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Abstract: Identifying functional modules is believed to reveal most cellular 
processes. There have been many computational approaches to investigate the 
underlying biological structures. We shall use community detection algorithm 
which we present in a bi-level algorithmic framework to accurately identify 
protein complexes in less computational time. We call this algorithm bi-level 
label propagation algorithm (BLLP). Using this algorithm, we extract 123 
communities from a protein–protein interaction (PPI) network involving 2361 
proteins and 7182 interactions in Saccharomyces cerevisiae i.e. yeast. Based on 
these communities found, we make predictions of functional modules for 57 
uncharacterised proteins in our dataset, with 80%+ accuracy. We also perform 
a comparative study by applying various well-known community detection 
algorithms on the PPI yeast network. We conclude that, BLLP algorithm 
extracts more accurate community structures from PPI yeast networks in less 
computational time. 
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1 Introduction 

Most cellular processes are believed to be carried out by groups of highly interacting proteins 
called functional modules, protein complexes, or molecular complexes. Recent large-
scale high-throughput experiments, and integration of published data, have generated 
large protein–protein interaction (PPI) networks. Even one of the simplest eukaryotic 
organism, yeast, has more than 5000 proteins. Protein complexes can be detected by 
identifying highly connected sets of proteins in PPI networks. Computational identification 
of functional modules or protein complexes can provide an inexpensive guideline for 
biological experiments. Protein–protein interactions can alter kinetic properties of 
enzymes, create new binding sites for small effector molecules, destroy or inactivate the 
protein, exhibit a new functionality which a single protein cannot exhibit alone, etc. 

There have been many recent computational approaches to disclose the underlying 
biological structures (Bader and Hogue, 2003; Ding et al., 2006; Krogan, 2006; Ramadan 

et al., 2005; Xiong et al., 2005; Zhang et al., 2004). These approaches are divided into two 
groups. One group uses machine learning approaches to construct weighted networks by 
integrating existing data sets to predict protein complexes (Krogan, 2006; Zhang et al., 
2004). Another group tries to extract highly connected subgraphs or dividing a whole 
network into groups of clusters on a protein–protein interaction (PPI) network (Bader and 
Hogue, 2003; Ding et al., 2006; Ramadan et al., 2005; Xiong et al., 2005; Oliveira and 
Seok, 2008). 

There are a number of challenges in treating protein–protein interaction data. One is 
that many high-throughput experiments have high error rates, which results in a great 
many false positives for interactions between proteins. Another challenge is that some 
proteins are interaction mediating proteins that interact with very large numbers of other 
proteins; these might, for example, provide common services to many different parts of 
the cell. The former challenge can make accurate identification of functional modules 
difficult, while the latter challenge tends to make the entire proteome appear to be a 
single indivisible functional module. 

Protein complexes correspond to modules, which can be viewed as dense sub-
networks or communities in PPI networks. Community detection algorithms can be used 
extract these dense sub-networks/communities. Modules can be defined in many ways 
with, for example, densely connected sub-networks with more intra-node edges as compared 
to inter-node edges. Some of these definitions are present in the literature (Radicchi et al., 
2004). Functional module detection in PPI networks is computationally very hard. Based 
on different definitions of modules, there are many community detection algorithms in 
the current state of the art, which is used to identify functional modules in PPI networks. 
Trivial algorithms are not well suited for this job (Yook et al., 2004). 

One class of the community detection technique relies on finding completely 
connected sub-networks (cliques) in PPI network (Spirin and Mirny, 2003). This 
technique is very inefficient for detecting modules for large PPI networks, and also 
proteins participating in a complex, rarely have interactions with all other proteins in that 
complex. Another class of community detection algorithms rely on finding dense sub-
networks in PPI network (not essentially cliques) (Altaf-Ul-Amin et al., 2006). Such 
algorithms mis-classify low-shell proteins into distinct clusters, where as they could have 
been classified in a same core cluster. Due to this weak connectivity, many biological 
interactions are ignored. Similar pitfalls are also been observed, when hierarchical 
community detection algorithms are used to find modules in PPI networks (Li et al., 
2008; Rahman and Ngom, 2013). In this paper, we present a bi-level community 
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detection algorithm based on label propagation, which eliminates the above pitfalls in 
identifying modules in PPI networks, and also helps to control large communities which 
dominate the network. Hence we retrieve communities with high modularity, high 
accuracy of matching with ground truth functional modules and in less computational time. 

2 Related work 

2.1 Multi-level spectral algorithms 

Ramadan et al. (2005) proposed a two-level architecture for a yeast proteomic network. 
They construct small networks from a PPI network by removing proteins which interact 
with too many or too few proteins. Removing proteins with too few interactions can 
eliminate many effects of false positives. These proteins have a tendency to be classified 
in larger clusters to which it interacts, even if the interaction has low confidence value. 
Such low-shell proteins generally group with other low-shell proteins. There are specific 
proteins that function as substrates or agonists of protein receptors, such as G-protein 
coupled receptors (GPCR’s). This is a specific interaction between molecules that have 
concordant configurations. We can also apply clustering again to these low-shell proteins 
which are removed, to avoid ignoring important biological processes. On the other hand, 
removing proteins with the largest numbers of interactions can make the finer structure of 
the interactions more evident. A clustering algorithm is applied to this residual network. 
Validation of clusters is performed by comparing the clustering result with a protein 
complex database, the Munich Information Center for Protein Sequences (MIPS). A 
spectral clustering method plays a critical role for identifying functional modules in the 
PPI network in their research. 

One author of this paper has successfully applied a multilevel spectral algorithm to 
cluster a group of documents using similarity matrices which are mostly dense with 
entries between 0 and 1 (Oliveira and Seok, 2005) and has developed a matrix-based 
multilevel approach to identify functional protein modules (Oliveira and Seok, 2008). 
Like large-scale networks, the vertex connectivities of proteomic networks follow a 
scale-free power-law distribution (Bornholdt and Schuster, 2006). That means that, the 
proteomic network consists of a small number of high degree nodes and a majority of 
low degree nodes. However, the proteomic network has no edge weights. Multilevel 
algorithms have a long history, mostly for partial differential equations in numerical 
analysis but also for network partitioning, such as METIS (Karypis and Kumar, 1995). 
Multilevel schemes have been applied to network clustering too (Dhillon et al., 2005; 
Oliveira and Seok, 2005). 

2.2 Community detection algorithms 

A community in a network is a set of nodes that are densely connected with each other 
and sparsely connected to the other nodes in the network. A group of proteins in a same 
community within a PPI network, frequently coincide with known functional modules or 
protein complexes. Many proposed algorithms to detect community structures in 
complex networks are based on graph theory. Most of the work in this area is focused on 
enhancing the modularity, that is to increase the number of intra-cluster edges as opposed 
to inter-cluster edges. In our comparative study, we use modularity as a metric to 
determine the quality of our results over other well known algorithms, when applied to 
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PPI network. Some of these algorithms use techniques like betweenness centrality (De 
Meo et al., 2011), hierarchical clustering (Vieira et al., 2014), and label propagation 
(Kothapalli et al., 2013). A thorough review of community detection algorithms for 
networks is given in Fortunato (2010). It consists of various techniques, methods and 
datasets for detecting communities in biology, computer science and other disciplines, 
where the system is represented as a network. 

In this paper we present the algorithm of Soman and Narang (2011) as a bi-level 
algorithm. We use it to identify functional protein modules in PPI networks with high 
accuracy. The BLLP algorithm involves a pre-processing stage where the edge weights 
of the network are computed based on its topological features, a step similar to 
coarsening of the original network, followed by a label propagation algorithm (Raghavan 
et al., 2007) and a post-processing step to improve the quality of the communities 
detected. Even though it is possible for a protein to have multiple functional modules, our 
algorithm does not detect overlapping communities, i.e., does not identify multiple 
functional module for a single protein. Instead it identifies one strong functional module 
for a protein under consideration. 

The remainder of the paper is organised as follows. In Section 3, we will talk about 
important features of PPI networks. In Section 4, we describe the PPI yeast network that 
is used in this paper for all simulations. In Section 5, we describe the bi-level label 
propagation algorithm followed by Section 6, where we show the computational results 
along with a comparative study with other well known community detection algorithms 
(De Meo et al., 2011; Kothapalli et al., 2013; Blondel et al., 2008). We also show the 
accuracy of BLLP algorithm in predicting functional modules of uncharacterised 
proteins. We finally end the paper by giving implementation details and conclusion in 
Section 7. 

3 Features of PPI networks 

Graph theory is commonly used as a method for analysing PPIs in Computational 
Biology. Each vertex represents a protein, and edges correspond to experimentally 
identified PPIs. Proteomic networks have two important features (Born-holt and 
Schuster, 2003). One is that the degree distribution function P(k) (the number of nodes 
with degree k) follows a power law P(k)  constant k– and so is considered a scale-free 
network. This means that, most vertices have low degrees, called low-shell proteins 
(defined in Section 3), and a few are highly connected, called hub proteins. The other 
feature is the small world property which is also known as six degrees of separation. This 
means the diameter of the network is small compared with the number of nodes.  

The standard tools to understand these networks are the clustering coefficient (Cc), 
the average path length, and the diameter of the network. The clustering coefficient (Cci)  
is defined in terms of E(G(vi)), the set of edges in the neighbourhood of vi. The clustering 
coefficient is the probability that a pair of randomly chosen neighbours of vi are 
connected. That is, 

2
| ( ( )) |

( )[ ( ) 1]i i
i i

Cc E G v
deg v deg v

 


 (1) 

where G(vi) is the neighbourhood of vi, and E(G(vi)) is the set of edges in G(vi). 



   

 

   

   
 

   

   

 

   

    Identification and prediction of functional protein modules 133    
 

    
 
 

   

   
 

   

   

 

   

       
 

Since the denominator is the maximum possible number of edges between vertices 
connected to vi, 0  Cci  1. The global clustering coefficient can be simply the average 
of all individual clustering coefficients (Cci) like 

1

/
n

i
i

Cc Cc n


    (2) 

But this ‘average of an average’ is not very informative (Bornholt and Schuster, 2003); 
one alternative is to weight each local clustering coefficient 
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i
i

deg v
Cc Cc n

MaxDeg

   (3) 

where MaxDeg is the maximum degree in the network. We use the latter Cc as our 
clustering coefficient for the rest of the paper. 

The path length of two nodes vi and vj is the smallest sum of edge weights of paths 
connecting vi and vj. For an unweighted network, it is the smallest number of edges 
connecting vi and vj. The average path length is the average of path lengths of all pairs 
(vi,vj). The diameter of the network is the maximum path length. Some other important 
features about PPI networks are: 

 The hub proteins have interactions with many other proteins, so it is hard to limit 
them to only one cluster and the computational complexity increases when they are 
included. 

 There are many low-shell proteins, which increases the size of the network. These 
nodes are easy to cluster when the nodes they are connected to are clustered first. 

 Proteomic networks are mostly comprised of one big component and several small 
components. 

In Section 4, we talk about these features with our model of yeast network in more 
details. 

4 Model PPI network for yeast 

There are databases which contain protein–protein interactions as well as cellular 
localisation, gene regulation and the context of these interactions. The best known are 
KEGG (www.genome.ad.jp/kegg), BIND (www.bind.ca), MIPS (mips.gsf.de), PROnet 
(www.pronet.doubletwist.com) and DIP (dip.doe-mbi.ucla.edu) which are used to test the 
algorithms. 

Over the last decade, high throughput interaction detection approaches like yeast two-
hybrid system (Uetz et al., 2000), protein complex purification technique using mass 
spectrometry (Ho et al., 2002), correlated messenger RNA expression and genetic 
interaction data (Hughes et al., 2000), etc., have created number of datasets of PPI 
interactions for several eukaryotic organisms, like yeast. The interactions produced by 
using the above techniques have many false positives. In order to measure the accuracy 
of these interactions, Von Mering et al. (2002) checked 80,000 interactions amongst 5400 
yeast proteins and assigned each interaction a confidence value. To eliminate the effect of 
false positives in our predictions, we focus on 7182 interactions with high confidence 
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value (above 75%), among 2361 proteins. This proteomic network for yeast is given in 
Pajek Datasets (http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm). To 
evaluate the clustering results, we compare with the functional modules given in the 
Munich Information Center for Protein Sequence (MIPS), which has a list of 
experimentally trusted functional modules in yeast. Each protein is given a short label for 
identification (called PIN on MIPS) and a functional module. We select 57 proteins 
randomly from 2361 proteins, having the following functional modules: 20 r-RNA, 11 
Ribosome biogenesis, 7 Splicing, 6 Lipid oxidation, 2 Protein binding, 3 t-RNA, 3 m-
RNA, 2 Tricarboxylic acid pathway, 2 Nuclear degradation and 1 Catabolism. Then we 
mask these functional modules for the 57 proteins and term them as uncharacterised 
proteins. We then make predictions on which functional modules they belong to, based 
on the BLLP algorithm’s outcome and compare it with the ground truth functional 
module. We also conduct network analysis to determine the following features of PPI 
Yeast network: 

4.1 Betweenness centrality distribution 

Betweenness centrality is the number of shortest paths between a pair of vertices that 
pass through a node. There is a pair of proteins in the PPI yeast network, through which  
 950 shortest paths pass. These proteins are considered as a hub-proteins. In our data set, 
these proteins are labelled YMR093W and YHR052W. Their functional module is  
r-RNA processing. These proteins have majority of interactions with other proteins 
within the largest community we detected in our dataset, being the functional module for 
r-RNA processing. They also have considerable interaction with proteins in the ribosome 
biogenesis functional module. 

4.2 Clustering coefficient 

The clustering coefficient of the PPI yeast network, i.e., the measure of the degree to 
which nodes in this network tend to cluster together is 0.271. There are 1300 nodes 
whose clustering coefficient is 0; i.e., low-shell proteins.  

Figure 1 PPI yeast network in which 2361 proteins are linked by 7182 interactions and 536  
self interactions 

 
 



   

 

   

   
 

   

   

 

   

    Identification and prediction of functional protein modules 135    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.3 Closeness centrality distribution 

The closeness centrality Ci of a node i in a network is the inverse of the mean shortest 
path distance from i to every other node in the network 

1

( , )i

i j

n
C

dist i j






  (4) 

where dist(i,j) is the shortest path distance between nodes i and j, and n is total number of 
nodes in the network. If there exists no path between i and j then, n nodes are used in 
equation 4, instead of the path length. 

4.4 Degree distribution 

In Figure 2(d), we can see that the degree distribution function for PPI yeast network 
P(k) (the number of nodes with degree k) follows a power law P(k)  constant k- and 
hence is a scale-free network (Bornholdt and Schuster, 2006; Pržulj, 2007; Pržulj et al., 
2004). 

4.5 Diameter, average path length, number of shortest paths and connected 
components 

The density of the network is 0.003. The diameter of the yeast network is 11. So the 
diameter is much smaller as compared to the number of nodes in the PPI yeast network 
network, thus it exhibits the small world property. The average path length is 4.3762. 
There are 78 small connected components. 

Figure 2 Properties of PPI yeast network (see online version for colours) 
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5 BLLP algorithm 

In this section, we present the algorithm of (Soman and Narang, 2011) in a bi-level 
algorithmic framework, involving a pre-processing stage where the edge weights of the 
network are computed based on its topological features, a step similar to coarsening of 
the original network (level 1), followed by applying label propagation algorithm 
(Raghavan et al., 2007) once on coarsened network (level 2) and then iteratively in level 
1, incorporating a post-processing step to improve the quality of the communities 
detected. 

5.1 Pre-processing: topological weight assignment (Level 1) 

The BLLP algorithm finds communities in a network G(V, E) where V represents the 
nodes/vertices/proteins and E represents the edges/interactions between the nodes, by 
assigning weights to the edges and tracking the propagation of the label through the 
network. It is desirable to assign edge weights that most accurately represent the 
topological structure of the network in the BLLP algorithm. Since we do not have any 
prior knowledge of the community structure, we assign weights to each edge based on 
the significance of that edge to the other nodes in the network, and to the nodes at the end 
points of that edge. For each edge e(i, j) (where i and j are nodes) in the fine network G, 
the topological edge weight wtop(i,j) assigned to it is the ratio of number of triangles that 
edge e(i, j) participates in to the total number of triangles containing node i. If the weight 
of the edge e(i, j) is greater than other edges in the 1-neighbourhood of i then, node i and 
node j are more likely to be in the same community. Whereas on the contrary, if edge 
e(i,j) has lower weight than most other edges in the 1-neighbourhood of i, then node i and 
node j are less likely to be in the same community. 

Mathematically, 

( , )

( , )( , )

( , ) ;
( )

i j
top i

i ki k

t
w i j k N

t
 


 (5)  

where Ni is the 1-neighbourhood of i, and t(i, j) is the total number of triangles whose 
sides contain edge (i, j). 

The BLLP algorithm also works well with weighted networks, where the edges are 
assigned weights winput as an input. To get the total weight of an edge, we simply have to 
take product of the topological weight of that edge, with its input weight. 

( , ) ( , ) ( , )total top inputw i j w i j w i j    (6) 

We initialise the label of each node in the fine network G to their corresponding node id, 
which is also the label weight for that node. The propagation function used to transfer 
labels between nodes in the network is given by: 

( ) ( )
ij N jL i argmax L   (7) 

where Lj is the label (also referred as weight of the label) of node j in Nj (nodes one edge 
away from i). In the later subsections, we modify this propagation function before using 
it in the label propagation step. 
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5.2 Coarsening 

In this step of the BLLP algorithm, we apply coarsening to the fine network G. For each 
node i of network G, we find the maximum weighted edge e(i, j) in its 1-neighbourhood. 
Now we find all such edges in the fine network G and copy them to a new network G = 
(V, E). That is, the set of edges E is the set of edges e(i, j) where e(i, j) has the 
maximum weight in the 1-neighbourhood of i. The set of vertices is the set of all i and j 
where e(i,j) is in E. Note that |V| > |V|. 

There always exists some node pairs say n1 and n2 such that (n1,n2) is connected with 
a maximum weight edge and conversely so is (n2,n1). It is very important to label these 
nodes with the common label, to avoid oscillatory behaviour, where these 2 nodes will 
keep on exchanging labels and algorithm will not converge, thus degrading the quality of 
the results. 

5.3 Labelling and interpolation 

Now in level 2 we find the connected components in this coarse network G’ and then 
perform a label propagation algorithm until all the nodes in each component have 
common labels. This phase of finding locally relevant communities ensures good quality 
results. By doing this we also eliminate all the overlapping pairs. These components are 
local communities in the network. We then transfer the labels of the nodes in coarse 
network G back to the fine network G. These are the new labels which will be used 
when the label propagation step begins. 

Now before we go ahead let us take a small example to understand the pre-
processing, coarsening, and interpolation steps of the algorithm. We apply pre-processing 
step to the fine network G in Figure 3(a), where weights are assigned to all the edges 
based on the topological structure of G. Assume the weights are assigned as shown in 
Figure 3(b). All six nodes are given initial labels corresponding to their node identifier. 
In the coarsening step of BLLP algorithm, for each node in the fine network G, we find 
the maximum weighted edge in its 1-neighbourhood. For example in Figure 3(b), edge(1, 
2) is the maximum weighted edge for node 1 as well as node 2. Similarly, edge(3, 5) and 
edge(5, 6) are maximum weighted edges in the 1-neighbourhoods of nodes 4 and 6 
respectively. We copy all such edges and corresponding nodes in the new network G. In 
the interpolation step we find connected components in this coarse network G. Then we 
apply one iteration of label propagation, where all the nodes in G send their label to 
every other node in their 1-neighbourhood and each node assigns itself the lowest label it 
receives. This way all the nodes in each component have a common label. In Figure 3(d), 
we have two connected components in G with label 1 and label 3. We then transfer these 
labels from coarse network G to fine network G shown in Figure 3(e). 

5.4 Label propagation (Level 1) 

Now we shall apply the label propagation algorithm to the fine network G. Each iteration 
of the label propagation algorithm includes the following steps; 
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1 every node i in the fine network G sends a label L(i)new given in equation 9, to every 
other node in its 1-neighbourhood 

2 each node then assigns itself the maximum value label it receives 

3 if the label of some node changed, repeat step 1 

The algorithm terminates when all the nodes are stably labelled. It takes 6 iterations for 
the algorithm to terminate on the PPI yeast network. The nodes having the same labels 
after the termination of the label propagation algorithm, belong to the same community. 

Figure 3 (a) Network G (b) Pre-processing: Topological weight Assignment (Level 1) (c) Coarse 
graph G (d) Labelling : Find connected components and give common label to nodes in 
same component (e) Interpolation: Transfer labels from G to G (f) Label Propagation 
(Level 1) (see online version for colours) 

 
 

We use the label given in equation (9) and not the label L(i) given in equation (7) 
because, if there is a large dominating community in the network, it will dominate all the 
other communities leading to the scenario where all the nodes in the network have same 
label. This is similar to spread of disease and is also referred to as epidemic spread in the 
network. BLLP controls the community size by assigning weight to each label, in each 
iteration of the label propagation, based on the following formula; 

( ) 1
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where dC is the sum of degrees of all the nodes in community C with label Li and m is 
total number of edges in the network. The modified label propagation function is 

( ) [( ) ( , ) ( )]
inew j N j total label iL i argmax L w j i W L    (9) 

where Lj is the label of node j, and wtotal (j,i) is the total weight of an edge(i,j). So we can 
see that, if the size of the community increases the value of Wlabel(Li) decrease and so the 
chances of this label to propagate further in the network decreases. Conversely, if the size 
of the community decreases the value of Wlabel (Lj) increases and so the chances of this 
label to propagate further in the network increases. 

For more clarity on how labels are propagated, let us consider the example given in 
Figure 3(f), where node 4 propagates its label to its neighbour node 3. The label 
propagation function used by node 4 to propagate its label to node 3 is given by L(4)new = 
(current label of node 4)  (edge weight of edge(4, 3)) Wlabel(L4), where Wlabel (L4) is 
determined by equation (8), which prevents the epidemic spread in the network. Node 3 
receives labels from nodes 2, 4, 5 and 6 and then assigns itself the maximum value label 
it receives. 

We determine the quality of the detected communities using the modularity metric, 
denoted by, 

( , )
,

1
[ ( )]

2
i

i j i j
i j i i

dC
Q A C C

m d


 
  

 
    (10) 

where A(i,j) is the adjacency matrix. Ci and Cj denotes the communities in which nodes i 
and j belong respectively.  (Ci,Cj) is the Kronecker function such that 

,

1;
( )

0;

i j

i j
i j

C C
C C

C C


  
  

iCd  denotes the degree of community Ci and di is the degree of node i. 

6 Computational results 

Computational results for BLLP algorithm when applied to PPI yeast network is shown 
in this section. We show that, using our algorithm highly accurate predictions are made 
to identify functional modules for uncharacterised proteins. We also conduct a 
comparative study, comparing three different community detection algorithms (De Meo 
et al., 2011; Kothapalli et al., 2013; Blondel et al., 2008) on PPI yeast network, based on 
modularity of the communities discovered and computational time. 

6.1 BLLP on PPI yeast network 

The PPI yeast network we studied involves, 2361 proteins and 7182 interactions with 536 
self-interactions and 78 small components. BLLP extracts 123 different communities 
from this data set. The modularity of the extracted communities is 0.592. The MIPS 
Comprehensive Yeast Genome Database (CYGD) provides the catalogue of protein–
protein interactions, the protein complex catalogue and the protein localisation catalogue 
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which stores information related to the proximity of proteins in yeast (Monien et al., 
2000). The protein complexes include more than 200 manually extracted protein 
complexes. We check the communities obtained by BLLP against the MIPS database to 
determine the percentage of correct matching. 

Figure 4 (a) PPI yeast network with 123 communities: red = largest community with 1279 
nodes, blue = second largest community with 602 nodes (b) Correctness of groupings 
made by BLLP (see online version for colours) 

 

Table 1 Jaccard Index to quantify the distance between protein complexes in MIPS database 
and functional module partitions by BLLP algorithm. (1205, 580, and 64 in rows 1, 2, 
and 3 are total number of grouped proteins in largest 3 ground truth communities 
respectively). 

Communities Jaccard Coefficient Jaccard Distance 

Community 1 
1051

1279 1205 1051 
 1 – 0.7334 = 0.267 

Community 2 
510

602 580 510   1 – 0.759 = 0.241 

Community 3 
62

73 64 62   1 – 0.827 = 0.173 

 

In Table 1, Jaccard coefficient and Jaccard distance for the largest 3 communities 
detected by BLLP compared with MIPS protein complexes is shown. Jaccard similarity 
coefficient, is a statistic used for measuring similarity between finite sample sets, and is 
defined as the size of the intersection divided by the size of the union of the sample sets. 
The Jaccard distance, which measures dissimilarity between sample sets, is 
complementary to the Jaccard similarity coefficient (Downton and Brennan, 1980; Sah, 
et al., 2014). As shown in Figure 4, in the largest community having 1279 proteins; the 
BLLP algorithm matches 1051 proteins correctly to their functional module i.e.82.20% 
correctness. In the second largest community having 602 proteins of which 510 proteins 
have been correctly matched i.e. 84.71% correctness and in the third largest community 
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having 73 proteins of which 62 proteins have been correctly matched i.e. 84.93% 
correctness. All the components with  25 nodes and > 1 node are grouped with 92+% 
accuracy. 

Table 2 Number of detected communities and corresponding sizes, in PPI yeast network 

No. of communities Nodes % of whole network 

1 1279 54.21 

1 602 25.5 

1 73 3.13 

1 44 1.86 

1 38 1.61 

1 27 1.14 

1 25 1.06 

1 18 0.76 

1 12 0.64 

1 10 0.51 

2 9 0.34 

2 7 0.3 

5 6 0.25 

6 4 0.21 

5 3 0.13 

17 2 0.08 

76 1 0.04 
 

Figure 5 YIL070C uncharacterised protein interacts with other known proteins (see online 
version for colours) 

 

We observe that, the largest community with 1279 proteins is dominated by proteins with 
functional module of r-RNA processing; of which 1051 proteins are classified correctly 
and 91% of mis-classified proteins belong to functional module of ribosome biogenesis. 
The second largest community with 602 proteins is dominated by proteins within the 
ribosome biogenesis functional module; of which 510 proteins are classified correctly 



   

 

   

   
 

   

   

 

   

   142 S. Oliveira and R. Sharma    
 

    
 
 

   

   
 

   

   

 

   

       
 

and 87% of mis-classified proteins belong to the functional module for r-RNA 
processing. From this observation we infer that there are many proteins in the largest two 
communities detected, which may have multiple functional modules i.e., ribosome 
biogenesis as well as r-RNA processing. The third largest community with 73 proteins is 
dominated by proteins in the splicing functional module, of which 62 proteins are 
classified correctly and remaining 11 proteins are mis-classified to functional module for 
r-RNA processing and oxidation of fatty acids, lipids, and bio-synthesis. Some of these 
11 mis-classified proteins are classified into larger communities, which are dominated by 
proteins in the r-RNA and ribosome biogenesis functional modules. This effect is much 
less as compared to same seen, when other community detection algorithms (in Section 
6.3) are applied to the PPI yeast network. 

Table 3 Incorrect prediction of functional modules made by the BLLP algorithm, for 
uncharacterised proteins 

No. Protein Pin BLLP assigned modules Correct modules 

1 YKL155C r-RNA processing Ribosome biogenesis 

2 YNL177C r-RNA processing Ribosome biogenesis 

3 YMR158W r-RNA processing Ribosome biogenesis 

4 YPL012W Ribosome biogenesis r-RNA processing 

5 YPR144C Ribosome biogenesis r-RNA processing 

6 YNL002C Ribosome biogenesis r-RNA processing 

7 YJL069C Ribosome biogenesis r-RNA processing 

8 YGL111W Ribosome biogenesis r-RNA processing 

9 YLR222C Ribosome biogenesis r-RNA processing 

10 YDR428C Splicing Lipid oxidation 

11 YLR186W Splicing r-RNA processing 

6.2 Functional module prediction for uncharacterised proteins 

We have 57 uncharacterised proteins in our data set and we shall make predictions based 
on the communities detected by BLLP algorithm. We check the correctness of these 
predictions against the MIPS database, to determine the accuracy of our results. We 
determine the functional modules of uncharacterised proteins, by checking its 
interactions with known proteins. We assign the uncharacterised protein, the functional 
module of that of majority of the known proteins that it interacts with, belonging to  
the same community. For example, YIL070C interacts with YGL237C, YIL061C, 
YKL108W, YJR035W, YOL108C, YOL054W, YPR015C, YJL115W, etc., where 
majority of these have a functional module r- RNA, so we assign YIL070C the functional 
module r-RNA. In case of a tie, we assign any one of the functional module randomly, to 
the uncharacterised protein. It is possible for a protein to have multiple functional 
modules, but our algorithm does not resolve the issue of overlapping communities in the 
network. We mainly focus on finding one strong functional module for an 
uncharacterised protein. We follow the same procedure for all the uncharacterised 
proteins and assign them a functional module based on same rule. We then verify our 
functional module assignment using the MIPS database/ground-truth dataset, making 46 
out of 57 correct predictions i.e. accuracy of 80% for PPI yeast dataset. Functional 
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modules of 11 out of 57 uncharacterised proteins are incorrectly predicted, for similar 
reasons mentioned in section 6.1, paragraph 3. In Table 3, we have shown 11 
uncharacterised proteins whose functional modules are incorrectly predicted, and Table 4 
contains 46 uncharacterised proteins whose functional modules are correctly predicted, 
by BLLP. 

Table 4 Correct prediction of functional modules made by the BLLP algorithm, for 
uncharacterised proteins 

No. Protein Pin BLLP assigned modules 

1 YGR263C Catabolism 

2 YBL004W r-RNA processing 

3 YPR034W r-RNA processing 

4 YDR449C r-RNA processing 

5 YIL070C r-RNA processing 

6 YER126C r-RNA processing 

7 YGR128C r-RNA processing 

8 YGR145W r-RNA processing 

9 YHR196H r-RNA processing 

10 YHR088W r-RNA processing 

11 YHR052W r-RNA processing 

12 YKR060W r-RNA processing 

13 YMR093W r-RNA processing 

14 YOR001W r-RNA processing 

15 YDR517W Lipid oxidation 

16 YOR093C Lipid oxidation 

17 YBL055C Lipid oxidation 

18 YDL193W Lipid oxidation 

19 YNL026W Lipid oxidation 

20 YGL211W Protein binding 

21 YGL059W Protein binding 

22 YMR310C Ribosome biogenesis 

23 YMR117C Ribosome biogenesis 

24 YMR074C Ribosome biogenesis 

25 YIL093C Ribosome biogenesis 

26 YDR036C Ribosome biogenesis 

27 YGL129C Ribosome biogenesis 

28 YJR014W Ribosome biogenesis 

29 YGR156W Ribosome biogenesis 

30 YGR285C Splicing 

31 YDL209H Splicing 

32 YKL018W Splicing 
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Table 4 Correct prediction of functional modules made by the BLLP algorithm, for 
uncharacterised proteins (continued) 

No. Protein Pin BLLP assigned modules 

33 YKL059C Splicing 

34 YLR424W Splicing 

35 YPL151C Splicing 

36 YGR278W Splicing 

37 YNL123W t-RNA synthesis 

38 YDR428C t-RNA synthesis 

39 YJR008W t-RNA synthesis 

40 YJL046W Tricarboxylic acid pathway 

41 YNL168C Tricarboxylic acid pathway 

42 YLR421C Nuclear degradation 

43 YPL252C Nuclear degradation 

44 YDR018C m-RNA processing 

45 YLR074C m-RNA processing 

46 YKR081C m-RNA processing 

 6.3 Comparative study 

In this section, we compare the results obtained by applying the following 3 community 
detection algorithms to PPI yeast network, to that obtained by BLLP. 

1 Fast unfolding of communities in large networks (FC) (Blondel et al., 2008), which 
is a heuristic method based on modularity optimisation. 

2 Label Propagation Algorithm for Community Detection (LPA) (Kothapalli et al., 
2013), uses label propagation method, without the bi-level frame-work used in 
BLLP. 

3 Generalised Louvain Method for Community Detection in Large Networks (LM) 
(De Meo et al., 2011) also uses concept of network modularity optimisation, while 
exploiting the measure of edge centrality. 

FC algorithm gives 115 communities with the largest community having 250 proteins 
(Figure 6(a)). The PPI networks has many low-shell proteins, which increases the size of 
network. They generally comprise of one big component and several small components. 
So the idea to divide the networks based on modularity optimisation doesn’t yield good 
results for the PPI yeast network. The grouping made by FC is highly inaccurate. In the 
largest community with 250 proteins, 60% of proteins has functional module of r-RNA 
processing, 22% has functional module of ribosome biogenesis, and the remaining 
proteins has multiple mixed functional modules. LM algorithm behaves quite similar to 
FC, since both these algorithms are based on the same concept of modularity 
optimisation. Whereas LPA algorithm gives 94 communities (Figure 6(b)), but there is an 
epidemic spread which gives rise to a community of size 2224 proteins. This results in 
low modularity communities and incorrect grouping of proteins. To avoid this situation 
BLLP takes care that epidemic spread does not take over the network. 
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In order to detect functional modules in PPI yeast network, one should not just focus 
on modularity maximisation community detection algorithms. More novel community 
detection techniques are required for correct groupings of proteins in these networks. 
Novel techniques involving pre-processing the original network based on its topological 
features. Also multi-level algorithmic frame-works have a better scope to achieve 
accurate clustering results on biological networks, and thus making accurate predictions. 

Table 5 Comparing various community detection algorithms on PPI yeast network 

Algorithm Modularity Time No. communities 

FC 0.581 2.56 sec 115 

LPA 0.10 24.23 sec 94 

LM 0.546 7.72 sec 111 

BLLP 0.592 6.23 sec 123 
 

Figure 6 (a) FC clustering with largest community having 250 proteins (b) LPA clustering with 
largest community having 2224 proteins (see online version for colours) 

 

 

Since we are just comparing the various algorithms on PPI yeast dataset, which is not a 
huge dataset, computational time does not play an important role. In case of huge 
datasets, BLLP is the only algorithm which is designed to be easily scalable, that is, can 
be parallelised for multi-core and GPU architecture. 

7 Implementation and conclusion 

We implemented the BLLP algorithm using C++ and graph libraries. All the simulations 
are done on Processor-Intel Core i7 3770 3.4GHz and Turbo Boost enabled Memory-
16GB DDR3-1600 RAM 500G 3GB/s 7200 RPM; Linux machines. All the plots are 
done using Gephi and Gnuplot. 
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This research focuses on matching groups of proteins which are more likely to be part 
of the same functional modules. Using bi-level community detection algorithms with 
label propagation we achieve more accurate groupings of proteins in less computational 
time. Our computations show that the predictions made to determine the functional 
module of uncharacterised protein is also highly accurate. Our computational analysis 
also proves that, BLLP algorithm extracts higher modularity communities when 
compared to other well known community detection algorithms. Comparatively, the 
computational time is also close to the best. 

Further applications of community detection BLLP algorithm includes other complex 
networks such as genetic networks, the World Wide Web, citation networks, biological 
networks and social networks. 
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