L'Hospital's Rule Thm(5.13)
Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable, $g^{\prime}(x) \neq 0$ on (a, b), where $-\infty \leq a<b \leq+\infty$
If (i) $\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A$ as $x \rightarrow a$, and
(ii) (either (a) $\begin{aligned} f(x) \rightarrow 0 \\ g(x) \rightarrow 0\end{aligned}$
Then $\quad \begin{aligned} \frac{f(x)}{g(x)} & \rightarrow A .\end{aligned}$

Proof HW to read.
TAYLOR POLYNOMIALS
Defu Let $f:[a, b] \rightarrow \mathbb{R}^{\prime}$ be given, $\alpha \in[a, b]$.
Let $m \in \mathbb{N}$ sit.

$$
f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, . . f^{(m)} \text { are defined on }[a, b] \text {. }
$$

Then:

$$
P_{m, \alpha}(t)=\sum_{k=0}^{m} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k} \text { is called }
$$

the m th degree Taylor polynomial of f about α.

$$
\text { (Recall: } \left.f^{(k)}=k \pm \text { derivative of } f, \text { e.g. } f^{\prime \prime \prime}=f^{(3)}\right)
$$

Ex $f(x)=e^{x}$

$$
P_{3,0}(t)=1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6}
$$

TayLOR's THEOREM Let $f:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}$ be s.t. (i) $f^{(n-1)}$ is continuous on $[a, b]$ and
(ii) $f^{(n)}$ exists on (a, b).

Let $\alpha \in(a, b), \beta \in[a, b]$.
Then

$$
f(\beta)=P_{n-1, \alpha}(\beta)+\frac{f^{(n)}(c)}{n!}(\beta-\alpha)^{n}
$$

for some c between α and β.
Observe that
(1) $f^{(n-1)}$ continuous) $\stackrel{\text { on }[a, b]}{\text { Th. }} \underset{\text { s.2 }}{\Rightarrow} f_{1}^{\prime} f^{\prime \prime}, f^{\prime \prime \prime}, \ldots f^{(n-2)}$ are continuous on $[a, b]$.
(2) For $n=1$, Taylor's The is MVT: (mean value The)

$$
P_{0, \alpha}=\sum_{k=0}^{0} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}=f(\alpha)
$$

Taylor; Thu $f(\beta)=f(\alpha)+f^{\prime}(c)(\beta-\alpha)$

$$
\frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(c) \quad \text { for some } c
$$ between $\alpha \ll \beta$.

Proof of Taylor's Thu $n \geqslant 2$
This is dove by repeated applications of $M \checkmark T$ (We proved GMVT independently; GMVT $\Rightarrow M V T$) Fix $n, \alpha, \beta, \alpha \neq \beta$.
Set $P(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}$ $f(\beta), P(\beta), \alpha_{,}^{\neq} \beta$ known; choose M sit.

$$
f(\beta)=P(\beta)+M(\beta-\alpha)^{n} .
$$

Let $g(t)=f(t)-P(t)-M(t-\alpha)^{n}$.

$$
\begin{aligned}
& f^{\prime}, f^{\prime \prime}, \ldots f^{(n-1)} \text { continuous on }[a, b], f^{(n)} \text { exists in }(a, b) \\
\Rightarrow & g^{\prime}, g^{\prime \prime}, \ldots g^{(n-1)} \text { ". } g^{(n)} 4
\end{aligned}
$$

So MVT is applicable to all of

$$
g, g^{\prime}, g^{\prime \prime}, g^{\prime \prime \prime}, \cdots, g^{(n-1)} .
$$

By MVT $\exists \beta$, between α and β sit. for g

$$
g^{\prime}\left(\beta_{1}\right)=\frac{g(\beta)-g(\alpha)}{\beta-\alpha}
$$

$$
\begin{aligned}
& g(\alpha)=f(\alpha)-P(\alpha)-0=f(\alpha)-f(\alpha)=0 \\
& g(\beta)=f(\beta)-P(\beta)-M(\beta-\alpha)^{n}=0
\end{aligned}
$$

$\Rightarrow \exists \beta_{1}$ between $\alpha \alpha \beta$ sit.

$$
g^{\prime}\left(\beta_{1}\right)=0
$$

$$
\begin{aligned}
g(t) & =f(t)-\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}-M(t-\alpha)^{n} \\
g^{\prime}(t) & =f^{\prime}(t)-\sum_{k=1}^{n-1} \frac{f^{(k)}(\alpha)}{k!} k(t-\alpha)^{k-1}-M_{n}(t-\alpha)^{n-1} \\
& =f^{\prime}(t)-\sum_{k=1}^{n-1} \frac{f^{(k)}(\alpha)}{(k-1)!}(t-\alpha)^{k-1}-M_{n}(t-\alpha)^{n-1 .} \\
g^{\prime}(\alpha) & =f^{\prime}(\alpha)-f^{\prime}(\alpha)=0 \\
g^{\prime}\left(\beta_{1}\right) & =0 \text { (by the first step.) }
\end{aligned}
$$

MV
for $g^{\prime}$$\Rightarrow \beta_{2}$ between α and β_{1} sot. $g^{\prime \prime}\left(\beta_{2}\right)=0$

$$
\begin{aligned}
& g^{(l)}(t)=f^{(l)}(t)-\sum_{k=l}^{n-1} \frac{f^{(k)}(\alpha)}{(k-l)!}(t-\alpha)^{k-l} \\
& g^{l(}(\alpha)=f^{(l)}(\alpha)-f^{(l)}(\alpha)=0
\end{aligned}
$$

$g^{(l)}\left(\beta_{l}\right)=0$ by the choice of β_{l} in the precious step.
$M V T \Rightarrow \exists_{l+1}$ between α and β_{l} sit. for $g^{(l)}$

$$
g^{(l+1)}\left(\beta_{l+1}\right)=0
$$

For $l=n$
$\exists \beta_{n}$ sit. $g^{(n)}\left(\beta_{n}\right)=0$ for some β_{n}

$$
g^{(n)}(t)=f^{(n)}(t)-n!M
$$

Take $c=\beta_{n}$ between α and β_{n-1}.
$\left(\begin{array}{l}P^{(n)} \equiv 0 \\ \text { spice } \\ \text { degree } P^{(n)}=n-1\end{array}\right)$

$$
\begin{gathered}
0=g^{(n)}(c)=f^{(n)}(c)-n!M \\
M=\frac{f^{(n)}(c)}{n!} \quad \beta_{n}=c \\
f(\beta)=P(\beta)+\frac{f^{(n)}(c)}{n!}(\beta-\alpha)^{n} \quad \text { Since this is } \\
\\
\text { how } M \text { was }
\end{gathered}
$$ c is between α and β. chosen.

Remark: Why do we care about $M=\frac{f^{f(n)}(c)}{n!}$?

$$
{\underset{\sim}{\text { want }}}_{|f(\beta)-P(\beta)|}^{\substack{p}}\left|=\left|\frac{f^{(n)}(c)}{n!}\right| \cdot\right| \beta-\left.\alpha\right|^{n}
$$

error of the approximation
If we have a rough estimate on $|f(t)| \leq N$ then |error $\left\lvert\, \leq \frac{N}{n!}(p-\alpha)^{n}\right.$ between $\alpha * \beta$,

Easy example

$$
\begin{aligned}
& f(x)=e^{x}, \quad P_{3,0}(t)=1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6} \\
& e^{0.01} \approx 1+0.01+\frac{(0.01)^{2}}{2}+\frac{(0.01)^{3}}{6}=\underbrace{1.01005016}
\end{aligned}
$$

how good is this estimate?

$$
\begin{aligned}
& \frac{d}{d x} e^{x}=e^{x} \\
& 1=e^{0} \leq e^{x} \leq e^{1} \leq 3^{l / N} \text { if } \quad 0 \leq x \leq 0.01 \\
& |e \operatorname{rror}| \leq \frac{3}{4!}(0.01)^{4}=0.00000000125 \\
& \\
& e^{0.01} \cong 1.010050167^{\prime} \pm 0.000000002
\end{aligned}
$$

MEAN VALUE THM for Vector Valued (one variable)
Let $\vec{f}:[a, b] \longrightarrow \mathbb{R}^{k}$ functions.

$$
\begin{aligned}
& \quad \vec{f}(t)=\left(f_{1}(t), f_{2}(t), \ldots f_{k}(t)\right), \\
& i=1,2,3, \ldots k \quad f_{i}:[a, b] \longrightarrow \mathbb{R}^{\prime} \text { component } \\
& \vec{p} \text { diffble } \Leftrightarrow \forall \text { functions. }
\end{aligned}
$$

Example MVT is false in $k>1$.

$$
\text { "f(b)-f(a)} \frac{b-a}{}=f^{\prime}(c) \text { for some } c \in(a, b) \text { " }
$$

may ot hold under f continuous on $[a, b]$ x f diff'ble on (a, b).
Take $f(t)=(\cos t, \sin t), \quad 0 \leqslant t \leq 2 \pi$

$$
\begin{aligned}
& f(0)=(1,0)=f(2 \pi) \\
& f(2 \pi)-f(0)=(0,0) \\
& \quad f^{\prime}(t)=(-\sin t, \cos t), \quad\left\|f^{\prime}(t)\right\|=1 \\
& \forall c \in(0,2 \pi) \\
& \quad \frac{f(2 \pi)-f(0)}{2 \pi-0}=(0,0) \neq(-\sin c, \cos c)
\end{aligned}
$$

Why cant me apply MVT to each component?

$$
\begin{aligned}
& \exists c_{1} \in(0,2 \pi),(\underbrace{f_{1}(2 \pi)-f_{1}(0)}_{0}) \frac{1}{2 \pi}=f_{1}^{\prime}\left(c_{1}\right)=-\sin \pi=0 \\
& \exists c_{2} \in(0,2 \pi),\left(f_{2}(2 \pi)-f_{2}(0)\right) \frac{1}{2 \pi}=f_{2}^{\prime}\left(c_{2}\right)=\cos \frac{\pi}{2}=0 \\
& \quad \text { but } \pi=c_{1} \neq c_{2}=\frac{\pi}{2} .
\end{aligned}
$$

Mean Value Thu in higher dimensions
For $b>a$, Let $\vec{f}:[a, b] \rightarrow \mathbb{R}^{k}$ be continuous on $[a, b]$ $*$ be differentiable in (a, b).
Then $\exists c \in(a, b)$ sit.

$$
\|f(b)-f(a)\| \leq(b-a)\left\|f^{\prime}(c)\right\| .
$$

$$
\begin{aligned}
& \text { Let } v_{0}=f(b)-f(a) \\
& \text { Set } \varphi(t)=v_{0} \cdot f(t) \\
& \quad \text { t dot product. } \\
& \varphi:[a, b] \rightarrow \mathbb{R}
\end{aligned}
$$

φ continuous on $[a, b]$, diff'ble on (a, b).

$$
\varphi^{\prime}(t)=v_{0} \cdot f^{\prime}(t)
$$

$$
\left.\begin{array}{l}
\mu V T k=1 \Rightarrow \exists c \in(a, b) \text { sit. } \varphi(b)-\varphi(a)=(b-a) \varphi^{\prime}(c) \\
\|\varphi(b)-\varphi(a)\|=\left\|v_{0} \cdot f(b)-v_{0} \cdot f(a)\right\|=\| v_{0} \cdot \frac{(f(b)-f(a) \|}{v_{0}} \\
=\left\|v_{0}\right\|^{2} . \\
\left\|\varphi^{\prime}(c)(b-a)\right\|=|b-a|\left\|v_{0} \cdot f^{\prime}(c)\right\| \leqslant|b-a|\left\|v_{0}\right\|\left\|f^{\prime}(c)\right\| \\
C a u c k y-S c h w a r t z
\end{array}\right] \begin{aligned}
& \left\|v_{0}\right\|^{2}=\|\varphi(b)-\varphi(a)\|=\left\|(b-a) \varphi^{\prime}(c)\right\| \leqslant|b-a|\left\|v_{0}\right\|\left\|f^{\prime}(c)\right\| . \\
& \left\|\left\|v_{0}\right\| \neq 0, \quad\right\| f(b)-f(a)\|=\| v_{0}\|\leq|b-a|\| f^{\prime}(c) \| . \\
& \left\|\left\|\left\|v_{0}\right\|=0, \quad\right\| f(b)-f(a)\right\|=0 \leq \mid b-a\left\|f^{\prime}(c)\right\| \forall c .
\end{aligned}
$$

