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One of the most relevant and widely studied structural properties of networks is their community 
structure. Detecting communities is of great importance in social networks where systems are often 
represented as graphs. With the advent of web-based social networks like Twitter, Facebook and LinkedIn. 
community detection became even more difficult due to the massive network size, which can reach up to 
hundreds of millions of vertices and edges. This large graph structured data cannot be processed without 
using distributed algorithms due to memory constraints of one machine and also the need to achieve high 
performance. In this paper, we present a novel hybrid (shared + distributed memory) parallel algorithm 
to efficiently detect high quality communities in massive social networks. For our simulations, we use 
synthetic graphs ranging from 100K to 16M vertices to show the scalability and quality performance 
of our algorithm. We also use two massive real world networks: (a) section of Twitter-2010 network 
having ≈ 41M vertices and ≈ 1.4B edges (b) UK-2007 (.uk web domain) having ≈ 105M vertices and 
≈ 3.3B edges. Simulation results on MPI setup with 8 compute nodes having 16 cores each show that, 
upto ≈ 6X speedup is achieved for synthetic graphs in detecting communities without compromising the 
quality of the results.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

One of the most relevant and widely studied structural prop-
erties of networks is their community structure. A community in 
a network is a set of nodes that are densely connected with each 
other and sparsely connected to the other nodes in the network. 
Community detection in a network extracts the structural proper-
ties of the network [1] and the various interactions in the network 
[2]. Detecting communities in social networks is of great impor-
tance because social networks consists of patterns which can be 
viewed as independent components, with each component having 
distinct features and can be detected based on network struc-
ture. Some major applications of community detection in social 
networks are a follows: (i) help to target users for marketing pur-
poses, (ii) provide recommendations to users to connect with other 
users, join communities or forums, (iii) assist in market basket 
analysis to help group products likely to be sold together, (iv) help 
to generate user targeted advertisements.
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The increasing size of social networks like Facebook, Twitter, 
LinkedIn, etc. has made community detection more difficult, with 
data size which can reach up to billions of vertices and edges. For 
example, Facebook has ≈ 1.1B users and LinkedIn has ≈ 500M
users. As a result the ability to process this large graph-structured 
data in memory of a single machine is infeasible due to time and 
memory constraints. Most of the research in community detec-
tion has been focused on shared memory based algorithms on 
SMP machines and a thorough review of the same is presented 
in [3]. Where as some fast scalable community detection algo-
rithms [4], [5], [6] which have been developed can only tackle 
network sizes which can be stored in the RAM of one machine. 
All of these algorithms adopt sequential, parallel shared-memory 
and non-distributed architectures. Processing networks with hun-
dreds of millions of vertices and billions of edges require several 
hundred gigabytes of RAM. To address this challenge, parallel dis-
tributed community detection algorithms are necessary. To avoid 
any confusion, we use the term cluster only for computer cluster; a part 
of the computer cluster will be denoted as machine or node, the objects 
in a network will be denoted as vertex and groups of vertices will be de-
noted as communities.

In this paper, we modify and extend our multi-level multi-core 
(MCML), shared-memory based community detection algorithm [5]
also explained in Section 3, to distributed memory parallel frame-
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work using Message Passing Interface (MPI). This hybrid (shared 
+ distributed memory) algorithm can process massive social net-
works to extract high quality communities efficiently. The main 
challenges we encountered were (1) the initial partitioning of the 
network and assigning each of these parts to different nodes in the 
parallel computers in such a way that, when community detection 
algorithm is applied on each individual node, it should not incur 
high communication overhead, (2) each node in the parallel com-
puters should intelligently reduce the size of the network partition 
assigned to it such that, after merging, the entire network should 
fit in memory of one machine and quality of the communities de-
tected is not compromised.

In this work, we integrate an existing network partitioning al-
gorithm in our hybrid algorithm’s flow so that, it will partition the 
original network into chunks to be distributed across the network 
of parallel machines, incurring minimum communication overhead 
between them. In order to minimize the probability of distributing 
vertices belonging to the same community across different ma-
chines, we use a network partitioning algorithm which tries to 
minimize the inter-partition edges [7]. After network partitioning 
and distribution, we intelligently reduce the size of every network 
partition on each machine in such a way that, when merging all 
the partitions back in the master node, the entire network can fit 
into the memory of a single master node to which we apply our 
MCML algorithm to extract high quality communities. All our sim-
ulations are done using MPI and OpenMP implementation on the 
HPC Neon cluster at the University of Iowa. The main contribution 
of this paper are as follows:

1. We develop a hybrid (shared + distributed memory) com-
munity detection algorithm, a modification and extension of 
our shared memory based MCML algorithm [5], which utilizes 
multiple cores of multiple machines and scales to hundreds of 
millions of vertices and edges without compromising quality 
of the detected communities.

2. We showcase our algorithms’ efficiency by using synthetic 
graphs ranging from 100K up to 16M vertices and also on real 
world networks like (a) section of Twitter-2010 network hav-
ing ≈ 41M vertices and ≈ 1.4B edges (b) UK-2007-05 (.uk web 
domain) having ≈ 1.2B vertices and ≈ 3.2B edges.

The structure of the remaining paper is as follows: In Section 2, 
we present an overview of related work in graph partitioning, 
community detection and parallel community detection. In Sec-
tion 3, we describe the proposed core MCML [5] and our hybrid 
algorithm for large scale community detection. Following this, in 
Section 4, we discuss and present our experimental environment, 
datasets used and results, followed by our conclusion in Section 5.

2. Related work

Network partitioning: It aims to divide the network into k-
parts in such a way that edge cuts are minimized and each par-
tition roughly has same number of vertices. Most of the network 
partitioning problems are NP-Hard [3]. One group of techniques in 
graph partitioning relies on optimizing an objective function which 
is defined as a ratio of number of intra-partition edges to number 
of inter-partition edges. Another group of partitioning techniques 
uses multi-level partitioner [7], [8] whose implementation is in 
METIS and PMETIS library respectively. There exists other partition-
ing algorithms which scales better than METIS [9], [10] but incur 
very high communication overhead leading to large runtimes. We 
plan to utilize parallel METIS to perform our initial graph parti-
tioning, due to its low communication overhead, ease of use and 
wide availability. The parallel implementation was done using GNU 
C++ and MPI.
Community Detection: This is an interesting problem in the 
domain of graph partitioning. Interest in community detection prob-
lem started with the new partitioning approach by [1], [11]; where 
the edges in the network with the maximum betweenness are 
removed iteratively, thus splitting the network hierarchically into 
communities. Similar algorithms were proposed later on, where at-
tributes like ‘local quantity’ i.e. number of loops of a fixed length 
containing the given edge [12] and a complex notion of ‘informa-
tion centrality’ [13], are used to decide removal of edges. Hierar-
chical clustering is another major technique used for community 
detection, where based on the similarity between the nodes, an 
agglomerative technique iteratively groups vertices into commu-
nities. There are different existing methods to choose the com-
munities to be merged at each iteration. Algorithms described in 
[14] and [15] start with all the nodes as individual communities 
and iteratively merge them to optimize the ‘modularity’ function. 
Many other algorithms in the literature of community detection, 
like ones proposed by [16] and [17] rely heavily on modularity 
maximization. Label propagation is another well known technique 
used for community detection, which finds communities by iter-
atively spreading labels across the network. Raghavan et al. [6]
proposed an algorithm, where each node picks the label in its 
1-neighborhood that has the maximum frequency. These labels 
are permitted to spread synchronously and asynchronously across 
the network until near stability is attained in the network. This 
method has some limitations, where large communities dominate 
the smaller ones in the network, this phenomenon is called ‘epi-
demic spread’. This limitation is tackled in [18]. Liu et al. [19] used 
affinity propagation, which is a similar approach to label propaga-
tion, for finding communities/clusters in images. Some community 
detection algorithms use random walks as a tool. The idea is that, 
due to the higher density of internal edges, the probability of a 
random walk staying inside the community is greater than going 
outside. This approach is used in Walktrap [20] and Infomap [21]
algorithms. A thorough review on community detection algorithms 
for networks is given in [3]. A study presenting evolution and 
management of interest-based communities formed by humans is 
shown in [22]. Another interesting application of community de-
tection is shown in [23], where due to the emergence of smart 
grids which enable bidirectional energy, finding economically mo-
tivated Prosumers-Community Groups (PCG) is important.

Parallel Community Detection: Community detection algo-
rithms is a well studied research area, but achieving strong scal-
ability along with detecting high quality communities is an open 
problem. Most of the past research on community detection has 
focused on single threaded algorithms. There is a rich and vast 
literature of such algorithms and the ones based on modularity 
maximization being the most prominent amongst them [11]. The 
Louvain method which is based on modularity maximization [4] is 
the most widely used community detection algorithm which can 
scale to networks with millions of vertices. However, the quality of 
results obtained deteriorates as the size of the network increases 
[24]. It is observed that modularity maximization based algorithms 
are unable to detect small and well-defined communities in large 
networks [25] [26]. One of the recent parallel algorithms devel-
oped to detect disjoint community structures based on maximizing 
weighted network partitioning is given in [20]. A scalable commu-
nity detection algorithm, which partitions the network by max-
imizing the Weighted Community Clustering (WCC), is proposed 
in [27] which uses community detection metric based on triangle 
analysis [28]. Some other works which focused on developing par-
allel implementation for existing community detection heuristics is 
given in [29]. Recently, [30] proposed a scalable parallel algorithm 
for community detection, based on label propagation, which is op-
timized for GPGPU architectures. This algorithm just works on local 
information which drives the high scalability of this algorithm.
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Recent works mentioned above on exploitation of parallelism 
for community detection has the form of multi-core algorithms for 
SMP machines i.e. shared memory architecture. In [31], a paral-
lel multi-core Louvain algorithm is proposed which exhibits the 
above mentioned pitfalls of deteriorating quality of the communi-
ties with increasing size of the network. In [32] a parallel version 
of Infomap is presented which relaxes the concurrency assumption 
of the original method [21], achieving parallel efficiency of 70%. 
More literature on shared memory based parallel community de-
tection algorithms is mentioned in Subsection 3.2.

There is minimal literature on distributed algorithms for com-
munity detection. In [33], a distributed memory parallel algorithm 
extending the Louvain method is proposed. Here, the most costly 
iteration of the algorithm is made embarrassingly parallel with-
out any noticeable loss in final modularity. This approach was 
validated using an MPI implementation on a High Performance 
Computing (HPC) cluster. However, the original pitfalls of Louvain’s 
method mentioned above and in [24] prevail. Hadoop Map-Reduce 
Model can be used speed up algorithms which can break down 
into embarrassingly parallel tasks. In [34], the proposed algorithm 
is a distributed memory parallel version of the Girvan–Newman 
algorithm [11]. This version adopts the Map-Reduce framework 
where it breaks down the algorithm into four embarrassingly par-
allel tasks: (1) calculating all-pair shortest paths in the network, 
(2) calculating the edge betweenness for every pair of nodes in the 
network, (3) k-edges (where k is the number of edges and is user 
settable parameter) are selected based on edge betweenness and 
removed, (4) network update for next iteration. The performance 
results showed that elapsed time decreased almost linearly with 
the number of reducers. Most simple community detection algo-
rithms which can be broken down into the embarrassingly parallel 
independent tasks, do not yield high quality communities on real 
world networks.

We propose to extend our MCML shared memory parallel al-
gorithm [5], to distributed memory parallel framework using the 
MPI implementation on University of Iowa’s Neon HPC cluster, to 
detect communities in massive networks with high accuracy and 
attain scalability.

3. Algorithm

In Subsections 3.1 and 3.2 of this section, we shall describe our 
core shared memory based MCML community detection algorithm 
which also appears in [5]. This algorithm is used as a subroutine 
in our hybrid community detection algorithm which is proposed 
in Subsection 3.3. Our hybrid algorithm utilizes multiple cores of 
multiple machines and scales to hundreds of millions of vertices 
and edges without compromising quality of the detected commu-
nities.

3.1. Core MCML

The MCML algorithm involves a preprocessing stage, where 
each edge is assigned a strength based on the topology of the 
graph. Then based on the strength requirement of the commu-
nities, weak edges are removed and coarser graph instances are 
recursively created by identifying and removing communities, us-
ing the node with highest centrality each time. In our algorithm 
the node with the highest centrality is the node with highest de-
gree. We recursively apply this step until every node is assigned to 
a community.

3.1.1. Preprocessing: edge strength assignment
The MCML algorithm finds communities in a graph G(V , E)

where V represents the nodes/vertices and E represents the edges 
between the nodes, by assigning strength to the edges initially. It 
is desirable to assign an edge strength value that most accurately 
represents the topological structure of the graph in the MCML 
algorithm. Since we do not have any prior knowledge of the com-
munity structure, we assign a strength value to each edge based 
on the significance of that edge to the other nodes in the graph, 
and to the nodes at the end points of that edge. For each edge 
e(i, j) (where i and j are nodes) in the fine graph G , the topologi-
cal edge strength value α(i, j) assigned to it is the ratio of number 
of triangles that edge e(i, j) participates in to the total number of 
triangles containing node i.

If the strength value of an edge e(i, j) is greater than other 
edges in the 1-neighborhood of i then, node i and node j are more 
likely to be in the same community. Whereas on the contrary, if 
edge e(i, j) has lower strength value than most other edges in the 
1-neighborhood of i, then node i and node j are less likely to be 
in the same community. Mathematically,

α(i, j) = t(i, j)∑
(i,k)(t(i,k))

; k ∈ Ni (1)

where Ni is the 1-neighborhood of i, and t(i, j) is the total number 
of triangles whose sides contain edge (i, j).

The MCML algorithm also works well with weighted graphs, 
where the edges are assigned weights winput as an input. To get 
the total weight of an edge, we simply have to take product of the 
topological edge strength value, with its input weight.

αtotal(i, j) = α(i, j) × winput(i, j) (2)

After this we normalize the edge strength for all the edges, such 
that they range in between 0 and 1.

3.1.2. Remove weak edges
The procedure of removing the weak edges from the fine graph 

G is based on the required strength β of the communities. Edges 
with α(i, j) < β are removed. After deleting these edges we might 
label some nodes as non-community nodes i.e., the degree of these 
nodes is zero. For higher values of β we get a higher number of 
non-community nodes and more stronger, smaller and significant 
communities are extracted. Whereas for lower values of β we get 
smaller number of non-community nodes, and higher number of 
nodes are assigned a community.

3.1.3. Multilevel coarsening
Let Gi (i ≥ 1), be the graph obtained by removing weak edges 

(i.e., α( j, k) < β) from G . We apply the following coarsening step 
recursively to extract meaningful community structure.

Multilevel coarsening We select a node v from Gi , having highest 
centrality and label it i. Now we distribute this label i assigned 
to v , to all the neighbors of v , denoted by N(v). We continue 
distributing labels to the neighbors of all the nodes with label i. 
We do this until no more neighbors are left to send the label, or 
the maximum required size of the community is reached. Then 
we obtain a coarse graph Gi+1 by removing all the nodes with la-
bel i from Gi , along with their associated edges. We continue this 
process recursively until all the nodes are assigned a community. 
The communities having number of nodes less than the minimum 
number required in a community, labels all the nodes in that com-
munity as non-community nodes. This idea of recursively deleting 
communities is along the same lines as the one used in [35]. The 
general schema for the algorithm is shown in Fig. 1.

3.2. MCML—shared memory parallel implementation

Parallel shared-memory based, multi-core implementation, for 
each stage of our MCML algorithm is described in this section.
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Fig. 1. MCML algorithm’s general schema.
Fig. 2. Parallel preprocessing.

3.2.1. Parallel preprocessing
The first step of our algorithm, is to designate a master thread, 

which divides the graph roughly into k equal parts, where k is the 
number of cores or threads available, to distribute it across mul-
tiple cores. We perform a k partition on the input graph. We can 
use an existing k way graph partitioning library like KaHIP, METIS, 
PMETIS, etc. to divide the graph into k parts. The master thread 
then assigns each of these k parts to k threads individually (in-
cluding itself), as shown in Fig. 2. Then each thread computes the 
edge strengths in the part of the graph assigned to them, using 
Equation (1). The inter-partition edges, which are the dashed edges 
in Fig. 2, are excluded in this computation. Once all the threads 
have completed their edge strength assignment computations, the 
master thread merges the k parts of the graph back together and 
computes the edge strengths of the previously excluded dashed 
edges. We parallelize the weak edge removal step in the same 
fashion. Here we do not have to worry about the inter-partition 
edges (dashed edges in Fig. 2) because, if they have strength less 
than the threshold they will be removed, else will be restored, by 
both the threads they are assigned to.

3.2.2. Parallel multilevel coarsening
In this step of the algorithm, multiple cores are utilized to 

coarsen the graph. We start by designating a master thread, which 
first finds the node with highest degree centrality in the graph 
and labels it i (i ≥ 1). We then create a global queue, such that 
Fig. 3. Parallel multilevel coarsening. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

all the k cores point to the rear-end of this queue, as shown in 
Fig. 3. The highest centrality node is then pushed onto this global 
queue. The master thread is then assigned to this node, based on 
our construction of the queue. Then the master thread distributes 
label i to the 1-neighborhood of this node and also add the new 
nodes it discovers in the 1-neighborhood to the queue. Similarly 
in the consequent rounds, the threads are assigned nodes from the 
queue as shown in Fig. 3 and each thread distributes label i to a 
1-neighborhood (nodes that have not yet received the label i) of 
the node assigned to it, along with adding the newly discovered 
nodes to the queue. So at a given time, there are k nodes that are 
assigned to k cores in a cyclic fashion, which can simultaneously 
propagate its labels. In Fig. 3, initially the master thread i.e. core 1
finds node 1 (red node) which is the highest centrality node and 
adds it to the queue after assigning label i to it. Node 1 is then as-
signed to core 1, which distributes label i of node 1 to the nodes 
in its 1-neighborhood (green nodes) which have not yet been la-
beled. Along with label distribution, it also add these nodes to the 
queue. Nodes 2, 3, 4, 5, 6, 7, and 8 are added to the queue. In the 
second round, nodes 2, 3, 4, and 5 are assigned to cores 1, 2, 3, and 
4 respectively in a cyclic fashion from the rear-end of the queue. 
Each of the cores then follow the same steps that was followed by 
core 1 in the initial round.

We place appropriate barriers and write locks to the queue in 
order avoid race conditions between threads. This process contin-
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Fig. 4. Example: hybrid algorithm.
ues in cyclic fashion, until the queue is empty (disjoint component 
found) or maximum desired size of the community is reached. Af-
ter finding a community, the k threads remove the community 
with label i from the graph (using a trivial parallel for loop) and the 
same process is iteratively applied on the remaining graph with la-
bel i + 1. We continue this until the algorithm terminates, i.e. all 
nodes are assigned to a community. Note that we did not perform 
a graph partition in this stage to avoid nodes of the same commu-
nity to be assigned to multiple threads.

3.3. Hybrid algorithm

We take advantage of the initial network partitioning when 
designing parallel distributed community detection algorithms, in 
order to speed up the processing time by minimizing the com-
munication between processors. This reduces the possibility of 
vertices in the same community to spread across multiple par-
titions. We modify our parallel shared memory MCML algorithm 
presented in Sections 3.1, 3.2 to enable it to adapt the distributed 
MPI framework for processing massive networks. Our hybrid algo-
rithm follows a multilevel algorithmic framework which includes 
the following steps (also explained with an example in Fig. 4):

1. Level 1—network partitioning: Using network partitioning we 
aim to split the original network k-ways such that, the number 
of edge cuts between partitions are minimized and there is a 
balance in the number of vertices in each partition. Network 
partitioning is a NP-Hard problem [3]. Most of the existing 
network partitioning techniques use network processing tools 
such as Apache Giraph [36] which is based on hashing or ver-
tex ordering i.e. random graph partitioning. We use parallel 
METIS partitioning algorithm (PMETIS) [8] due to its low com-
munication overhead, ease of use and wide availability. We 
use the k-way partitioning library which divides the network 
based on minimum edge cuts. The parallel implementation 
was developed using GNU C++ and MPI.

2. Level 1—apply MCML on partitions: Each MPI processor is as-
signed a partition based on the process identifier, and MCML 
is applied locally on each processor. Interprocessor commu-
nications is allowed using message passing interface across 
cross-partition edges. MCML is applied for higher value of 
the strength parameter β ≥ 0.8, where 0 ≤ β ≤ 1, such that 
all nodes are not assigned to a community, but nodes with 
stronger affiliations are put in the same community. After find-
ing these strong communities in each of those partitions we 
collapse each community into a single node such that, all the 
intra cluster edges will be represented as a self-loop on that 
node. Note that we do not collapse nodes residing in the par-
tition on a different machine. This is the most crucial step 
where we expect to reduce the size of each partition consid-
erably.

3. Level 1—renumber vertices and merge partitions: Next step is 
to merge all the partitions together at the master MPI pro-
cess. Since all the individual vertices have local numbering, 
we are required to renumber all the vertices across all par-
titions in a continuous fashion. We use the following method 
to renumber vertices before the merging step. Using the all 
gather operation in MPI, each process collects the total num-
ber of vertices every other process has. Each MPI process pi , 
now has a list of total number of vertices in every other parti-
tion {N0, .., Ni−1, Ni+1, .., NP−1} where, P is the total number 
of MPI processes. It then renumbers its vertices in a way that 
the ones associated to its partitions start from nstarti which is 
based on the values of all processes p j with j < i as follows:

nstarti =
i−1∑

N j
0
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Table 1
Random graph datasets.

Vertices Edges

100,000 422,015
500,000 1,652,471
1,000,000 3,559,759
2,000,000 6,995,154
4,000,000 14,598,778
8,000,000 32,115,764
16,000,000 63,221,980

Once the renumbering is performed, each MPI process sends 
its partitions to the master MPI process where the merging 
takes place.

4. Level 2—MCML: The merged network represents the level 2 
of the original network where the size of the network is re-
duced significantly. We then apply MCML algorithm again on 
this level until all the vertices are assigned a community. This 
step can be performed on a single machine i.e., master MPI 
process, since the size of the graph is reduced significantly and 
can completely loaded in to the memory.
Robustness: Our algorithm is robust i.e. can handle failures 
without affecting the quality of the results. We maintain a 
global bit associated with each partition and it is set to true 
only when the partition is completed processing at any com-
pute node. If at the merge state, any of these bits are false we 
use the unfolded hierarchy from the input file and assign that 
partition back to the compute queue while other partitions are 
waiting to be merged. (There are warning messages sent out 
in this event so that the user will know the reason for the 
delay.)

4. Experimentation

4.1. Environment

The performance of our hybrid algorithm is evaluated by exe-
cuting series of experiments on the High Performance Neon Cluster 
at University of Iowa. We use 8 heterogeneous standard machines 
each having 64 GB RAM, 16 Xeon Phi cores and 2.6 GHz proces-
sor. All the experiments were executed as a single batch command 
comprising of at most 8 compute machines having 16 cores each. 
Each experiment is executed 3 times and the average of the results 
from these runs are reported to preserve accuracy and consistency.

4.2. Datasets

We generate random graphs for our empirical studies to have 
control over the graph sizes and study the scalability of our al-
gorithm over different graph sizes. We generate these random 
undirected and unweighted graphs using the same benchmark-
ing package used by Fortunato in [3]. Graph generation using this 
package also offers fine control over the average and maximum 
degree distribution, etc. Many similar studies use this package for 
their empirical studies [33]. The properties of the 7 graphs we gen-
erated are shown in the Table 1.

For our empirical studies we also use massive portions of two 
real world social networks described in Table 2:

(a) Twitter-2010: Twitter is a website, owned and operated by 
Twitter Inc., which offers a social networking and microblog-
ging service, enabling its users to send and read messages 
called tweets. Tweets are text-based posts of up to 140 charac-
ters displayed on the user’s profile page. This is a crawl done 
in [37]. Every node represents a user and there is an edge from 
node x to node y if x is a follower of y, i.e. edges follow the 
Table 2
Real world social network datasets.

Datasets (a) Twitter-2010 (b) UK-2007-05

No. of vertices 41,652,230 105,896,555
No. of edges 1,468,365,182 3,301,876,564
Edgelist file size 52.3 GB 110 GB
Average degree 35.253 35.7

direction of tweet transmission. This dataset is publicly avail-
able from http://law.di.unimi.it/datasets.ph.

(b) UK-2007-05: This web based graph is crawled by Boldi et al. 
[38]. The web-graphs of the 12 snapshots from each of the 12
months of .uk domain have been merged into a single graph. 
Each node represents a URL and there is an edge between 
URL x and URL y if the web page of URL x contains URL y. 
This dataset is publicly available from http://law.di.unimi.it/
datasets.php.

4.3. Evaluation

Our empirical studies focuses mainly on analyzing the scalabil-
ity of our hybrid algorithm and the quality of the results obtained. 
We scale the problem by increasing the graph size and the num-
ber of processor cores. We run the performance analysis which 
includes the steps 2, 3 and 4 of the hybrid algorithm described 
in Section 3.3.

In Fig. 5, we see the variation in the total runtime while scal-
ing up the number of processor cores for different graph sizes. We 
can observe that our algorithm exhibits high scalability for all pos-
sible permutations of graph size and processor cores. The graph 
with 16M vertices could only be tested when 16 or more proces-
sor cores are used, due to memory constraints of one machine. 
In Fig. 6, we see that our algorithm achieves ≈ 6X speedups for 
synthetic graphs upto 8M vertices. We also see that speedups flat-
ten and start declining for most of the graphs after scaling them 
past 64 processor cores. This is mainly due to Amdahl’s law and 
increase in communication overhead.

In Fig. 7, we observe that the gap between runtime of paral-
lel implementation with varying processor cores increases as the 
graph size increases. This shows the high scalability of our hybrid 
algorithm for large graphs. But we see a decline in this runtime 
improvement as we scale up to 64–128 processor cores. This is 
due to the similar reason explained above.

Our hybrid algorithms main goal is to achieve high scalability 
along with maintaining accuracy of the communities detected. In 
Fig. 8, we observe the percentage error using the difference in the 
modularity between sequential run and parallel run of our hybrid 
algorithm. This error is calculated using the formula:

%Error = abs
(modpar − modseq

modseq

)
× 100 (3)

where modseq and modpar represents the final modularity obtained 
by sequential run and parallel run of our hybrid algorithm respec-
tively. We observe that the error percentage decreases as the size 
of graph increases.

This is an expected phenomenon, since PMETIS partitions the 
graph into multiple subgraphs by minimizing the number of cross 
partitioning edges between them i.e. minimum size edge cuts. For 
small graphs, PMETIS is constrained because of the number of par-
titions and hence will have to partition the graph with higher 
cross-partition edges. This leads to higher probability of parti-
tioning the communities across multiple subgraphs. Whereas, for 
larger graphs this probability decreases since PMETIS is not con-
strained as much by the number of partitions and can effectively 
reduce the number of cross-partition edges between subgraphs. 

http://law.di.unimi.it/datasets.ph
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
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Fig. 5. Run-time while scaling up the number of processor cores over varying graph sizes.

Fig. 6. Speedups compared to sequential hybrid algorithm while scaling up the number of processor cores over varying graph sizes.

Fig. 7. Run-time while scaling up the graph sizes over varying processor cores.
This phenomenon is also observed in similar studies, like the one 
in [33]. It is important to note that our method does not ignore the 
cross partition edges completely, since labels are allowed to trans-
fer in the form of messages across cross-partition edges. But we do 
not collapse the nodes on the boundary i.e. associated with these 
cross-partitioning edges, which is done in step 2 of our hybrid al-
gorithm.

We also test our hybrid algorithm on real world networks de-
scribed in Subsection 4.2. In Fig. 9, we see the variation in the total 
runtime while scaling up the number of processor cores for differ-
ent graph sizes. The 16 processor core run of our hybrid algorithm 
acts as the “base run” for our real world data sets due to memory 
constraints of a single machine. We can observe that our algorithm 
scales better than base run for both the datasets, as the number 
of processor core increases. In Fig. 10, we see that our algorithm 
achieves ≈ 1.8X speedup for 128 processor cores, compared to the 
base run. In Fig. 11, we analyze the quality of the results obtained 
in terms of modularity of the communities detected. We observe 
the percentage error using the difference in the modularity be-
tween base run and higher processor cores hybrid algorithm. This 
error is calculated using the formula mentioned in Equation (3). It 
is evident that we maintain good quality of the results along with 
achieving high scalability for large real world social networks, scal-
ing up to hundreds of millions of vertices and billions of edges. We 
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Fig. 8. Change in error percentage of final modularity compared to that achieved by sequential execution of hybrid algorithm.

Fig. 9. Run-time while scaling up the number of processor cores.

Fig. 10. Speedups compared to base run of hybrid algorithm while scaling up the number of processor cores up to 128.
observe that the quality of the communities extracted from real 
world networks are not as good as the ones we extract from syn-
thetic graphs. We believe the primary reason for this is, synthetic 
graphs were generated with fine control over average and maxi-
mum degree distribution which made it possible for PMETIS to get 
good initial partitioning. On the other hand, we did not have any 
control over the degree distribution for real world networks.

5. Conclusion

Detecting communities in large networks, while achieving a 
good balance between scalability and quality of the results is one 
of the important open problems, especially due to the massive 
growth of social networks. Our work combines our existing MCML 
algorithm [5] and uses it as a subroutine in our hybrid commu-
nity detection algorithm presented in this paper. We also combine 
existing graph partitioning technique i.e. PMETIS which minimizes 
cross-partition edges, as a preprocessing step to our algorithm. Our 
simulation results on a MPI setup with 8 compute nodes having 
16 cores each shows that, upto ≈ 6X speedup is achieved for syn-
thetic graphs upto 8M vertices in detecting communities without 
compromising the quality of results. We also show that, our hybrid 
algorithm can scale for large section of real world social networks 
like Twitter-2010 and UK-2007-05 having ≈ 41M and ≈ 105M ver-
tices respectively and maintain good quality of the results when 
compared to other existing similar works.
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Fig. 11. Change in error percentage of final modularity compared to that achieved by base run of hybrid algorithm while scaling up the number of processor cores up to 128.
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