1. a. Prove that if $\frac{x}{x-2} \le 3$, then x < 2 or $x \ge 3$, for $x \in \mathbf{R}$. **b.** Prove that if $\frac{u-2}{u} \ge 2$, then u < 0, for $u \in \mathbf{R}$.

2. Prove that if *A* and *B* are sets, then $A \setminus (A \setminus B) = A \cap B$.

3. Let $f : A \to B$ be an arbitrary function, and $C \subset A$ and $D \subset B$ be arbitrary subsets.

a. Prove that $f^{-1}(B \setminus D) = A \setminus f^{-1}(D)$

You are asked to prove Theorem 7.15(g). You may use any axiom or proposition/theorem proven earlier, but you can neither use nor refer to Theorem 7.15(g) Simply, it does **not** suffice to say "This follows Theorem 7.15(g)". You are expected to provide a proof.

b. Given the statement

" $f(A \setminus C) = B \setminus f(C)$, for every function $f : A \to B$, and every subset $C \subset A$ ",

(i) State whether this statement is true or false, and (ii) Prove the statement if it is true, or give a counterexample (with explicit *f*,*A*,*B* & *C*) if it is false.

4. a. (10 points) Prove the inequality $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$, for real numbers x_1, x_2, \ldots, x_n , by using The Principle of Mathematical Induction, and assuming the standard Triangle Inequality: $\forall x, y \in \mathbf{R}, |x + y| \le |x| + |y|$.

b. (10 points) By using *The Principle of Mathematical Induction*, prove that $7^n - 3^n$ is a multiple of 4.

(EXTRA CREDIT - 10 points) Provide a proof of The Principle of Mathematical *Induction* by assuming the Well-Ordering property of N, on the back of this page. Of course, you should state the theorem, also.

5. TRUE OR FALSE

CIRCLE YOUR ANSWERS. NO PARTIAL CREDITS. YOU ARE NOT EXPECTED TO SHOW WORK. HINT: READ VERY CAREFULLY.

Correct answers are +4 points each, wrong answers are -1 point each, ambiguous answers are -2 points each, and no answers are 0 point each.

Total of problem 5 will be added to your total grade only if it is positive.

TRUE FALSE

a. The negation of the statement $\exists x \in \mathbf{R}, \forall y \in \mathbf{R} \Rightarrow (x + y \le 1, \text{ or } 0 \ge xy, \text{ or } 0 \ge xy)$ xy > 1) is equivalent to $\forall x \in \mathbf{R} \Rightarrow \exists y \in \mathbf{R} (x + y > 1 \Rightarrow 0 < xy \le 1)$.

b. Both of the following statements (i) and (ii) are true: TRUE FALSE

i.
$$\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, \exists z \in \mathbf{R} \Rightarrow (x + z = y)$$
 and

ii.
$$\forall x \in \mathbf{R}, \ \forall y \in \mathbf{R}, \exists z \in \mathbf{R} \not (x + z \neq y).$$

c. The set $X = \left\{ \sqrt{\frac{p}{q}} : \frac{p}{q} \in \mathbf{Q} \text{ and } \frac{p}{q} > 0 \right\}$ is an uncountable set, FALSE TRUE since it contains infinitely many irrational numbers.

d. The relation *S* on **N** defined below is an equivalence relation: *xSy* TRUE FALSE \Leftrightarrow x + y is an even number.

e. In order to prove " $\forall n \in A \Rightarrow p(n)$ " is false for a given set A, we must TRUE FALSE show that p(n) is false for all n in A.

1. Assume that x and y real numbers. For each of the following statements,

(i) State whether it is true or false, and

(ii) Prove the statement if it is true, or give a counterexample if it is false.

a. If x is irrational and y is irrational, then xy is irrational.

b. If *xy* is irrational, then *x* is irrational or *y* is irrational.

2. Prove that if $C = A \cup B$ and $A \cap B = \emptyset$, then $A = C \setminus B$.

3. You are asked to prove Theorems 7.14(a) and 7.17(a). You may use any axiom or proposition/theorem proven earlier, but you can neither use nor refer to Theorem 7.14(b) or 7.17(a). Simply, it does **not** suffice to say "This follows Theorem 7.14(b) and 7.17(a)". You are expected to provide proofs.

a. Let $f : A \to B$, and $C \subset A$. Prove that $C \subset f^{-1}[f(C)]$.

b. Prove that if *f* is injective then $C = f^{-1}[f(C)]$.

4. **a**. State *The Principle of Mathematical Induction*.

b. Indicate for which natural numbers *n* the inequality $n^2 \le n!$ is true.

Prove $n^2 \le n!$ for the numbers you have indicated by using *The Principle of Mathematical Induction*.

5. TRUE OR FALSE

CIRCLE YOUR ANSWERS. NO PARTIAL CREDITS. YOU ARE NOT EXPECTED TO SHOW WORK.

Correct answers are +4 points each, wrong answers are -1 point each, ambiguous answers are -2 points each, and no answers are 0 point each. Total of problem 5 will be added to your total grade only if it is positive.**HINT: Read very carefully**.

TRUE FALSE **a**. The negation of the statement $\forall x \in \mathbf{R}, \exists y \in \mathbf{R} \Rightarrow (x + y > 1 \text{ and } xy > 0)$ is equivalent to $\exists x \in \mathbf{R} \Rightarrow \forall y \in \mathbf{R} (x + y > 1 \Rightarrow xy \le 0)$.

TRUE FALSE **b**. There exists no bijection between the set of rational numbers Q and the set of real numbers **R**.

TRUE FALSE c. $\forall x \in \mathbf{R}, \exists y \in \mathbf{R} \Rightarrow \forall z \in \mathbf{R} (xz = y).$

TRUE FALSE **d**. The relation *S* on **R** defined below is an equivalence relation: $xSy \Leftrightarrow x - y$ is a rational number.

TRUE FALSE **e**. For a set *A* with more than one element, it takes only one counterexample to prove " $\exists n \in A \Rightarrow p(n)$ " is false.

1. Let $f : A \to B$ and $g : B \to C$ be functions.

a. Prove that if f and g are injective functions then $g \circ f$ is an injective function.

b. Prove that if f and g are surjective functions then $g \circ f$ is a surjective function.

c. Prove that if f and g are bijective functions then $g \circ f$ is invertible.

2. a. State *The Principle of Mathematical Induction*.

b. Let a_n (for $n \in \mathbb{N}$) be defined recursively by $a_1 = 2$ and $a_{n+1} = \sqrt{4a_n - 3}$ for $n \ge 1$. Prove the following by using *The Principle of Mathematical Induction*.

i. For all $n \in \mathbf{N}$, $a_n \leq 3$ and

ii. For all $n \in \mathbf{N}$, $a_n \leq a_{n+1}$.

3. Prove that if $\frac{x-1}{x} \leq 2$, then x > 0 or $x \leq -1$, for $x \in \mathbf{R}$.

4. a. State *The Completeness Axiom for* **R**.

b. Let *S* be non-empty subset of **R** and *k* be an upper bound of *S*.

Prove that *k* is the least upper bound of *S* if and only if for every $\varepsilon > 0$ there exists $s \in S$ such that $k - \varepsilon < s$.

5. TRUE OR FALSE. CIRCLE YOUR ANSWERS. NO PARTIAL CREDITS. YOU ARE NOT EXPECTED TO SHOW WORK.

Correct answers are +4 points each, wrong answers are -1 point each, ambiguous answers are -2 points each, andno answers are 0 point each. Total of problem 5 will be added to your total grade only if it is positive. **HINT: Read very carefully**.

TRUE FALSE **a**. The negation of the statement $\forall x \in \mathbf{R} \exists y \in \mathbf{R} (xy > 1 \Rightarrow x > y)$ is $\exists x \in \mathbf{R} \forall y \in \mathbf{R} (x \le y \Rightarrow xy \le 1)$.

TRUE FALSE **b**. The set of rational numbers **Q** is equipotent to the set of irrational numbers $\mathbf{R} - \mathbf{Q}$, that is $\mathbf{Q} \sim (\mathbf{R} - \mathbf{Q})$.

TRUE FALSE c. $\forall x, y \in \mathbf{R}, \exists n \in \mathbf{N} \text{ such that } nx > y$.

TRUE FALSE **d**. There are sets A, B and C such that $(A - B) \cup C = (A \cup C) - B$.

TRUE FALSE e. There exists a smallest positive real number.

1. Prove that if $\frac{x+2}{x-2} \le 5$, then x < 2 or $x \ge 3$, for $x \in \mathbf{R}$.

2. Prove that $A \cap B$ and $A \setminus B$ are disjoint and $A = (A \cap B) \cup (A \setminus B)$, for any two sets A and B.

3. Let $f : A \to B$, and $D \subset B$. Prove that $f[f^{-1}(D)] \subset D$.

You are asked to prove Theorem 7.14(b). You may use any axiom or proposition/theorem proven earlier, but you can neither use nor refer to Theorem 7.14(b). Simply, it does **not** suffice to say "This follows Theorem 7.14(b)". You are expected to provide a proof.

b. Provide a counterexample to show that $D \subset f[f^{-1}(D)]$ is not always correct.

4. a. State The Principle of Mathematical Induction.

b. Indicate for which natural numbers $n, 2^n \le n!$ is true. Prove this inequality with your indication by using *The Principle of Mathematical Induction*.

5. TRUE OR FALSE. CIRCLE YOUR ANSWERS. SHOW NO WORK.

Correct answers are +4 points each, wrong or ambiguous answers are -2 points each, and no answers are 0 point each. Total of problem 5 will be added to your total grade only if it is positive.

TRUE FALSE **a**. The negation of the statement $\exists x \in \mathbf{R} \Rightarrow \forall y \in \mathbf{R} (x \le y \Rightarrow xy > 1)$ is $\forall x \in \mathbf{R} \exists y \in \mathbf{R} \Rightarrow (x > y \text{ and } xy \le 1)$.

TRUE FALSE **b**. The set of integers \mathbf{Z} is a countable set, although one can never finish counting them.

TRUE FALSE $\mathbf{c}. \exists z \in \mathbf{R} \ \Rightarrow ([\forall x, y \in \mathbf{R}(x < y \Rightarrow xz < yz)] \text{ is false.})$ TRUE FALSE $\mathbf{d}.$ The relation *S* on \mathbf{R} defined below is an equivalence relation: *xSy* $\Leftrightarrow xy \ge 0.$ TRUE FALSE $\mathbf{e}.$ There exists a smallest positive real number.

1. Prove that if $\frac{x+1}{x-1} \leq 3$, then x < 1 or $x \geq 2$.

2. By using *The Principle of Mathematical Induction*, prove that $9^n - 4^n$ is a multiple of 5.

3. Let $f : A \rightarrow B$, and D_1 and D_2 be subsets of *B*. Prove that

$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2).$$

You are asked to prove Theorem 7.14(e). You may use any axiom or proposition/theorem proven earlier, but you can neither use nor refer to Theorem 7.14(e). Simply, it does **not** suffice to say "This follows Theorem 7.14(e)". You are expected to provide a proof.

4. **a**. Complete the following definition.

Definition:

A sequence (s_n) is said to converge to the real number L provided that **b**. By using the definition of convergence, prove that

$$\lim_{n \to \infty} \frac{3n+2}{2n+3} = \frac{3}{2}.$$

5. TRUE OR FALSE. CIRCLE YOUR ANSWERS. SHOW NO WORK.

Correct answers are +4 points each, wrong or ambiguous answers are -1 point each, and no answers are 0 point each. Total of problem 5 will be added to your total grade only if it is positive.

TRUE FALSE **a**. The negation of the statement $\forall x \in \mathbf{R} \exists y \in \mathbf{R} \Rightarrow (x > y \Rightarrow xy \le 1)$ is $\exists x \in \mathbf{R} \Rightarrow \forall y \in \mathbf{R} (x \le y \text{ and } xy > 1)$.

TRUE FALSE **b**. The set of Irrational numbers is not a countable set.

TRUE FALSE c. $\forall x, y, z \in \mathbf{R}$ (if x < y, then xz < yz)

TRUE FALSE **d**. The relation *S* on **R** defined below is not an equivalence relation: $xSy \iff |x - y| \le 1$.

TRUE FALSE e. For sets A, B and C,

 $(A \cap B = \emptyset \text{ and } B \cap C = \emptyset \text{ and } A \cap C = \emptyset)$ if and only if $A \cap B \cap C = \emptyset$.