MATH 4210 Final EXam INFORMATION Take home.
-The exam will be posted on ICON on Tuesday May 12 in the evening about 8 pm

- Exam is due 11:59 pm Thursday May 14,2020 due on ICON for MATH 4210 OAO1

Long Questions will be chosen from Chapters $5<7$.
Chap 5: Do 2 of 3 given questions
Chop 7: $D=2$ of 3 given questions
True/False: Do it all
For a total 5 questions.
If you answer more than 2 questions in either chap 5 or 7 ; The first 2 will be graded.

Please
Either type or write legibly and large Do the following for better scanned copies:

- Use white paper
- Use black ink, not pencil (doesn't scan well)
- Use every other line
- Write large,

An. IMPORTANT APPLICATION. (of $\zeta(x)$ complete)
Thu: Let $\left(\underline{X}_{1} d\right)$ be a complete natorie space. $T: \bar{X} \rightarrow \bar{X}$ be such that, $\exists r, 0 \leq r<1$ $d(T(x), T(u)) \leq r d(x, y)$.
Then \exists a unique $x_{0} \in \mathbb{X}$ sit. $T\left(x_{0}\right)=x_{0}$.
Known as Banach Fixed pt Thu, or
Contraction Principle. (Rudin p220)
Prot Uniqueness.
If $T\left(x_{0}\right)=x_{0}$ and $T\left(y_{0}\right)=y_{0}$, then

$$
d\left(x_{0}, y_{0}\right)=d\left(\tau\left(x_{0}\right), \tau\left(y_{0}\right)\right) \leq r d\left(x_{0}, y_{0}\right)
$$

Which is not possible for $0 \leqslant r<1$ when $d\left(x_{0}, y_{0}\right) \neq 0$

$$
S=x_{0}=y_{0} \text {. }
$$

Existence Let $x_{1} \in \mathbb{Z}$ be an arbitrary pt.
Define $x_{2}=T\left(x_{1}\right)$,

$$
x_{n+1}=\tau\left(x_{n}\right) \not \Delta n .
$$

Let $d\left(x_{1}, x_{2}\right)=A$. Claim $d\left(x_{n}, x_{n+1}\right) \leq r^{n-1} A$

$$
n=1 \text { is } d\left(x_{1}, x_{2}\right)=A \text {. }
$$

$\forall n \geqslant 1, d\left(x_{n}, x_{n+1}\right) \leq r^{n-1} A \Rightarrow$

$$
\begin{aligned}
d\left(x_{n+1} x_{n+2}\right) & =d\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right) \\
& \leq r d\left(x_{n}, x_{n+1}\right) \leq r \cdot r^{n-1} A=r^{n} A \nRightarrow
\end{aligned}
$$

proves the claim by induction
If $A=0$, then x_{1} is the fixed point: $f\left(x_{1}\right)=x_{2}=x_{1}$ we may assume $A>0$.
$\forall N \in \mathbb{N} \quad \not \quad k \in \mathbb{N}$

$$
\begin{aligned}
& d\left(x_{N}, x_{N+k}\right) \leq d\left(x_{N}, x_{N+1}\right)+d\left(x_{N+1}, x_{N+2}\right)+ \\
& +\cdots+d\left(x_{N+k-1}, x_{N+k}\right) \\
& \leq\left(r^{N-1}+r^{N}+\cdots+r^{N+k-2}\right) A \\
& \leq r^{N-1} A\left(1+r+r^{2}+\cdots r^{k-1}\right) \\
& \leq r^{N-1} A \frac{1}{1-r} . \quad(0 \leq r<1)
\end{aligned}
$$

$\left.\begin{array}{l}\text { since } N \rightarrow 0 \\ \text { for } 0 \leq r<1\end{array}\right\} \forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad r^{N-1}<\frac{1-r}{A} \varepsilon$
Hence $\forall \varepsilon>0$ fin $\forall n, m \geqslant N, m>n$

$$
d\left(x_{n}, x_{m}\right) \leqslant r^{n-1} \Delta \frac{1}{1-r} \leq r^{N-1} A \frac{1}{1-r}<\varepsilon
$$

Hence $\left\{x_{n}\right\}$ is Cauchy in \bar{X}. X complete, so

$$
\exists x_{0} \in \underline{X}, \lim _{n \rightarrow \infty} x_{n}=x_{0}
$$

Sine $\forall \varepsilon>0 \exists \delta=\varepsilon$ sit.

$$
\begin{aligned}
\forall x, y \in \mathbb{X} \quad d(x, y)<\delta \Rightarrow d(T(x), T(y)) & \leq r d(x, y) \\
& <\varepsilon
\end{aligned}
$$

T is Continuous. $\lim _{n \rightarrow \infty} T\left(x_{n}\right)=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=T\left(x_{0}\right)$

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty} T\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x_{0} \\
& \Rightarrow T\left(x_{0}\right)=x_{0} .
\end{aligned}
$$

PRoP I Let $t_{0}, y_{0} \in \mathbb{R}$, and
$\varepsilon, M, C, R>0$ be sit. $0<\varepsilon<\min \left(\frac{1}{C}, \frac{R}{M}\right)$.
If $f(t, y): D=I_{t} \times I_{y} \longrightarrow \mathbb{R}$
where

$$
I_{t}=\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right], I_{y}=\left[y_{0}-R, y_{0}+R\right]
$$

satisfying that
(1) f is continuous in $D, \quad \sup _{D}|f(t, y)| \leqslant M$; and
(2) f is uniformly Lipschitz in y with

$$
\begin{aligned}
& c>0:\left|f\left(t_{1}, y_{1}\right)-f\left(t, y_{2}\right)\right| \leqslant C\left|y_{1}-y_{2}\right| \\
& \forall t \in I_{t} \quad \forall y_{1}, y_{2} \in I_{y}
\end{aligned}
$$

Then $T(\varphi)(t)=y_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) d s$ defines a transformation

$$
T: \zeta_{0}=\left\{\varphi: I_{t} \rightarrow I_{y} \mid \varphi \text { continuous }\right\} \rightarrow \zeta_{0}
$$

satisfying

$$
\left\|T\left(\varphi_{1}\right)-T\left(\varphi_{2}\right)\right\| \leqslant r\left\|\varphi_{1}-\varphi_{0}\right\|
$$

for $r=\varepsilon C<1$.
Remake: f is continuously differentiable in a neighborkod of $\left(t_{0}, y_{0}\right) \Rightarrow$ ore finds M, C, R, then picks ε s.t. $0<\varepsilon<\min \left(\frac{1}{C}, \frac{R}{M}\right)$ to satisfy the hypothesis.

FUNDAMENTAL THEOREM OF ODE (- Picard -
Let the initial value problem he given

$$
\left.\begin{array}{l}
\frac{d y}{d t}=f(y, t) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right\}(*)
$$

where f is continuous and uniformly lipschitz in y. Then $\exists \varepsilon>0$ st.
\exists a function $y(1):\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \longrightarrow \mathbb{R}$ satisfying (*).

Poof of Pry I \Rightarrow FTODE
Ore finds M, C, R and picks $\sigma<\varepsilon<\min \left(\frac{1}{C}, \frac{R}{M}\right)$ to satiety Prop I.
$\underset{\text { as in Prop I }}{\text { Define } T:} T: \zeta_{0}=\left\{\varphi: I_{t} \rightarrow I_{g} \left\lvert\, \varphi \begin{array}{c}\text { continuous bounded. }\end{array}\right.\right\} \rightarrow \zeta_{0}$
ζ_{0} is complete, since $\zeta\left(I_{t}\right)$ is complete Shown $\quad T$ is a contraction meqping with $0 \leq{ }^{\text {IL }}<1$.
$\exists \varphi_{0}$ a fixed point of $T: \quad T\left(\varphi_{0}\right)=\varphi_{0}$

$$
\begin{gathered}
\varphi_{0}(t)=T\left(\varphi_{0}\right)(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, \varphi_{0}(s)\right) d s . \text { By FTCalculus: } \\
\varphi_{0}^{\prime}(t)=f\left(t, \varphi_{0}(t)\right) \\
\varphi_{0}\left(t_{0}\right)=y_{0}
\end{gathered}
$$

Prof Prop I Let $\varphi: I_{t} \rightarrow I_{r}$ be continuous
(1)

$$
\begin{aligned}
& \left|(T \varphi)(t)-y_{0}\right|=\left|\int_{t_{0}}^{t} f(s, \varphi(s)) d s\right| \\
& \leq\left|\int_{t_{0}}^{t}\right| f\left(s, \varphi(s)|d s| \leq\left|\int_{t_{0}}^{t} M d s\right| \leq\left(t-t_{0}\right) M\right. \\
& \\
& \leq \varepsilon M \leq R .
\end{aligned}
$$

$\varphi \in \zeta_{0} \Rightarrow \tau \varphi \in \zeta_{0}$, since integral of a continuous function is also continuous, and $T \varphi(t) \in\left[y_{0}-R, y_{0}+R\right] \in I_{y}$.
(2)

$$
\begin{aligned}
& \text { For } \varphi_{1}, \varphi_{2} \in \zeta_{0} \\
& \begin{aligned}
&\left|\left(T \varphi_{1}\right)(t)-\left(\tau \varphi_{2}\right)(t)\right|=\left|\int_{t_{0}}^{t} f\left(s, \varphi_{1}(s)\right)-f\left(s, \varphi_{2}(s)\right) d s\right| \\
& \leq\left|\int_{t_{0}}^{t}\right| f\left(s, \varphi_{1}(s)\right)-f\left(s, \varphi_{2}(s)\right)|d s| \\
& \leq\left|\int_{t_{0}}^{t} C\right| \varphi_{1}(s)-\varphi_{2}(s)|d s| \\
& \leq\left|\int_{t_{0}}^{t} C\left\|\varphi_{1}-\varphi_{2}\right\| d s\right| \leq C\left|t-t_{0}\right|\left\|\varphi_{1}-\varphi_{2}\right\| \\
& \leq \underbrace{C}_{r}\left\|\varphi_{1}-\varphi_{2}\right\| \\
& \leq r\left\|\varphi_{1}-\varphi_{2}\right\|
\end{aligned} \\
& \begin{aligned}
&\left\|\left(T \varphi_{1}\right)-\tau \varphi_{2}\right\|= \sup _{t \in I_{t}}\left|\tau \varphi_{1}(t)-T \varphi_{2}(t)\right| \leq r\left\|\varphi_{t}-\varphi_{2}\right\| \\
& r=\varepsilon C<1 \text { since } \\
& \sum<\min \left(\frac{1}{C}, \frac{R}{M}\right)
\end{aligned}
\end{aligned}
$$

