
Int. J. Computational Science and Engineering, Vol. 15, Nos. 3/4, 2017 311

Copyright © 2017 Inderscience Enterprises Ltd.

High quality multi-core multi-level algorithm for
community detection

Suely Oliveira and Rahil Sharma*
Department of Computer Science,
University of Iowa,
Iowa, IA-52246, USA
Fax: +1319-335-0731
Email: suely-oliveira@uiowa.edu
Email: rahil-sharma@uiowa.edu
*Corresponding author

Abstract: One of the most relevant and widely studied structural properties of networks is their
community structure or clustering. Detecting communities is of great importance in various
disciplines where systems are often represented as graphs. Different community detection
algorithms have been introduced in the past few years, which look at the problem from different
perspectives. Most of these algorithms, however, have expensive computational time that makes
them impractical to use for large graphs found in the real world. Maintaining a good balance
between the computational time and the quality of the communities discovered is a well-known
open problem in this area. In this paper, we propose a multi-core multi-level (MCML)
community detection algorithm based on the topology of the graph, which contributes towards
solving the above problem. MCML algorithm on two benchmark datasets results in detection of
accurate communities. We detect high modularity communities by applying MCML on Facebook
Forum dataset to find users with similar interests and Amazon product dataset. We also show the
scalability of MCML on these large datasets with 16 Xeon Phi cores.

Keywords: parallel algorithm; multi-level; multi-core; community detection.

Reference to this paper should be made as follows: Oliveira, S. and Sharma, R. (2017)
‘High quality multi-core multi-level algorithm for community detection’, Int. J. Computational
Science and Engineering, Vol. 15, Nos. 3/4, pp.311–321.

Biographical notes: Suely Oliveira is a Professor in the Computer Science Department at the
University of Iowa. She received her PhD from the University of Colorado in 1993. She was at
the Australian National University from 1993 to 1994, and at Texas A&M University from
August 1994 to May 1998. She has published over 50 articles in the areas of numerical analysis,
parallel algorithms, scientific computing, combinatorial scientific computing, and is co-author of
the book Writing Scientific Software published by Cambridge Press University and Building
Proofs: A Practical Guide published by World Scientific.

Rahil Sharma received his BE in Computer Engineering from the University of Mumbai and MS
in Computer Science from the University of Iowa, USA. He is currently working towards his
PhD in Computer Science at the University of Iowa. His research interests include areas of
algorithm development, high performance parallel computing, and big data analytics.

1 Introduction

Most complex systems like World Wide Web, social
networks (Facebook’s user interaction network), biological
interaction networks [protein-protein interaction (PPI)
networks, chemical bonding networks], paper citation
networks, etc. can be represented as graphs. Of all the tools
used to analyse networks, the most relevant and widely
studied tool is community detection or clustering. A
community in a network is a set of nodes which are densely
connected with each other and sparsely connected to the
other nodes in the network. The interpretation of
communities in these graphs varies based on its
applications. For example, in biological networks like PPI

networks, proteins with similar functional modules will lie
in the same community. This allows identification and
prediction of functional modules in PPI networks (Lee et al.,
2013; Oliveira and Seok, 2008; Wang and Qian, 2013). We
have successfully applied community detection algorithm to
identify and predict functional modules in PPI networks
(Oliveira and Sharma, 2015). Similarly, in a social network
like Facebook, users with a common interest or
acquaintance will lie in the same community.

Community detection in a network also extracts the
structural properties of the network (Girvan and Newman,
2002) and the various interactions in the network (Barabasi
and Oltvai, 2004). There is no universally accepted

312 S. Oliveira and R. Sharma

definition for community detection. Hence, most of the
recent work in this area does not have a community
structure defined in its literature, but has a quality function
defined to quantify how well the network is divided into
communities. So the community detection problem focuses
on optimising this quality function (Newman, 2004). One of
the quality functions often used is modularity (Newman and
Girvan, 2004). Most of these algorithms are
computationally very expensive and hence impractical for
use on large networks. Tackling large volumes of
graph-structured data requires parallel multi-core directives
to achieve scalable algorithms. We present a multi-core
multi-level (MCML) community detection algorithm which
achieves a good balance between scalability and quality of
the communities detected. We summarise our main
contribution in this paper as follows:

1 We propose an MCML community detection algorithm
which achieves a good balance between scalability and
quality of the communities detected, compared to other
algorithms in the current state-of-the-art.

2 We show that the quality of the results obtained by the
MCML algorithm for benchmark datasets with ground
truth is highly accurate.

3 We show that, applying MCML to datasets without
ground truth, detects communities roughly as
meaningful as other well known algorithms in the
current state-of-the-art (Pons and Latapy, 2005; Rosvall
and Bergstrom, 2008; Yang and Leskovec, 2013;
Prat-Pérez et al., 2014; Blondel et al., 2008; Newman
and Girvan, 2004), etc., and in some cases even better
(Facebook Forum). The comparison is done using
modularity as the metric.

The MCML algorithm has the parameters strength,
maximum size, and minimum size which enable us to extract
communities of desired strength (i.e., strong interactions
and desired size). The parameter strength varies from 0 to 1.
If we are required to find the strongest and the most critical
interaction in the given network, we can do so by setting the
value of the parameter strength to 1.

The remainder of this paper is organised as follows: In
Section 2, we describe related work. In Section 3, we
describe various stages of the MCML algorithm along with
its parallel implementation. In Section 4, we describe the
computational results of applying MCML algorithm on two
small benchmark datasets (i.e., karate club and dolphin
club), followed by large datasets like Facebook Forum and
Amazon product network. We end the paper by giving
implementation details in Section 5 and conclusion in
Section 6. Also note that, the words ‘network’ and ‘graph’
are used inter-changeably throughout the paper.

2 Related work

Community detection is an interesting problem in the
domain of graph partitioning. Interest in community
detection problem started with the new partitioning

approach by Girvan and Newman (2002) and Newman and
Girvan (2004); where the edges in the network with the
maximum betweenness are removed iteratively, thus
splitting the network hierarchically into communities.
Similar algorithms were proposed later on, where attributes
like ‘local quantity’, i.e., number of loops of a fixed length
containing the given edge (Radicchi et al., 2004) and a
complex notion of ‘information centrality’ (Fortunato et al.,
2004), is used to decide removal of edges. Hierarchical
clustering is another major technique used for community
detection, where based on the similarity between the nodes,
an agglomerative technique iteratively groups vertices into
communities. There are different existing methods to
choose the communities to be merged at each iteration.
Newman (2004) and Vieira et al. (2014) developed an
algorithm which starts with all the nodes as individual
community and iteratively merge them to optimise the
‘modularity’ function. Many other algorithms in the
literature of community detection, like one proposed by De
Meo et al. (2011) and Hashimoto et al. (2012) rely heavily
on modularity maximisation. Label propagation is another
well known technique used for community detection, which
finds communities by iteratively spreading labels across the
network. Raghavan et al. (2007) proposed an algorithm,
where each node picks the label in its 1-neighbourhood that
has the maximum frequency. These labels are permitted to
spread synchronously and asynchronously across the
network until near stability are attained in the network. This
method has some limitations, where in large communities
dominate the smaller one’s in the network, this phenomenon
is called ‘epidemic spread’. This limitation was resolved by
Soman and Narang (2011) and Oliveira and Sharma (2015).
Liu et al. (2013) used affinity propagation, which
is similar approach to label propagation, for finding
communities/clusters in images. In this paper, the algorithm
we propose uses label propagation ideas and also prevents
‘epidemic spread’ in the network, thus avoiding extremely
large communities which dominates the entire network.
Some community detection algorithms use random walks as
a tool. The idea is that, due to the higher density of internal
edges, the probability of staying inside the community is
greater than going outside. This approach is used in
Walktrap (Pons and Latapy, 2005) and Infomap (Rosvall
and Bergstrom, 2008) algorithms. A thorough review on
community detection algorithms for networks is given in
(Fortunato, 2010).

Community detection algorithms are a well studied
research area, but achieving strong scalability along with
detecting high quality communities is sill an open problem.
One of the recent parallel algorithms developed to detect
disjoint community structures based on maximising
weighted network partitioning is given in Pons and Latapy
(2005). Recently, Soman and Narang (2011) proposed a
scalable parallel algorithm for community detection, based
on label propagation, which is optimised for GPGPU
architectures. This algorithm just works on local
information which drives the high scalability of this
algorithm. Prat-Pérez et al. (2014) proposed a scalable

 High quality multi-core multi-level algorithm for community detection 313

community detection algorithm, which partitions the graph
by maximising the weighted community clustering (WCC),
a recently proposed community detection metric based on
triangle analysis (Prat-Pérez et al., 2012). Some other works
which focused on developing parallel implementation for
existing community detection heuristics is given in
Rytsareva et al. (2014). In this paper, we propose a shared
memory-based community detection algorithm, which
achieves a good balance between scalability and quality of
the communities discovered.

3 MCML algorithm

In this section, we present the MCML algorithm involving a
preprocessing stage, where each edge is assigned a strength
based on the topology of the graph. Then based on the
strength requirement of the communities, weak edges are
removed and coarser graph instances are recursively created
by identifying and removing communities, using the node
with highest centrality each time. We recursively apply this
step until every node is assigned to a community.

3.1 Preprocessing: edge strength assignment

The MCML algorithm finds communities in a graph
G(V, E) where V represents the nodes/vertices and E
represents the edges between the nodes, by assigning
strength to the edges initially. It is desirable to assign an
edge strength value that most accurately represents the
topological structure of the graph in the MCML algorithm.
Since we do not have any prior knowledge of the
community structure, we assign a strength value to each
edge based on the significance of that edge to the other
nodes in the graph, and to the nodes at the end points of that
edge. For each edge e(i, j) (where i and j are nodes) in the
fine graph G, the topological edge strength value α(i, j)
assigned to it is the ratio of number of triangles that edge
e(i, j) participates in to the total number of triangles
containing node i.

If the strength value of an edge e(i, j) is greater than
other edges in the 1-neighbourhood of i then, node i and
node j are more likely to be in the same community.
Whereas on the contrary, if edge e(i, j) has lower strength
value than most other edges in the 1-neighbourhood of i,
then node i and node j are less likely to be in the same
community. Mathematically,

()
(,)

(,)(,)

(,) ;i j
i

i ki k

t
i j k N

t
= ∈
∑

α (1)

where Ni is the 1-neighbourhood of i, and t(i,j) is the total
number of triangles whose sides contain edge (i, j).

The MCML algorithm also works well with weighted
graphs, where the edges are assigned weights winput as an
input. To get the total weight of an edge, we simply have to

take product of the topological edge strength value, with its
input weight.

(,) (,) (,)total inputi j i j w i j= ×α α (2)

After this we normalise the edge strength for all the edges,
such that they range in between 0 and 1.

3.2 Remove weak edges

The procedure of removing the weak edges from the fine
graph G is based on the required strength β of the
communities. Edges with α(i, j) < β are removed. This
simply means that, for low values of β, fewer edges will be
removed from the fine graph G, as compared to when β has
higher values. After deleting these edges we might label
some nodes as non-community nodes, i.e., the degree of
these nodes is zero. For higher values of β we get a higher
number of non-community nodes and more stronger,
smaller and significant communities are extracted. Whereas
for lower values of β we get smaller number of
non-community nodes, and higher number of nodes are
assigned a community.

3.3 Multilevel coarsening

Let Gi (i ≥ 1), be the graph obtained by removing
weak edges (i.e., α(j, k) < β) from G. We apply the
following coarsening step recursively to extract meaningful
community structure.

Multilevel coarsening: We select a node v from Gi, having
highest centrality and label it i. Now we distribute this label
i assigned to v, to all the neighbours of v, denoted by N(v).
We continue distributing labels to the neighbours of all the
nodes with label i. We do this until there no more
neighbours are left to send the label, or the maximum
required size of the community is reached. Then we obtain a
coarse graph Gi+1 by removing all the nodes with label i
from Gi, along with their associated edges. We continue this
process recursively until all the nodes are assigned a
community. The communities having number of nodes less
than the minimum number required in a community, labels
all the nodes in that community as non-community nodes.
This idea of recursively deleting communities is along the
same lines as the one used in Jancura et al. (2012). The
general schema for the algorithm is shown in Figure 1.

3.4 Parallel implementation

Parallel shared-memory-based, multi-core implementation,
for each stage of our MCML algorithm is described in this
section.

314 S. Oliveira and R. Sharma

Figure 1 MCML algorithm’s general schema (see online version for colours)

3.4.1 Parallel preprocessing

In the preprocessing stage, we designate a master thread,
which divides the graph roughly into k equal parts, where k
is the number of cores/threads available. We perform a k
partition on the input graph. We can use an existing k way
graph partitioning library like KaHIP, METIS, PMETIS,
etc. to divide the graph into k parts. The master thread then
assigns each of these k parts to k threads individually
(including itself), as shown in Figure 2. Then each thread
computes the edge strengths in the part of the graph
assigned to them, using equation (1). The inter-partition
edges, which are the dashed edges in Figure 2, are excluded
in this computation. Once all the threads have completed
their edge strength assignment computations, the master
thread merges the k parts of the graph back together and
computes the edge strengths of the previously excluded
dashed edges.

3.4.2 Parallel weak edge removal

In weak edge removal stage of the algorithm, we again
partition the preprocessed graph into k parts and assign each
part to each of the k cores/threads individually, in the
similar way we did in the preprocessing stage. Each core
removes the edges having strength less than threshold value
(β) from the corresponding part of the graph they process.
Note that, here we do not have to worry about the
inter-partition edges (dashed edges in Figure 2) because, if
they have strength less than the threshold they will be
removed, else will be restored, by both the threads they are
assigned to. Once all the threads have completed their weak
edge removal process, the master thread merges all k parts
of the graph back together.

3.4.3 Parallel multilevel coarsening

In the multilevel coarsening stage of the algorithm, we
designate a master thread, which first finds the node with
highest degree centrality in the graph and labels it i (i ≥ 1).
We then create a global queue, such that all the k cores point
to the rear-end of this queue, as shown in Figure 3. The
highest centrality node is then pushed into this global queue.
The master thread is then assigned to this node, based on
our construction of the queue. Then the master thread
distributes label i to 1-neighbourhood of this node and also
add the new nodes it discovers in the 1-neighbourhood to
the queue. Similarly in the consequent rounds, the threads
are assigned nodes from the queue as shown in Figure 3 and
each thread distributes label i to a 1-neighbourhood (nodes
that have not yet received the label i) of the node assigned
to it, along with adding the newly discovered nodes to the
queue. So at a given time, there are k nodes that are
assigned to k cores in a cyclic fashion, which can
simultaneously propagate its labels. In Figure 3, initially the
master thread, i.e., core 1 finds node 1 (red node) which is
the highest centrality node and adds it to the queue after
assigning label i to it. Node 1 is then assigned to core 1,
which distributes label i of node 1 to the nodes in its
1-neighbourhood (green nodes) which have not yet been
labelled. Along with label distribution, it also add these
nodes to the queue. Nodes 2, 3, 4, 5, 6, 7, and 8 are added to
the queue. In the second round, nodes 2, 3, 4, and 5 are
assigned to cores 1, 2, 3, and 4, respectively in a cyclic
fashion from the rear-end of the queue. Each of the cores
then follow the same steps that was followed by core 1 in
the initial round.

 High quality multi-core multi-level algorithm for community detection 315

Figure 2 Parallel preprocessing (see online version for colours)

Figure 3 Parallel multilevel coarsening (see online version
for colours)

We place appropriate barriers and write locks to the queue
in order avoid race conditions between threads. This
process continues in cyclic fashion, until the queue is empty
(disjoint component found) or maximum desired size of the
community is reached. After finding a community, the k
threads remove the community with label i from the graph
(using a trivial parallel for loop) and the same process is
iteratively applied on the remaining graph with label i + 1.
We continue this until the algorithm terminates, i.e., all
nodes are assigned to a community. Note that we did not
perform a graph partition in this stage to avoid nodes of the
same community to be assigned to multiple threads. The
pseudo code for the MCML algorithm is given in
Algorithm 1.

Algorithm 1 MCML algorithm

Require: Graph G(V, E), β, max size, min size
1: return Community of each node
2: for each thread T do
3: Assign k blocks of nodes and edges to each thread T
4: for each Edge e(i, j) assigned to thread T do
5: Find strength α(i, j) using equation (1)
6: end for
7: for each Edge e(i, j) assigned to thread T do
8: if (α(i, j) < β) then
9: Delete e(i, j)
10: end if

11: end for
12: while (All nodes are assigned to a community) do
13: for each Node assigned to thread T do
14 Find node v with highest centrality, label it i
15: end for
16: while (No neighbours left or max sized reached)

do
17: Assign nodes and edges to each thread T
18: Distribute label to the neighbours of the nodes,

with label i
19: end while
20: for each Node assigned to thread T do
21: Delete node with label i and associated edges
22: end for
23: end while
24: end for
25: return community label for each node

4 Computational results

4.1 Benchmark datasets

We use the benchmark datasets, karate club (Zachary, 1977)
and dolphin club (Lusseau et al., 2003) to determine the
quality of the results obtained by applying MCML
algorithm. Since these two datasets have ground truth
communities, we measure the quality of the results based on
the accuracy metric, i.e., the number of nodes correctly
assigned by MCML algorithm to the community they
actually belong to in real life. We run MCML algorithm for
various values of β (0, 0.1, 0.4, 0.6, 1.0). We also have a
plot showing the number of nodes marked as
non-community nodes, versus different values of β.
Comparison of various community detection algorithms on
Karate and Dolphin club benchmark datasets is shown in
Table 1. The comparisons are made on the basis of the
number of communities detected, number of correct
matches and incorrect matches of the community nodes
with its ground truth communities.

4.1.1 Karate club

This is a social network of friendships between 34 members
of a karate club. It contains 156 edges and the dataset is
unweighted and undirected. The real life known partition of
this graph is into two groups. The group breaks down into 1,
2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22 and 9, 10, 14, 15, 16,
19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34. In
Figure 4(1), where β = 0.0 and maximum size = 34, when
compared to the ground truth communities of this network,
all the nodes are correctly grouped, except node number 17,
which becomes the non-community node. All the nodes in
white are non-community nodes. The nodes with different
colours belong to different communities. The accuracy plot
for groupings made by MCML algorithm is shown in
Figure 5. In Figure 4(5), where β = 1.0, we extract the

316 S. Oliveira and R. Sharma

strongest link in the club, which is between node 1 and 9. In
Figure 7(a), we can see that, as the value of β increases the
number of non-community nodes increases and the more
stronger and smaller communities are extracted. The edges
extracted represent stronger connections compared to edges
associated with non-community nodes.

4.1.2 Dolphin club

This is an undirected social network of frequent associations
between 62 dolphins (nodes) in a community living off
Doubtful Sound, New Zealand. Dolphin club is an
unweighted network containing 159 edges. In Figure 6(1),
where β = 0.0 and maximum size = 62, when compared to
the ground truth communities of this network, 56 nodes are

correctly grouped, three nodes become non-community
nodes and three nodes are incorrectly grouped. These three
incorrectly grouped nodes form a new community, since
they have much stronger connection amongst each other,
than with community with the red label. All the nodes in
white are non-community nodes. Accuracy plot is shown in
Figure 5. In Figure 6(5), where β = 1.0 and we extract the
strongest link in the club, which is between node 51 and 46.
In Figure 7(b), we can see that as the value of β increases
the number of non-community nodes increases. On the basis
of the above experiments on the two benchmark datasets,
we can conclude that the higher the value of β the stronger
and smaller is the extracted community.

Figure 4 Karate club, (1) β = 0.0 (2) β = 0.1 (3) β = 0.4 (4) β = 0.6 (5) β = 1.0 (see online version for colours)

Note: Edges retrieved/highlighted in (4) and (5) have stronger connections than other edges in the graph.

Table 1 Comparing various community detection algorithms for karate and dolphin club benchmark datasets with β = 0.0

Algorithm
Karate club (34 nodes) Dolphin club (62 nodes)

No. of communities Correct Incorrect No. of communities Correct Incorrect

Jancura et al (2012) 3 24 10 3 46 16
Raghavan et al. (2007) 2 27 7 4 45 17
Soman and Narang (2011) 2 29 5 2 49 13

MCML 2 33 1 3 56 6

 High quality multi-core multi-level algorithm for community detection 317

Figure 5 Accuracy plot: karate club and dolphin club (see online version for colours)

Figure 6 Dolphin club, (1) β = 0.0 (2) β = 0.1 (3) β = 0.4 (4) β = 0.6 (5) β = 1.0 (see online version for colours)

Note: Edge retrieved/highlighted in (5) has the strongest connection than any other edge in the graph.

318 S. Oliveira and R. Sharma

Figure 7 Non-community nodes vs. strength, (a) karate club (b) dolphin club (see online version for colours)

(a) (b)

Figure 8 Facebook Forum, (a) running time vs. number of cores (b) speed up (see online version for colours)

(a) (b)

4.2 Facebook Forum dataset

This dataset is obtained from Facebook online social
network. The main focus in this network is on users’
activity in the forum. The forum represents a 2-mode
network between primary nodes which are 899 users and
secondary nodes which are 522 topics in the forum. It is a
weighted network where the weights represent the number
of messages a user posted on a particular topic. We use the
preprocessed version of this dataset for our experiments,
where 2-mode network is transformed into a 1-mode
network maintaining the primary nodes, which are users and
contain 142,761 edges. This dataset is available from
http://toreopsahl.com/datasets/#online_social_network.

Figure 9(a) represents the format of original dataset.
User A posts three messages on topics 1 and four messages
on topic 2. User B posts one message on topics 1 and 5
messages on topic 2. When this dataset is preprocessed to
eliminate the secondary nodes, we have two directional
links between A and B, i.e., A to B which has weight 7 and
B to A having weight 6, as shown in Figure 9(b). The
1-mode projection of a weighted 2-mode network is based
on the weights the two nodes have, directed towards

common nodes. The two nodes interact with the common
node, and Figure 9 shows how to project it onto a directed
weighted 1-mode network. This dataset does not have
ground truth communities, so we use modularity to
determine the quality of the communities found. The quality
comparison based on modularity and computational time for
Facebook Forum dataset is given in Table 2. The modularity
achieved for communities detected by MCML (β = 0.15) is
0.3566, which is the best so far in the present state-of-the-
art. So even though we do not achieve the best running
times as compared to other well known algorithms like
(Blondel et al., 2008), we manage to maintain a good
balance between the quality of the results and running
times.

Finding communities in this interesting dataset implies,
finding groups of users sharing similar interests. This
information can be used by social networking sites to
provide friend suggestions to users, or suggestions to join a
particular community forum having common interests. The
performance of MCML algorithm, on this dataset is shown
in Figure 8, where we achieve speed-ups up to 14.97 times
using 16 cores. This is close to a k fold improvement using
k core processor where (k ≥ 1).

 High quality multi-core multi-level algorithm for community detection 319

Table 2 Comparing various community detection algorithms for Facebook Forum and Amazon datasets based on modularity and
computational time using 16 cores

Algorithm
Facebook Forum Amazon

Modularity Time (sec) Modularity Time (sec)

Newman and Girvan (2004) 0.0488 - - -
Pons and Latapy (2005) 0.2031 - 0.451 -
Rosvall and Bergstrom (2008) 0.1372 - 0.470 -
Raghavan et al. (2007) 0.1733 47 0.210 > 10,000
Blondel et al. (2008) 0.3458 3 - -
Yang and Leskovec (2013) - - 0.125 1890
Prat-Pérez et al. (2014) - - 0.295 15
Wang and Qian (2013) - - 0.510 4800

MCML 0.3566 4.83 0.494 2389

Notes: The blank values are not available in the literature of this research area. To get the computational time we include all the
three stages of the algorithm.

Figure 9 (a) 2-mode weighted network (b) preprocessed 1-mode weighted network (see online version for colours)

(a) (b)

Figure 10 Amazon, (a) running time vs. number of cores (b) speed up (see online version for colours)

(a) (b)

4.3 Amazon dataset

This dataset represents a graph of products, where each
node is a product and there is an edge between two products
if they have been co-purchased frequently. This dataset has
334,863 nodes and ≈ 1 million edges. This dataset has a
151,037 ground truth communities, in which the top
5,000 communities are the most significant. We use this

dataset (http://snap.stanford.edu/data/index.html) in our
experiments, to show that MCML algorithm gives fairly
good performance and speed-up when applied to this
dataset, and also, we do not degrade the quality of the
results while achieving this.

For β = 0.1 and maximumsize = 80 which is the largest
community in the ground truth community data, it takes ≈
7.34 hrs to extract communities in this dataset using one

320 S. Oliveira and R. Sharma

core and ≈ 39.82 minutes using 16 cores (i.e., speed-up of
11.4 times). In Figure 10, we show the time taken to find
communities in this dataset for 1, 2, 4, 8, 16 cores and
corresponding speed-ups respectively. The quality
comparison based on modularity and computational time for
Amazon dataset is given in Table 2. The modularity
achieved for communities detected by MCML (β = 0.1) is
0:494, which is better than most of the other algorithms in
the present state of art. So even though we do not achieve
exceptional running times as compared to other well-known
algorithms like Prat-Pérez et al. (2014) and Yang and
Leskovec (2013), we manage to maintain a good balance
between the quality of the results and running times.

5 Implementation details

We implemented the MCML algorithm using C++ and
graph boost libraries. The simulations for the benchmark
datasets and the Facebook Forum dataset are done on
Processor-Intel Core i73770, 3.4 GHz and Turbo
Boost enabled Memory-16GB DDR3 – 1,600 RAM;
Linux machines. These machines have four cores with
hyper-threading enabled. The simulations for the Amazon
dataset is done on a system running on CentOS 6.3, a Linux
operating system based on Red Hat Linux, with 512GB
Nodes, 32 GB RAM, 2.9 GHz, and 16 Xeon Phi cores. All
the results obtained are averages of five runs. We use
OpenMP directives for implementing parallel MCML
algorithm. All the plots are done using Gephi and Gnuplot.

6 Conclusions

In this paper, we develop a MCML community detection
algorithm, which achieves a good balance between
scalability and quality of the communities discovered. We
show that the quality of the results obtained by the MCML
algorithm for benchmark datasets with ground truth is
highly accurate. We also compare MCML with other well
known algorithms for datasets without ground truth, based
on modularity metric for quality analysis, and conclude that
MCML can detect communities roughly as meaningful as
other known algorithms and in some cases even better
(Facebook Forum). We manage to maintain a good balance
between the quality of the results and running times as
compared with the present state-of-the-art, which is a well
known challenging problem in this area. We conclude that
assigning edge strengths based on the topology of the given
graph is key for ensuring good quality results. Our
experiments also show good scalability and speed-up
achieved by our MCML algorithm. The design of the
MCML algorithm achieves scalability for some datasets
(Facebook Forum) that is close to a k fold improvement in a
k core processor, where (k ≥ 1).

The MCML extracts disjoint communities, so one of our
future research directions is to extend the ideas behind
the topological feature analysis of the graph to assign
edge strengths, performed by the MCML, to detect

overlapping communities. Also, partitioning the network
into sub-networks to achieve highest level of parallelism
requires more cores. So it will be worthwhile to see if
MCML can be extended to use message passing interface
(MPI) in order to exploit cores of multiple machines,
without incurring too much communication overhead. It
will also be interesting to see whether the MCML can be
modified to exploit GPU cores which would provide even
higher scalability.

Contribution

Suely Oliveira and Rahil Sharma have equal contribution
towards all aspects of this research paper.

Acknowledgements

We would like to thank the reviewers for their time and
helpful advice.

References
Barabasi, A-L. and Oltvai, Z.N. (2004) ‘Network biology:

understanding the cell’s functional organization’, Nature
Reviews Genetics, Vol. 5, No. 2, pp.101–113.

Blondel, V.D., Guillaume, J-L., Lambiotte, R. and Lefebvre, E.
(2008) ‘Fast unfolding of communities in large networks’,
Journal of Statistical Mechanics: Theory and Experiment,
No. 10, P10008.

De Meo, P., Ferrara, E., Fiumara, G. and Provetti, A. (2011)
‘Generalized louvain method for community detection in
large networks’, Intelligent Systems Design and Applications
(ISDA), 2011 11th International Conference, IEEE, pp.88–93.

Fortunato, S. (2010) Community Detection in Graphs, Physics
Reports, Vol. 486, No. 3, pp.75–174, Elsevier.

Fortunato, S., Latora, V. and Marchiori, M. (2004) ‘Method to find
community structures based on information centrality’,
Physical Review E, Vol. 70, No. 5, p.056104.

Girvan, M. and Newman, M.E.J. (2002) ‘Community structure in
social and biological networks’, Proceedings of the National
Academy of Sciences, National Acad. Sciences, Vol. 99,
No. 12, pp.7821–7826.

Hashimoto, T., Chakraborty, B. and Shirota, Y. (2012) ‘Social
media analysis – determining the number of topic clusters
from buzz marketing site’, Int. J. of Computational Science
and Engineering, Vol. 7, No. 1, pp.65–72.

Jancura, P., Mavroeidis, D. and Marchiori, E. (2012) ‘DEEN: a
simple and fast algorithm for network community detection’,
Computational Intelligence Methods for Bioinformatics and
Biostatistics, pp.150–163, Springer.

Lee, J., Gross, S.P. and Lee, J. (2013) Improved Network
Community Structure Improves Function Prediction,
Scientific Reports, Vol. 3, Nature Publishing Group.

Liu, J-C., Liang, Y-C. and Lin, S-W. (2013) ‘Selection of
canonical images of travel attractions using image clustering
and aesthetics analysis’, Int. J. of Computational Science and
Engineering 2013, Vol. 8, No. 4, pp.324–335.

 High quality multi-core multi-level algorithm for community detection 321

Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E.
and Dawson, S.M. (2003) ‘The bottle nose dolphin
community of doubtful sound features a large proportion
of long-lasting associations’, Behavioral Ecology and
Sociobiology, Vol. 54, pp.396–405.

Newman, M.E.J. (2004) ‘Fast algorithm for detecting community
structure in networks’, Physical Review E, Vol. 69, No. 6,
p.066133, APS.

Newman, M.E.J. and Girvan, M. (2004) Finding and Evaluating
Community Structure in Networks, Physics Reports, Vol. 69,
No. 2, p.026113, APS.

Oliveira, S. and Seok, S-C. (2008) ‘A matrix-based multilevel
approach to identify functional protein modules’,
International Journal of Bioinformatics Research and
Applications, Vol. 4, No. 1, pp.11–27, Inderscience.

Pons, P. and Latapy, M. (2005) ‘Computing communities in large
networks using random walks’, Computer and Information
Sciences-ISCIS 2005, Springer, pp.284–293.

Prat-Pérez, A., Dominguez-Sal, D. and Larriba-Pey, J-L. (2014)
‘High quality, scalable and parallel community detection
for large real graphs’, Proceedings of the 23rd
International Conference on World Wide Web, International
World Wide Web Conferences, pp.225–236.

Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M. and
Larriba-Pey, J-L. (2012) ‘Shaping communities out of
triangles’, Proceedings of the 21st ACM International
Conference on Information and Knowledge Management,
pg.1677–1681.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. and Parisi, D.
(2004) ‘Defining and identifying communities in networks’,
Proceedings of the National Academy of Sciences of the
United States of America, Vol. 101, No. 9, pp.2658–2663.

Raghavan, U.N., Albert, R. and Kumara, S. (2007) ‘Near linear
time algorithm to detect community structures in large-scale
networks’, Physical Review E, Vol. 76, No. 3, p.036106,
APS.

Rosvall, M. and Bergstrom, C.T. (2008) ‘Maps of random walks
on complex networks reveal community structure’,
Proceedings of the National Academy of Sciences, National
Acad. Sciences, Vol. 105, No. 4, pp.1118–1123.

Rytsareva, I., Chapman, T. and Kalyanaraman, A. (2014) ‘Parallel
algorithms for clustering biological graphs on distributed and
shared memory architectures’, Int. J. of High Performance
Computing and Networking, Vol. 7, No. 4, pp.241–257.

Soman, J. and Narang, A. (2011) ‘Fast community detection
algorithm with GPUs and multicore architectures’, Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pp.568–579.

Vieira, V.d.F., Xavier, C.R. and Ebecken, N.F.F. and
Evsukoff, A.G. (2014) ‘Modularity based hierarchical
community detection in networks’, Computational Science
and Its Applications – ICCSA 2014, Springer pp.146–160.

Wang, Y. and Qian, X. (2013) ‘Functional module identification in
protein interaction networks by interaction patterns’,
Bioinformatics, btt569.

Oliveira, S. and Sharma, R. (2015) ‘Identification and prediction
of functional protein modules using a bi-level community
detection algorithm’, in final revision at International J.
Bioinformatics, Research and Application, Inderscience.

Yang, J. and Leskovec, J. (2013) ‘Overlapping community
detection at scale: a nonnegative matrix factorization
approach’, Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, ACM,
pp.587–596.

Zachary, W.W. (1977) ‘An information flow model for conflict
and fission in small groups’, Journal of Anthropological
Research, JSTOR, pp.452–473.

