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Abstract: One of the most relevant and widely studied structural properties of networks is their 
community structure or clustering. Detecting communities is of great importance in various 
disciplines where systems are often represented as graphs. Different community detection 
algorithms have been introduced in the past few years, which look at the problem from different 
perspectives. Most of these algorithms, however, have expensive computational time that makes 
them impractical to use for large graphs found in the real world. Maintaining a good balance 
between the computational time and the quality of the communities discovered is a well-known 
open problem in this area. In this paper, we propose a multi-core multi-level (MCML) 
community detection algorithm based on the topology of the graph, which contributes towards 
solving the above problem. MCML algorithm on two benchmark datasets results in detection of 
accurate communities. We detect high modularity communities by applying MCML on Facebook 
Forum dataset to find users with similar interests and Amazon product dataset. We also show the 
scalability of MCML on these large datasets with 16 Xeon Phi cores. 
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1 Introduction 

Most complex systems like World Wide Web, social 
networks (Facebook’s user interaction network), biological 
interaction networks [protein-protein interaction (PPI) 
networks, chemical bonding networks], paper citation 
networks, etc. can be represented as graphs. Of all the tools 
used to analyse networks, the most relevant and widely 
studied tool is community detection or clustering. A 
community in a network is a set of nodes which are densely 
connected with each other and sparsely connected to the 
other nodes in the network. The interpretation of 
communities in these graphs varies based on its 
applications. For example, in biological networks like PPI 

networks, proteins with similar functional modules will lie 
in the same community. This allows identification and 
prediction of functional modules in PPI networks (Lee et al., 
2013; Oliveira and Seok, 2008; Wang and Qian, 2013). We 
have successfully applied community detection algorithm to 
identify and predict functional modules in PPI networks 
(Oliveira and Sharma, 2015). Similarly, in a social network 
like Facebook, users with a common interest or 
acquaintance will lie in the same community. 

Community detection in a network also extracts the 
structural properties of the network (Girvan and Newman, 
2002) and the various interactions in the network (Barabasi 
and Oltvai, 2004). There is no universally accepted 
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definition for community detection. Hence, most of the 
recent work in this area does not have a community 
structure defined in its literature, but has a quality function 
defined to quantify how well the network is divided into 
communities. So the community detection problem focuses 
on optimising this quality function (Newman, 2004). One of 
the quality functions often used is modularity (Newman and 
Girvan, 2004). Most of these algorithms are 
computationally very expensive and hence impractical for 
use on large networks. Tackling large volumes of  
graph-structured data requires parallel multi-core directives 
to achieve scalable algorithms. We present a multi-core 
multi-level (MCML) community detection algorithm which 
achieves a good balance between scalability and quality of 
the communities detected. We summarise our main 
contribution in this paper as follows: 

1 We propose an MCML community detection algorithm 
which achieves a good balance between scalability and 
quality of the communities detected, compared to other 
algorithms in the current state-of-the-art. 

2 We show that the quality of the results obtained by the 
MCML algorithm for benchmark datasets with ground 
truth is highly accurate. 

3 We show that, applying MCML to datasets without 
ground truth, detects communities roughly as 
meaningful as other well known algorithms in the 
current state-of-the-art (Pons and Latapy, 2005; Rosvall 
and Bergstrom, 2008; Yang and Leskovec, 2013;  
Prat-Pérez et al., 2014; Blondel et al., 2008; Newman 
and Girvan, 2004), etc., and in some cases even better 
(Facebook Forum). The comparison is done using 
modularity as the metric. 

The MCML algorithm has the parameters strength, 
maximum size, and minimum size which enable us to extract 
communities of desired strength (i.e., strong interactions 
and desired size). The parameter strength varies from 0 to 1. 
If we are required to find the strongest and the most critical 
interaction in the given network, we can do so by setting the 
value of the parameter strength to 1. 

The remainder of this paper is organised as follows: In 
Section 2, we describe related work. In Section 3, we 
describe various stages of the MCML algorithm along with 
its parallel implementation. In Section 4, we describe the 
computational results of applying MCML algorithm on two 
small benchmark datasets (i.e., karate club and dolphin 
club), followed by large datasets like Facebook Forum and 
Amazon product network. We end the paper by giving 
implementation details in Section 5 and conclusion in 
Section 6. Also note that, the words ‘network’ and ‘graph’ 
are used inter-changeably throughout the paper. 

2 Related work 

Community detection is an interesting problem in the 
domain of graph partitioning. Interest in community 
detection problem started with the new partitioning 

approach by Girvan and Newman (2002) and Newman and 
Girvan (2004); where the edges in the network with the 
maximum betweenness are removed iteratively, thus 
splitting the network hierarchically into communities. 
Similar algorithms were proposed later on, where attributes 
like ‘local quantity’, i.e., number of loops of a fixed length 
containing the given edge (Radicchi et al., 2004) and a 
complex notion of ‘information centrality’ (Fortunato et al., 
2004), is used to decide removal of edges. Hierarchical 
clustering is another major technique used for community 
detection, where based on the similarity between the nodes, 
an agglomerative technique iteratively groups vertices into 
communities. There are different existing methods to 
choose the communities to be merged at each iteration. 
Newman (2004) and Vieira et al. (2014) developed an 
algorithm which starts with all the nodes as individual 
community and iteratively merge them to optimise the 
‘modularity’ function. Many other algorithms in the 
literature of community detection, like one proposed by De 
Meo et al. (2011) and Hashimoto et al. (2012) rely heavily 
on modularity maximisation. Label propagation is another 
well known technique used for community detection, which 
finds communities by iteratively spreading labels across the 
network. Raghavan et al. (2007) proposed an algorithm, 
where each node picks the label in its 1-neighbourhood that 
has the maximum frequency. These labels are permitted to 
spread synchronously and asynchronously across the 
network until near stability are attained in the network. This 
method has some limitations, where in large communities 
dominate the smaller one’s in the network, this phenomenon 
is called ‘epidemic spread’. This limitation was resolved by 
Soman and Narang (2011) and Oliveira and Sharma (2015).  
Liu et al. (2013) used affinity propagation, which  
is similar approach to label propagation, for finding 
communities/clusters in images. In this paper, the algorithm 
we propose uses label propagation ideas and also prevents 
‘epidemic spread’ in the network, thus avoiding extremely 
large communities which dominates the entire network. 
Some community detection algorithms use random walks as 
a tool. The idea is that, due to the higher density of internal 
edges, the probability of staying inside the community is 
greater than going outside. This approach is used in 
Walktrap (Pons and Latapy, 2005) and Infomap (Rosvall 
and Bergstrom, 2008) algorithms. A thorough review on 
community detection algorithms for networks is given in 
(Fortunato, 2010). 

Community detection algorithms are a well studied 
research area, but achieving strong scalability along with 
detecting high quality communities is sill an open problem. 
One of the recent parallel algorithms developed to detect 
disjoint community structures based on maximising 
weighted network partitioning is given in Pons and Latapy 
(2005). Recently, Soman and Narang (2011) proposed a 
scalable parallel algorithm for community detection, based 
on label propagation, which is optimised for GPGPU 
architectures. This algorithm just works on local 
information which drives the high scalability of this 
algorithm. Prat-Pérez et al. (2014) proposed a scalable 
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community detection algorithm, which partitions the graph 
by maximising the weighted community clustering (WCC), 
a recently proposed community detection metric based on 
triangle analysis (Prat-Pérez et al., 2012). Some other works 
which focused on developing parallel implementation for 
existing community detection heuristics is given in 
Rytsareva et al. (2014). In this paper, we propose a shared 
memory-based community detection algorithm, which 
achieves a good balance between scalability and quality of 
the communities discovered. 

3 MCML algorithm 

In this section, we present the MCML algorithm involving a 
preprocessing stage, where each edge is assigned a strength 
based on the topology of the graph. Then based on the 
strength requirement of the communities, weak edges are 
removed and coarser graph instances are recursively created 
by identifying and removing communities, using the node 
with highest centrality each time. We recursively apply this 
step until every node is assigned to a community. 

3.1 Preprocessing: edge strength assignment 

The MCML algorithm finds communities in a graph  
G(V, E) where V represents the nodes/vertices and E 
represents the edges between the nodes, by assigning 
strength to the edges initially. It is desirable to assign an 
edge strength value that most accurately represents the 
topological structure of the graph in the MCML algorithm. 
Since we do not have any prior knowledge of the 
community structure, we assign a strength value to each 
edge based on the significance of that edge to the other 
nodes in the graph, and to the nodes at the end points of that 
edge. For each edge e(i, j) (where i and j are nodes) in the 
fine graph G, the topological edge strength value α(i, j) 
assigned to it is the ratio of number of triangles that edge 
e(i, j) participates in to the total number of triangles 
containing node i. 

If the strength value of an edge e(i, j) is greater than 
other edges in the 1-neighbourhood of i then, node i and 
node j are more likely to be in the same community. 
Whereas on the contrary, if edge e(i, j) has lower strength 
value than most other edges in the 1-neighbourhood of i, 
then node i and node j are less likely to be in the same 
community. Mathematically, 
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where Ni is the 1-neighbourhood of i, and t(i,j) is the total 
number of triangles whose sides contain edge (i, j). 

The MCML algorithm also works well with weighted 
graphs, where the edges are assigned weights winput as an 
input. To get the total weight of an edge, we simply have to 

take product of the topological edge strength value, with its 
input weight. 

( , ) ( , ) ( , )total inputi j i j w i j= ×α α  (2) 

After this we normalise the edge strength for all the edges, 
such that they range in between 0 and 1. 

3.2 Remove weak edges 

The procedure of removing the weak edges from the fine 
graph G is based on the required strength β of the 
communities. Edges with α(i, j) < β are removed. This 
simply means that, for low values of β, fewer edges will be 
removed from the fine graph G, as compared to when β has 
higher values. After deleting these edges we might label 
some nodes as non-community nodes, i.e., the degree of 
these nodes is zero. For higher values of β we get a higher 
number of non-community nodes and more stronger, 
smaller and significant communities are extracted. Whereas 
for lower values of β we get smaller number of  
non-community nodes, and higher number of nodes are 
assigned a community. 

3.3 Multilevel coarsening 

Let Gi (i ≥ 1), be the graph obtained by removing  
weak edges (i.e., α(j, k) < β) from G. We apply the 
following coarsening step recursively to extract meaningful 
community structure. 

Multilevel coarsening: We select a node v from Gi, having 
highest centrality and label it i. Now we distribute this label 
i assigned to v, to all the neighbours of v, denoted by N(v). 
We continue distributing labels to the neighbours of all the 
nodes with label i. We do this until there no more 
neighbours are left to send the label, or the maximum 
required size of the community is reached. Then we obtain a 
coarse graph Gi+1 by removing all the nodes with label i 
from Gi, along with their associated edges. We continue this 
process recursively until all the nodes are assigned a 
community. The communities having number of nodes less 
than the minimum number required in a community, labels 
all the nodes in that community as non-community nodes. 
This idea of recursively deleting communities is along the 
same lines as the one used in Jancura et al. (2012). The 
general schema for the algorithm is shown in Figure 1. 

3.4 Parallel implementation 

Parallel shared-memory-based, multi-core implementation, 
for each stage of our MCML algorithm is described in this 
section. 
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Figure 1 MCML algorithm’s general schema (see online version for colours) 

 

 

3.4.1 Parallel preprocessing 

In the preprocessing stage, we designate a master thread, 
which divides the graph roughly into k equal parts, where k 
is the number of cores/threads available. We perform a k 
partition on the input graph. We can use an existing k way 
graph partitioning library like KaHIP, METIS, PMETIS, 
etc. to divide the graph into k parts. The master thread then 
assigns each of these k parts to k threads individually 
(including itself), as shown in Figure 2. Then each thread 
computes the edge strengths in the part of the graph 
assigned to them, using equation (1). The inter-partition 
edges, which are the dashed edges in Figure 2, are excluded 
in this computation. Once all the threads have completed 
their edge strength assignment computations, the master 
thread merges the k parts of the graph back together and 
computes the edge strengths of the previously excluded 
dashed edges. 

3.4.2 Parallel weak edge removal 

In weak edge removal stage of the algorithm, we again 
partition the preprocessed graph into k parts and assign each 
part to each of the k cores/threads individually, in the 
similar way we did in the preprocessing stage. Each core 
removes the edges having strength less than threshold value 
(β) from the corresponding part of the graph they process. 
Note that, here we do not have to worry about the  
inter-partition edges (dashed edges in Figure 2) because, if 
they have strength less than the threshold they will be 
removed, else will be restored, by both the threads they are 
assigned to. Once all the threads have completed their weak 
edge removal process, the master thread merges all k parts 
of the graph back together. 

3.4.3 Parallel multilevel coarsening 

In the multilevel coarsening stage of the algorithm, we 
designate a master thread, which first finds the node with 
highest degree centrality in the graph and labels it i (i ≥ 1). 
We then create a global queue, such that all the k cores point 
to the rear-end of this queue, as shown in Figure 3. The 
highest centrality node is then pushed into this global queue. 
The master thread is then assigned to this node, based on 
our construction of the queue. Then the master thread 
distributes label i to 1-neighbourhood of this node and also 
add the new nodes it discovers in the 1-neighbourhood to 
the queue. Similarly in the consequent rounds, the threads 
are assigned nodes from the queue as shown in Figure 3 and 
each thread distributes label i to a 1-neighbourhood (nodes 
that have not yet received the label i) of the node assigned 
to it, along with adding the newly discovered nodes to the 
queue. So at a given time, there are k nodes that are 
assigned to k cores in a cyclic fashion, which can 
simultaneously propagate its labels. In Figure 3, initially the 
master thread, i.e., core 1 finds node 1 (red node) which is 
the highest centrality node and adds it to the queue after 
assigning label i to it. Node 1 is then assigned to core 1, 
which distributes label i of node 1 to the nodes in its  
1-neighbourhood (green nodes) which have not yet been 
labelled. Along with label distribution, it also add these 
nodes to the queue. Nodes 2, 3, 4, 5, 6, 7, and 8 are added to 
the queue. In the second round, nodes 2, 3, 4, and 5 are 
assigned to cores 1, 2, 3, and 4, respectively in a cyclic 
fashion from the rear-end of the queue. Each of the cores 
then follow the same steps that was followed by core 1 in 
the initial round. 
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Figure 2 Parallel preprocessing (see online version for colours) 

 

Figure 3 Parallel multilevel coarsening (see online version  
for colours) 

 

We place appropriate barriers and write locks to the queue 
in order avoid race conditions between threads. This 
process continues in cyclic fashion, until the queue is empty 
(disjoint component found) or maximum desired size of the 
community is reached. After finding a community, the k 
threads remove the community with label i from the graph 
(using a trivial parallel for loop) and the same process is 
iteratively applied on the remaining graph with label i + 1. 
We continue this until the algorithm terminates, i.e., all 
nodes are assigned to a community. Note that we did not 
perform a graph partition in this stage to avoid nodes of the 
same community to be assigned to multiple threads. The 
pseudo code for the MCML algorithm is given in  
Algorithm 1. 

Algorithm 1 MCML algorithm 

Require: Graph G(V, E), β, max size, min size 
1: return Community of each node 
2: for each thread T do 
3:  Assign k blocks of nodes and edges to each thread T 
4:  for each Edge e(i, j) assigned to thread T do 
5:   Find strength α(i, j) using equation (1) 
6:  end for 
7:  for each Edge e(i, j) assigned to thread T do 
8:   if (α(i, j) < β) then 
9:    Delete e(i, j) 
10:   end if 

11:  end for 
12:  while (All nodes are assigned to a community) do 
13:   for each Node assigned to thread T do 
14    Find node v with highest centrality, label it i 
15:   end for 
16:   while (No neighbours left or max sized reached) 

do 
17:    Assign nodes and edges to each thread T 
18:    Distribute label to the neighbours of the nodes, 

with label i 
19:   end while 
20:   for each Node assigned to thread T do 
21:    Delete node with label i and associated edges 
22:   end for 
23:  end while 
24: end for 
25: return community label for each node 

4 Computational results 

4.1 Benchmark datasets 

We use the benchmark datasets, karate club (Zachary, 1977) 
and dolphin club (Lusseau et al., 2003) to determine the 
quality of the results obtained by applying MCML 
algorithm. Since these two datasets have ground truth 
communities, we measure the quality of the results based on 
the accuracy metric, i.e., the number of nodes correctly 
assigned by MCML algorithm to the community they 
actually belong to in real life. We run MCML algorithm for 
various values of β (0, 0.1, 0.4, 0.6, 1.0). We also have a 
plot showing the number of nodes marked as  
non-community nodes, versus different values of β. 
Comparison of various community detection algorithms on 
Karate and Dolphin club benchmark datasets is shown in 
Table 1. The comparisons are made on the basis of the 
number of communities detected, number of correct 
matches and incorrect matches of the community nodes 
with its ground truth communities. 

4.1.1 Karate club 

This is a social network of friendships between 34 members 
of a karate club. It contains 156 edges and the dataset is 
unweighted and undirected. The real life known partition of 
this graph is into two groups. The group breaks down into 1, 
2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22 and 9, 10, 14, 15, 16, 
19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34. In 
Figure 4(1), where β = 0.0 and maximum size = 34, when 
compared to the ground truth communities of this network, 
all the nodes are correctly grouped, except node number 17, 
which becomes the non-community node. All the nodes in 
white are non-community nodes. The nodes with different 
colours belong to different communities. The accuracy plot 
for groupings made by MCML algorithm is shown in  
Figure 5. In Figure 4(5), where β = 1.0, we extract the 
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strongest link in the club, which is between node 1 and 9. In 
Figure 7(a), we can see that, as the value of β increases the 
number of non-community nodes increases and the more 
stronger and smaller communities are extracted. The edges 
extracted represent stronger connections compared to edges 
associated with non-community nodes. 

4.1.2 Dolphin club 

This is an undirected social network of frequent associations 
between 62 dolphins (nodes) in a community living off 
Doubtful Sound, New Zealand. Dolphin club is an 
unweighted network containing 159 edges. In Figure 6(1), 
where β = 0.0 and maximum size = 62, when compared to 
the ground truth communities of this network, 56 nodes are 

correctly grouped, three nodes become non-community 
nodes and three nodes are incorrectly grouped. These three 
incorrectly grouped nodes form a new community, since 
they have much stronger connection amongst each other, 
than with community with the red label. All the nodes in 
white are non-community nodes. Accuracy plot is shown in 
Figure 5. In Figure 6(5), where β = 1.0 and we extract the 
strongest link in the club, which is between node 51 and 46. 
In Figure 7(b), we can see that as the value of β increases 
the number of non-community nodes increases. On the basis 
of the above experiments on the two benchmark datasets, 
we can conclude that the higher the value of β the stronger 
and smaller is the extracted community. 

Figure 4 Karate club, (1) β = 0.0 (2) β = 0.1 (3) β = 0.4 (4) β = 0.6 (5) β = 1.0 (see online version for colours) 

 
Note: Edges retrieved/highlighted in (4) and (5) have stronger connections than other edges in the graph. 

Table 1 Comparing various community detection algorithms for karate and dolphin club benchmark datasets with β = 0.0 

Algorithm 
Karate club (34 nodes)  Dolphin club (62 nodes) 

No. of communities Correct Incorrect No. of communities Correct Incorrect 

Jancura et al (2012) 3 24 10  3 46 16 
Raghavan et al. (2007) 2 27 7  4 45 17 
Soman and Narang (2011) 2 29 5  2 49 13 

MCML 2 33 1  3 56 6 
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Figure 5 Accuracy plot: karate club and dolphin club (see online version for colours) 

 

Figure 6 Dolphin club, (1) β = 0.0 (2) β = 0.1 (3) β = 0.4 (4) β = 0.6 (5) β = 1.0 (see online version for colours) 

 
Note: Edge retrieved/highlighted in (5) has the strongest connection than any other edge in the graph. 
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Figure 7 Non-community nodes vs. strength, (a) karate club (b) dolphin club (see online version for colours) 

 
(a)       (b) 

Figure 8 Facebook Forum, (a) running time vs. number of cores (b) speed up (see online version for colours) 

 
(a)       (b) 

 

4.2 Facebook Forum dataset 

This dataset is obtained from Facebook online social 
network. The main focus in this network is on users’ 
activity in the forum. The forum represents a 2-mode 
network between primary nodes which are 899 users and 
secondary nodes which are 522 topics in the forum. It is a 
weighted network where the weights represent the number 
of messages a user posted on a particular topic. We use the 
preprocessed version of this dataset for our experiments, 
where 2-mode network is transformed into a 1-mode 
network maintaining the primary nodes, which are users and 
contain 142,761 edges. This dataset is available from 
http://toreopsahl.com/datasets/#online_social_network. 

Figure 9(a) represents the format of original dataset. 
User A posts three messages on topics 1 and four messages 
on topic 2. User B posts one message on topics 1 and 5 
messages on topic 2. When this dataset is preprocessed to 
eliminate the secondary nodes, we have two directional 
links between A and B, i.e., A to B which has weight 7 and 
B to A having weight 6, as shown in Figure 9(b). The  
1-mode projection of a weighted 2-mode network is based 
on the weights the two nodes have, directed towards 

common nodes. The two nodes interact with the common 
node, and Figure 9 shows how to project it onto a directed 
weighted 1-mode network. This dataset does not have 
ground truth communities, so we use modularity to 
determine the quality of the communities found. The quality 
comparison based on modularity and computational time for 
Facebook Forum dataset is given in Table 2. The modularity 
achieved for communities detected by MCML (β = 0.15) is 
0.3566, which is the best so far in the present state-of-the-
art. So even though we do not achieve the best running 
times as compared to other well known algorithms like 
(Blondel et al., 2008), we manage to maintain a good 
balance between the quality of the results and running 
times. 

Finding communities in this interesting dataset implies, 
finding groups of users sharing similar interests. This 
information can be used by social networking sites to 
provide friend suggestions to users, or suggestions to join a 
particular community forum having common interests. The 
performance of MCML algorithm, on this dataset is shown 
in Figure 8, where we achieve speed-ups up to 14.97 times 
using 16 cores. This is close to a k fold improvement using 
k core processor where (k ≥ 1). 
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Table 2 Comparing various community detection algorithms for Facebook Forum and Amazon datasets based on modularity and 
computational time using 16 cores 

Algorithm 
Facebook Forum  Amazon 

Modularity Time (sec) Modularity Time (sec) 

Newman and Girvan (2004) 0.0488 -  - - 
Pons and Latapy (2005) 0.2031 -  0.451 - 
Rosvall and Bergstrom (2008) 0.1372 -  0.470 - 
Raghavan et al. (2007) 0.1733 47  0.210 > 10,000 
Blondel et al. (2008) 0.3458 3  - - 
Yang and Leskovec (2013) - -  0.125 1890 
Prat-Pérez et al. (2014) - -  0.295 15 
Wang and Qian (2013) - -  0.510 4800 

MCML 0.3566 4.83  0.494 2389 

Notes: The blank values are not available in the literature of this research area. To get the computational time we include all the 
three stages of the algorithm. 

Figure 9 (a) 2-mode weighted network (b) preprocessed 1-mode weighted network (see online version for colours) 

 
(a)   (b) 

Figure 10 Amazon, (a) running time vs. number of cores (b) speed up (see online version for colours) 

 
(a)       (b) 

 
4.3 Amazon dataset 

This dataset represents a graph of products, where each 
node is a product and there is an edge between two products 
if they have been co-purchased frequently. This dataset has 
334,863 nodes and ≈ 1 million edges. This dataset has a 
151,037 ground truth communities, in which the top  
5,000 communities are the most significant. We use this 

dataset (http://snap.stanford.edu/data/index.html) in our 
experiments, to show that MCML algorithm gives fairly 
good performance and speed-up when applied to this 
dataset, and also, we do not degrade the quality of the 
results while achieving this. 

For β = 0.1 and maximumsize = 80 which is the largest 
community in the ground truth community data, it takes ≈ 
7.34 hrs to extract communities in this dataset using one 
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core and ≈ 39.82 minutes using 16 cores (i.e., speed-up of 
11.4 times). In Figure 10, we show the time taken to find 
communities in this dataset for 1, 2, 4, 8, 16 cores and 
corresponding speed-ups respectively. The quality 
comparison based on modularity and computational time for 
Amazon dataset is given in Table 2. The modularity 
achieved for communities detected by MCML (β = 0.1) is 
0:494, which is better than most of the other algorithms in 
the present state of art. So even though we do not achieve 
exceptional running times as compared to other well-known 
algorithms like Prat-Pérez et al. (2014) and Yang and 
Leskovec (2013), we manage to maintain a good balance 
between the quality of the results and running times. 

5 Implementation details 

We implemented the MCML algorithm using C++ and 
graph boost libraries. The simulations for the benchmark 
datasets and the Facebook Forum dataset are done on 
Processor-Intel Core i73770, 3.4 GHz and Turbo  
Boost enabled Memory-16GB DDR3 – 1,600 RAM;  
Linux machines. These machines have four cores with 
hyper-threading enabled. The simulations for the Amazon 
dataset is done on a system running on CentOS 6.3, a Linux 
operating system based on Red Hat Linux, with 512GB 
Nodes, 32 GB RAM, 2.9 GHz, and 16 Xeon Phi cores. All 
the results obtained are averages of five runs. We use 
OpenMP directives for implementing parallel MCML 
algorithm. All the plots are done using Gephi and Gnuplot. 

6 Conclusions 

In this paper, we develop a MCML community detection 
algorithm, which achieves a good balance between 
scalability and quality of the communities discovered. We 
show that the quality of the results obtained by the MCML 
algorithm for benchmark datasets with ground truth is 
highly accurate. We also compare MCML with other well 
known algorithms for datasets without ground truth, based 
on modularity metric for quality analysis, and conclude that 
MCML can detect communities roughly as meaningful as 
other known algorithms and in some cases even better 
(Facebook Forum). We manage to maintain a good balance 
between the quality of the results and running times as 
compared with the present state-of-the-art, which is a well 
known challenging problem in this area. We conclude that 
assigning edge strengths based on the topology of the given 
graph is key for ensuring good quality results. Our 
experiments also show good scalability and speed-up 
achieved by our MCML algorithm. The design of the 
MCML algorithm achieves scalability for some datasets 
(Facebook Forum) that is close to a k fold improvement in a 
k core processor, where (k ≥ 1). 

The MCML extracts disjoint communities, so one of our 
future research directions is to extend the ideas behind  
the topological feature analysis of the graph to assign  
edge strengths, performed by the MCML, to detect 

overlapping communities. Also, partitioning the network 
into sub-networks to achieve highest level of parallelism 
requires more cores. So it will be worthwhile to see if 
MCML can be extended to use message passing interface 
(MPI) in order to exploit cores of multiple machines, 
without incurring too much communication overhead. It 
will also be interesting to see whether the MCML can be 
modified to exploit GPU cores which would provide even 
higher scalability. 
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