, Iowa 52242, USA

dstewart@math.uiowa.edu

ABSTRACT
A new matrix-based clustering method is presented that is able to
handle medium to large data sets that is related to semi-definite
programming techniques. The method proposed involves solving
a non-convex optimization problem. The problem of local minima
that are far from global minima, however, does not appear to be a
great difficulty. The method was applied to a well known biological
clustering problem, and appears to produce consistent clusterings
that are close to the original claimed clustering.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Bioinformatics

Keywords
clustering, optimization, semi-definite programming

1. INTRODUCTION
Clustering and classifying data items are common tasks in mining
data sets [4, 12, 14, 1], both for text data mining and mining bi-
ological data sets. Clustering tasks are typically separated from
classification tasks in that classification starts with a known collec-
tion of groups, and the task is to assign each data item into a group.
This is often called “supervised clustering” because the group or
cluster of certain data items is pre-specified. In this way, the as-
signment of data items to clusters is “supervised” by the user of the
classification method. Clustering on the other hand does not have a
pre-specified collection of groups or clusters with certain data items
already assigned to a cluster. Instead, the task is to identify what
groups should exist, and even the number of groups.

With this understanding, clustering is much more appropriate for
exploratory data analysis, while classification is more appropriate
where there is already considerable information available about the
structure of the data. In truth, there is a spectrum of tasks between
these two extremes depending on how many of the data items in
the data set are pre-assigned. If most of the data items are pre-
assigned to certain clusters, then determining the assignment of the
∗

remaining data items can be done by looking at the “neighboring”
data items. This is the basis of the k-nearest neighbors (kNN) algo-
rithm [6, 21]. However, if few of the data items are pre-assigned to
clusters, then many data items will probably be far from these few
exemplars, and the boundaries of the clusters must be determined
from the structure of the collection of unassigned data items. This
makes the classification task look more like an unsupervised clus-
tering problem.

In this paper we focus on the unsupervised clustering problem. The
methods described in this paper can be extended to the supervised
classification problem; it is expected that these algorithms will per-
form well for classification problems where only a few data items
are pre-assigned to a cluster.

The starting point for a clustering problem is typically a set of
data points (or items) xi ∈ Rm, i = 1, 2, . . . , N. In certain prob-
lems we have the issue of missing data where each value of the
data point may be a known number, or listed as missing. That is
xi ∈ (R∪{⊥})m where “⊥” indicates a missing value. In this pa-
per we will concentrate mainly on data sets with complete data. An
alternative starting point for clustering is a collection of distance or
dissimilarity values di j where both i and j range over the data items.
Typically di j = φ

(∥∥xi−x j
∥∥) for a suitable monotonic function φ ;

the most common choices are φ(s) = s and φ(s) = s2.

However the data is provided, clustering with an unspecified num-
ber of clusters is an inherently ill-defined task. Just as the classifi-
cation of living things can be broken into a finer or coarser groups
according to the level of refinement and detail desired, any cluster
can be broken down into smaller parts. In doing so small differ-
ences can be used to do this, even though they are likely to be
merely “noise”. The question is a statistical one and can be ad-
dressed, at least partially, in terms of information theory. These
issues will not be addressed in detail in this paper.

1.1 Clustering via optimization
A common approach to clustering is to represent the clustering
problem as an optimization problem. This approach goes back to
Rao [17]. The advantages of these methods is that they are fairly
simple to understand: one formulates an objective function which
represents the “quality” of the clustering, and then looks for algo-
rithms to find the minimizer of this objective function. The main
difficulty with this approach to clustering is that the problems are
discrete optimization problems and are typically combinatorially
hard [7].

For example, the k-means clustering approach for K clusters is to



minimize
N

∑
i=1

∥∥∥xi− ca(i)

∥∥∥2

over all all “centers” c j ∈ Rm, j = 1, 2, . . . , K, and assignments
a : {1,2, . . . ,N} → {1,2, . . . ,K}. The standard k-means algorithm
(also known as Lloyd’s algorithm [10]) is an iteration that first up-
dates the centers c j to be the mean of all xi where a(i) = j, and
then updates the assignment so that a(i) = j where c j is the closest
center to x j. This algorithm amounts to an iteration where the mini-
mizing centers c j and assignments a : {1,2, . . . ,N}→{1,2, . . . ,K}
are a fixed-point of the iteration. Alternative methods that have
been explored include local, stochastic and evolutionary search al-
gorithms such as assignment swapping, simulated annealing, ge-
netic algorithms, and related heuristics [8, 25].

1.2 Semi-definite programs
Recently there have been a number of developments in the area of
optimization that have the potential to revolutionize the approach to
solving the combinatorially hard optimization problems that arise
in clustering problems. These have centered around the use of ma-
trices as the primary variables in certain structured optimization
problems. The best known of these problems are semi-definite pro-
gramming (SDP) problems [19, 23]. These problems have the form

min
X

C •X subject to (1.1)

Ai •X = bi, i = 1, 2, . . . , m, (1.2)
X � 0, (1.3)

where the minimum is taken over all X that are symmetric n× n
matrices. The expression “A•B” is the Frobenius inner product of
the matrices A and B:

A•B = trace(AT B) = ∑
i, j

ai jbi j.

In general, the inequality “A� B” means “zT Az≥ zT Bz for all z”.
Equivalently, “A� B” means that “A−B is positive semi-definite”.

Thus (1.1–1.3) is the problem of minimizing a linear function of X
subject to linear constraints and that X is a positive semi-definite
matrix; that is, zT Xz ≥ 0 for all z. Also, the set {X | X � 0} is a
convex set: if A, B� 0 then for 0≤ θ ≤ 1, θA+(1−θ)B� 0. Thus
(1.1–1.3) is a convex optimization problem; that is, the objective
function is convex, and the set of points satisfying the constraints
is also convex.

Convex optimization problems are easier to work with since every
local minimizer (or indeed, critical point) is a global minimizer.
In particular, the problem of many irrelevant local minima does
not occur with convex optimization problems. Semi-definite pro-
grams can be solved in essentially polynomial time by practical
algorithms [2, 9, 19]. Semi-definite programs also provide a means
of approximating hard combinatorial problems [13, 15, 22, 23, 24],
including clustering problems ([16] for k-means).

2. AN OPTIMIZATION FORMULATION
An optimization formulation for clustering first proposed by Rao
[17] is a matrix-based approach to clustering. The basic data for
this approach is not the data set xi, i = 1, 2, . . . , N, but rather dis-
tance or dissimilarity data di j representing the distance between xi
and x j. In Rao’s formulation of the clustering problem the main
variable is a N×K matrix Z; zil = 1 means that data item i belongs

to cluster l, and zil = 0 otherwise. The task is to find the minimizer
of

N

∑
i, j=1

di j

K

∑
l=1

zilz jl subject to (2.1)

K

∑
l=1

zil = 1 for all i, (2.2)

N

∑
i=1

zil ≥ 1 for all l, (2.3)

zil ∈ {0, 1} for all i, l. (2.4)

Note that ∑
K
l=1 zilz jl = 1 if data items i and j belong to the same

cluster, and zero otherwise. The constraint ∑
K
l=1 zil = 1 means

that data item i is assigned to exactly one cluster. The constraint
∑

N
i=1 zil ≥ 1 says that each cluster has at least one data item. As

given, this is a binary quadratic optimization problem. We assume
that dii = 0; that is, the distance or dissimilarity between any object
and itself is zero.

2.1 Relaxations and simplifications
Solving (2.1–2.4) directly is likely to be difficult. Instead we relax
some of the constraints to obtain a simpler and easier to solve prob-
lem. First we remove the constraint ∑

N
i=1 zil ≥ 1 that each cluster

has at least one data item. This allows clusters with no elements.
Essentially this allows any number of clusters up to K. If K ≥ N,
then the objective function can be set to zero by having N clusters
each containing exactly one data item.

The most important constraints are that zil ∈ {0, 1} for all i, l, and
that ∑

K
l=1 zil = 1 for all i. If we convexify these constraints we get

zil ≥ 0 for all i, l and ∑
K
l=1 zil = 1 for all i. This is equivalent to

requiring that each row of Z belongs to a unit simplex.

The objective function can be conveniently written in terms of stan-
dard matrix operations: ∑

K
l=1 zilz jl =

(
ZZT )

i j, so the objective func-
tion is

N

∑
i, j=1

di j

K

∑
l=1

zilz jl = D•
(

ZZT
)

= trace
(

ZT DZ
)

.

This not a convex function unless D is a positive semi-definite ma-
trix. In clustering problems, since dii = 0 and di j > 0 for i 6= j, then
D is not a positive semi-definite matrix.

These relaxations of the constraints lead to the following optimiza-
tion problem:

min
Z

D•
(

ZZT
)

subject to (2.5)

Ze(K) = e(N), (2.6)
Z ≥ 0 (componentwise), (2.7)

where e(m) is the m-dimensional vector of ones. Since we obtain
this optimization problem by relaxing (or removing) constaints of
the original problem (2.1–2.4), we say that (2.5–2.7) is a relaxation
of (2.1–2.4).

The optimization problem (2.5–2.7) is still not a convex optimiza-
tion problem since Z 7→ D •

(
ZZT ) is not a convex function. We

can make the objective function convex by writing it as D•Y with



Y = ZZT , since linear functions are convex. The problem with this
is that the constraints Y = ZZT are not linear, so that again the prob-
lem is not convex. However, if we carry out a further relaxation
of “Y = ZZT ”, we can obtain a convex relaxation: “Y � ZZT ” is
equivalent to the condition that[

Y Z
ZT I

]
� 0. (2.8)

Since the set of positive semi-definite matrices is a convex set, the
set of pairs (Y,Z) satisfying (2.8) is a convex set. Combining the
relaxations gives the following SDP:

min
Z,Y

D•Y subject to (2.9)[
Y Z
ZT I

]
� 0, (2.10)

Ze(K) = e(N), (2.11)
Z ≥ 0. (2.12)

It is also possible to add the constraint

Y ≥ 0 (componentwise). (2.13)

Since the entries of D are distances, D≥ 0 componentwise; (2.13)
then ensures that D •Y ≥ 0. A relaxation could also include the
constraint Y ≥ ZZT componentwise, but this is not a convex con-
straint.

2.2 Symmetry properties
Both the original problem (2.1–2.4) and the relaxation (2.9–2.13)
have a symmetry property: if P is a K×K permutation matrix and
Z′ = Z P, then

D•
(

Z′Z′T
)

= D•
(

ZPPT ZT
)

= D•
(

ZZT
)

;

Y and Z′ satisfies all the constraints if and only if Y and Z satisfy
all the constraints: Z ≥ 0 componentwise if and only if Z P ≥ 0;
Z′ e(K) = Z Pe(K) = Z e(K) = e(N);[

Y Z′

Z′T I

]
=
[

I
PT

][
Y Z
ZT I

][
I

P

]
� 0.

Intuitively, this amounts to saying that permuting the cluster num-
bers does not change the problem. For supervised classification
problems, this is no longer true, since some data items are pre-
assigned a cluster or group number. However, if the number of
pre-assigned data items is small, it would be approximately true
even then.

Because the convexified problem (2.9–2.13) has this property, the
solution set also has this symmetry. For convex optimization prob-
lems, the solution set is a convex set; for strictly convex optimiza-
tion problems (where the objective function is strictly convex, satis-
fying the strict inequality φ(θx+(1−θ)y)< θφ(x)+(1−θ)φ(y))
whenever x 6= y and 0 < θ < 1) the solution is unique. Strictly con-
vex functions include Z 7→ Z •Z, and multiplying a strictly convex
function by a positive number gives a strictly convex function, so
minimizing D •Y + ε (Z •Z +Y •Y ) over Z and Y subject to the
constraints (2.10–2.13) for any ε > 0 has a unique solution. As
(ZP) • (ZP) = trace

(
PT ZT ZP

)
= trace

(
ZT Z

)
= Z • Z is also in-

variant under the symmetry, the unique solution of the strictly con-
vex approximation also has this symmetry. Interior point methods
for convex optimization problems typically converge to the cen-
troid of the solution set, which for (2.9–2.13) must also have this
symmetry.

Thus any reasonable method for the convex relaxation (2.9–2.13)
will converge to a unique point which satisfies the symmetry Z =
Z P. Unfortunately, this means that each row zT of Z satisfies
the symmetry zT = zT P. Since P can be any permutation ma-
trix, this indicates that each entry of zT must be the same. Thus
zT = e(K)T /K. Since this is true for each row of Z we have the opti-
mum Z = e(N)e(K)T /K. Since Z was meant to be the main decision
variable in this formulation, it is disappointing that the optimal Z
gives no information about the optimal clustering.

2.3 A non-convex relaxation
Instead of the fully convex relaxation, we consider a partial relax-
ation (2.5–2.7). This partial relaxation is a non-convex optimiza-
tion problem, and so can have multiple local minima. This partial
relaxation is also invariant under the transformation Z 7→ Z P where
P is a permutation matrix. Thus we expect at least K! local minima,
each local minimizer being a relabeling of the others. There may
be other local minima, but hopefully not many.

Another non-convex but partially convexified approximate problem
can be obtained by replacing the objective in (2.5) by

min
Z

D•
(

ZZT
)

+α ‖Z‖nuc (2.14)

where

‖Z‖nuc = max
U,V orthogonal

UT ZV

=
min(K,N)

∑
i=1

σi(Z),

with σi(A) the ith singular value of A. The norm ‖Z‖nuc is called
the nuclear norm of Z. The addition of α ‖Z‖nuc to the objective
function makes the objective “more convex”, but not necessarily
convex. The use of the nuclear norm has particular relevance as
it is closely associated with minimizing the rank of Z [18], which
corresponds to the number of clusters. As α ≥ 0 increases from
zero, the number of clusters represented by Z should decrease. If
α → ∞, then eventually there is only one cluster.

3. IMPLEMENTATION AND
COMPUTATIONAL RESULTS

3.1 Implementation
The optimization task was implemented by a gradient-projection
method. For a step length s, steps are taken in the directions of
the negative gradients of Z 7→ D •

(
ZZT ) and Z 7→ α ‖Z‖nuc, and

then the result is projected onto the nearest point in the feasible set:{
Z | Z ≥ 0 and Ze(K) = e(N)

}
. The distance measure used was the

Frobenius norm ‖Z‖F =
√

Z •Z =
[
∑i, j z2

i j

]1/2
. The gradient direc-

tion of the nuclear norm Z 7→ ‖Z‖nuc can be computed by means
of a reduced singular value decomposition (SVD). If Z = UΣV T is
the reduced SVD (U is N×K and V is K×K, both with orthonor-
mal colums, and Σ = diag(σ1, σ2, . . . , σK)), then the gradient step
is δZ =−sα UV T , which is equivalent to setting σi← σi−α s. In
order to avoid negative singular values, negative singular values are
replaced by zero: σi←max(σi−α s, 0), for i = 1, 2, . . . , K.

The projection onto the feasible set amounts to projecting each row
of Z onto the unit simplex

{
x | x≥ 0 and eT x = 1

}
. This can be

done using the algorithm in [11].



These gradient and projection steps are repeated for a user-specified
number of steps.

To compare two clusterings with the same number of clusters, we
need to identify an optimal matching between the clusters of each
clustering. So for clusterings C = {C1, C2, . . . , CK} and
D = {D1, D2, . . . , DK} where the clusters Ci and D j are subsets of
the data items {1, 2, . . . , N}, we need to find a permuation π so that
cluster Ci is matched to cluster D j with j = π(i). To do this in an
optimal way, we first create a matrix B =

[
bi j
]

where bi j is the num-
ber of data items in Ci∩D j. We then want to find a permutation ma-
trix P that maximizes trace(BP), which is the sum of the diagonal
entries of BP. This task is equivalent to a linear programming prob-
lem [3] because the objective function is linear and the convex hull
of N×N permutation matrices is the set of N×N doubly stochastic
matrices

{
P ∈ RN×N | P≥ 0, Pe(N) = e(N), PT e(N) = e(N)

}
. Thus

this task can be accomplished by a simplex-type algorithm which
swaps pairs of columns.

The method was implemented using MATLAB R© 7.6.1.

3.2 Computational results
Computational results were obtained for a rat central nervous sys-
tem study (CNS-Rat) [20].

The algorithm was run with on the CNS-Rat data set with di j =∥∥vi−v j
∥∥2

2 using the normalized values (maximum levels of gene
expression set to one for each gene), and α = 10, and a step size
s = 5× 10−3. Significantly larger values of s, such as s = 10−2,
resulted in the objective function increasing rather than decreas-
ing. Several initial values of Z were generated, and 1000 gradi-
ent projection steps were carried out. The computed Z were then
“quantized” by setting ẑi j = 1 if zi j = maxk zik, and ẑik = 0 if k 6= j,
for each i. The clusters so computed were then compared with
the published clusters given in [20]. These published clusters were
obtained using the Fitch–Margoliash method [5] for creating phy-
logenetic trees using a least-squares technique. Twenty runs were
carried out for this data set with different randomized starting val-
ues for Z with the entries being pseudorandom numbers in the range
[0,1]. Each row of these matrices was projected onto the unit sim-
plex to ensure feasibility. Objective function values were recorded
for the computed Z matrices, and for the “quantized” Z matrices.

Each run took about 30 to 40 seconds.

3.2.1 Multiple local minima
From the diagnostic output it appeared that the gradient projection
method had approached a local minimum or had stagnated in each
run. The computed matrices Z typically had all but about six to
twelve entries that were not zero or one; some of these were clearly
close to zero or one. A serious concern about this algorithm is that
the computed matrices Z converge to points that are local minima
but far from a global minimum. The runs show evidence that there
are significant local minima that are not global minima, as can be
seen in Table 1.

In spite of the fact of multiple local minima, only a few runs are
required to obtain consistent values. The computed Z giving the
best computed objective value is denoted Z∗. The quantized version
of Z∗ is Ẑ∗. As we might hope, the objective function values for the
quantized matrices Ẑ∗ is only slightly above the computed Z∗.

Run φ(Z∗) φ(Ẑ∗) Run φ(Z∗) φ(Ẑ∗)
1 1531.84 1532.57 11 1540.73 1542.23
2 1540.65 1542.17 12 1531.84 1532.57
3 1534.43 1535.63 13 1534.49 1536.11
4 1566.70 1567.32 14 1534.64 1534.81
5 1532.14 1532.86 15 1569.72 1572.10
6 1531.84 1532.57 16 1531.84 1532.57
7 1532.14 1532.86 17 1531.84 1532.57
8 1533.89 1535.92 18 1532.14 1532.86
9 1533.26 1533.52 19 1532.14 1532.86
10 1532.14 1532.86 20 1531.84 1532.57

Table 1: Objective function values φ(Z) := trace(ZTWZ) +
α ‖Z‖nuc for runs with different starting points for computed
matrices Z∗ and the quantized matrices Ẑ∗. Minimum values
computed are in bold; 2nd smallest are in italics.

Run best published Run best published
computed computed

1 0 27 11 6 29
2 7 28 12 0 27
3 4 29 13 3 27
4 13 28 14 8 32
5 2 28 15 19 25
6 0 27 16 0 27
7 2 28 17 0 27
8 1 27 18 2 28
9 3 29 19 2 28

10 2 28 20 0 27

Table 2: Mismatches between computed clusterings and the
best computed clustering and the published clustering.

3.2.2 Comparison with the clusterings obtained and
the published clustering

The objective function values given in Table 1 are well below the
objective function value for the published clustering: φ(Zpub) ≈
2130.82. Even if we ignore the nuclear norm part of the objective
function we see that trace(ZT

pubWZpub) ≈ 1876.76, which is still

much higher than the values computed for φ(Ẑ∗) which includes
this term.

The computed quantized matrices tend to be very consistent in
terms of the clusterings they produce, as can be seen in the mis-
matches between the different computed clusterings (being the num-
ber of incorrectly clustered data items) as shown in Table 2.

The disagreements between the computed and “exact” clusterings
appear to be fairly consistent, at least in terms of numbers of mis-
matches. Another claimed clustering provided with the data had
62 mismatches with the “exact” clustering; this clustering had 60
mismatches with the best computed clustering.

4. CONCLUSIONS
This paper presents a matrix-based optimization method for clus-
tering data that is suitable for data sets of biological interest. These
methods are practical and appears capable of accurately clustering
data sets. A number of refinements are possible to improve compu-
tation times. The step length can be adjusted during the computa-
tion, which should aid convergence, and the code can be modified



to improve the execution time. Implementation in compiled rather
than interpreted languages can also dramatically reduce the execu-
tion time.

5. REFERENCES
[1] Generic summarization and keyphrase extraction using

mutual reinforcement principle and sentence clustering. In
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 113–120, 2002.

[2] Steven J. Benson, Yinyu Ye, and Xiong Zhang. Solving
large-scale sparse semidefinite programs for combinatorial
optimization. SIAM J. Optim., 10(2):443–461, 2000.

[3] G. B. Dantzig. Linear Programming and Extensions.
Princetn Uni. Press, Princeton, NJ, 1963.

[4] V. Faber. Clustering and the continuous k-means algorithm.
Technical Report LA_Science_22n15, Los Alamos National
Laboratory, November 1994.

[5] Walter M. Fitch and Emanuel Margoliash. Construction of
phylogenetic trees. Science, 155(3760):279–284, 1967.

[6] Anil K. Ghosh. On optimum choice of k in nearest neighbor
classification. Comput. Statist. Data Anal.,
50(11):3113–3123, 2006.

[7] Pierre Hansen and Brigitte Jaumard. Cluster analysis and
mathematical programming. Math. Programming, 79(1-3,
Ser. B):191–215, 1997. Lectures on mathematical
programming (ISMP97) (Lausanne, 1997).

[8] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu,
Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. A
local search approximation algorithm for k-means clustering.
Comput. Geom., 28(2-3):89–112, 2004.

[9] Masakazu Kojima, Susumu Shindoh, and Shinji Hara.
Interior-point methods for the monotone semidefinite linear
complementarity problem in symmetric matrices. SIAM J.
Optim., 7(1):86–125, 1997.

[10] Stuart P. Lloyd. Least squares quantization in PCM. IEEE
Trans. Inform. Theory, 28(2):129–137, 1982.

[11] C. Michelot. A finite algorithm for finding the projection of a
point onto the canonical simplex of Rn. J. Optim. Theory
Appl., 50(1):195–200, 1986.

[12] S. T. Milagre, C. D. Maciel, A. A. Shinoda, M. Hungria, and
J. R. B. Almeida. Multidimensional cluster stability analysis
from a Brazilian bradyrhizobium sp. RFLP/PCR data set. J.
Comput. Appl. Math., 227(2):308–319, 2009.

[13] S. Oliveira, T. Soma, and D. Stewart. Semidefinite
programming for graph partitioning with preference in data
distribution. In 5th International Conference High
Performance Computing for Computational Science -
VECPAR 2002, volume 2565 of Lecture Notes in Computer
Science, pages 307–321, Heidelberg, 2003. Springer.

[14] James Joseph Palmersheim. Nearest Neighbor Classification
Rules: Small Sample Performance and Comparison with the
Linear Discriminant Function and the Optimum Rule.
ProQuest LLC, Ann Arbor, MI, 1970. Thesis
(Ph.D.)–University of California, Los Angeles.

[15] Javier Peña, Juan Vera, and Luis F. Zuluaga. Computing the
stability number of a graph via linear and semidefinite
programming. SIAM J. Optim., 18(1):87–105 (electronic),
2007.

[16] Jiming Peng and Yu Wei. Approximating K-means-type
clustering via semidefinite programming. SIAM J. Optim.,
18(1):186–205 (electronic), 2007.

[17] M. R. Rao. Cluster analysis and mathematical programming.
Journal of the American Statistical Association,
66(335):622–626, 1971.

[18] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo.
Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev.,
52(3):471–501, 2010.

[19] L. Vandenberghe and S. Boyd. Semidefinite programming.
SIAM Review, 38(1):49–95, 1996.

[20] XL Wen, S Fuhrman, GS Michaels, DB Carr, S Smith,
JL Barker, and R Somogyi. Large-scale temporal gene
expression mapping of central nervous system development.
Proceedings of the National Academy of Sciences of the
United States of America, 95(1):334–339, JAN 6 1998.

[21] Gordon Wilfong. Nearest neighbor problems. Internat. J.
Comput. Geom. Appl., 2(4):383–416, 1992.

[22] Henry Wolkowicz. Semidefinite and Lagrangian relaxations
for hard combinatorial problems. In System modelling and
optimization (Cambridge, 1999), pages 269–309. Kluwer
Acad. Publ., Boston, MA, 2000.

[23] Henry Wolkowicz and Miguel F. Anjos. Semidefinite
programming for discrete optimization and matrix
completion problems. Discrete Appl. Math.,
123(1-3):513–577, 2002. Workshop on Discrete
Optimization, DO’99 (Piscataway, NJ).

[24] Henry Wolkowicz and Qing Zhao. Semidefinite
programming relaxations for the graph partitioning problem.
Discrete Appl. Math., 96/97:461–479, 1999. The satisfiability
problem (Certosa di Pontignano, 1996); Boolean functions.

[25] Xiang Yin and Alex Tay Leng Phuan. Genetic algorithm
based K-means fast learning artificial neural network. In AI
2004: Advances in artificial intelligence, volume 3339 of
Lecture Notes in Comput. Sci., pages 828–839. Springer,
Berlin, 2004.


