CONTINVITY and CONNECTEDNESS
***** Theorem 4.22
Let $f:\left(\mathbb{X}, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be continuous. If \bar{E} is a connected subset of \bar{X}, then $f(E)$ is a connected subset of Y.

Recall 1) $A, B \leq \underline{\bar{x}}, A$ and B are called separated if $\bar{A} \cap B=A \cap \bar{B}=\phi$.
2) A set $E \leq X$ is culled connected if there exists no $A, B \subseteq \bar{X}$ sit.
(i) $A \neq \varnothing, B \neq \phi$,
(ii) $E=A \cup B$, and
(iii) $\bar{A} \cap B=A \cap \bar{B}=\neq$.

Proof of Thu 4.22 Prooflhy Contrapositive
We start with a separation of $f(E)$ to find a non-trivial separation of E.

Suppose $\exists A, B \subseteq Y_{\text {sit }}$
(i) $A \neq \varnothing, B \neq D$
(ii) $f(E)=A \cup B$
(iii) $\bar{A} \cap B=A \cap \bar{B}=\phi$.

Define $S=f^{-1}(A) \cap E$

$$
H=f^{-1}(B) \cap E .
$$

We want to establish (i) $C \neq \varnothing, H \neq \varnothing$
(ii) $E=$ Gu
(iii) $\bar{G} \cap H=G \cap \bar{H}=\varnothing$.
(i) $A \neq \phi$ and $A \subseteq f(E)$
$\exists a \in A, \quad a=f(c)$ for some $c \in E$.
Hence $\exists c \in f^{-1}(A) \cap E=G$.
$\sigma \neq \phi$. Similarly $H \neq \phi$.
(ii)

$$
\begin{aligned}
G \cup H & =\left(f^{-1}(A) \cap E\right) \cup\left(f^{-1}(B) \wedge E\right) \\
& =\left(f^{-1}(A) \cup f^{-1}(B)\right) \cap E \\
& =f^{-1}(A \cup B) \cap E \\
& =f^{-1}(f(E)) \cap E=E
\end{aligned}
$$

Obs.

$$
\left.\begin{array}{rl}
x \in E & \Rightarrow f(x) \in f(E) \quad \\
& \Rightarrow x \in f^{-1}(f(E))
\end{array}\right\} \begin{array}{r}
\text { Hence } E \subseteq f^{-1}(f(E)) \\
\text { (Caution: this is } \\
\text { not always }=\text {) }
\end{array}
$$

(iii)

$$
\begin{aligned}
& A \subseteq \bar{A} \\
& G=f^{-1}(A) \cap E \subseteq f^{-1}(A) \subseteq \underbrace{f^{-1}(\bar{A})}_{\text {closed since } \bar{A} \text { is }} \\
& \bar{G} \subseteq f^{-1}(\bar{A}) \quad(\text { prop. } 2.27 c) \text { closed, } f \text { continuous. } \\
& \bar{G} \cap H \subseteq f^{-1}(\bar{A}) \cap f^{-1}(B)=f^{-1}(\bar{A} \cap B)=f^{-1}(\phi)=\phi . \\
& \text { Similarly } G \cap \bar{H}=\phi .
\end{aligned}
$$

Hence $6, H$ provide a usu-trivial separation of E.

Recall Thu 2.47 Let $E \subseteq \mathbb{R}$
E is connected $\Leftrightarrow \forall x i y \in E \forall z \in \mathbb{R}(x<z<y \Rightarrow z \in E)$
Not in Defir A subset $C \subseteq(\bar{X}, d)$ is called the book path-connected if $\forall p, q \in C, \exists \gamma:[a, b] \rightarrow C$ sit. γ is continuous and $\gamma(a)=p, \gamma(b)=q$.
Prop 1 (C is path -connected $\Rightarrow C$ is connected) for $C \leq(\bar{x}, d)$ any metric space.
Proof Suppose C is path-connected but [abb] r wot connected.

Suppose $\exists A, B \leq \bar{X}$ sit.
(i) $A \neq \varnothing, B \neq \varnothing$
(ii) $A \cup B=C$
(iii) $\bar{A} \cap B=A \cap \bar{B}=\phi$
\pm

$$
\begin{aligned}
\exists p \in A, \exists q \in B . & \text { Path-counected } C \\
& \Rightarrow \exists r:[a, b] \rightarrow C \text { st. }
\end{aligned}
$$

γ is continuous, $\gamma(a)=p, \gamma(b)=q$.
The same way we proved Thu. 4.22:
Take $G=\gamma^{-1}(A) \quad(\ln [a, b])$
$H=\gamma^{-1}(B)$, and show that
Ge H provide a non-trivial separation of $[a, b]$. But $[a, b]$ is connected.

Contradiction.

Prop 2 Let $f:\left(\bar{X}, d_{\bar{X}}\right) \rightarrow\left(Y, d_{Y}\right)$ be continuous. For all $C \leq \bar{X}$, if C is path-connected, then $f(C)$ is path-connected.
Proof: Given $p_{1}, q_{0} \in f(C)$.

$$
\exists p, q \in C \text { s.t. } f(p)=p_{0} \times f(q)=q_{0}
$$

C is path-connected: $\exists \gamma:[a, b] \longrightarrow C$ sit. γ is continuous, $\gamma(a)=p, \gamma(b)=q$.
Let

$$
\begin{aligned}
& \gamma_{0}=f_{0} \gamma:[a, b] \longrightarrow f(C), \\
& \gamma_{0}(a)=f(\gamma(a))=f(p)=p_{0} \\
& \gamma_{0}(b)=f(\gamma(b))=f(q)=q_{0}
\end{aligned}
$$

$\gamma_{0}=f_{0} \gamma$ is continuous. Hence $\forall_{p_{0}, q_{0}} \in f(C)$ can be connected with a path. in $f(C)$.
Without Proof: (Not in the test)
Thu: $A \subseteq \mathbb{R}^{k}, A$ open, connected (Standard metric) $\Rightarrow A$ is path-connected.
Ex: $C=\{(0, y) \mid-1 \leq y \leq 1\} \cup\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x>0\right\} \leq \mathbb{R}^{2}$
(standard metric) $\frac{\uparrow}{\text { not in the book. } C \text { is connected but not path connected. }}$
4.23 Theorem: Intermediate Valve Thu

Let $f:[a, b] \leq \mathbb{R} \rightarrow \mathbb{R}$ be continnows.(Standoded If $k \in \mathbb{R}$ sit. either $f(a)<k<f(b)$ or $\quad f(b)<k<f(a)$, then $\exists c \in(a, b)$ sit. $f(c)=k$.

Proof: $[a, b]$ is connected.
Thu 2.47
$J=f([a, b])$ is connected The 4.22

$$
f(a), f(b) \in J
$$

If k is between $f(a)$ and $f(b)$, then $k \in J=f([a, b])$
(Thu 2.47)
$k=f(c) \in f([a, b])$, for some $c \in[a, b]$. $c \neq a, b$ since $k \neq f(a), f(b)$. $c \in(a, b)$.

Corollary: Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{\text {be }}$ continuous.
(i) I is an interval $\Rightarrow f(I)$ is an interval
(ii) If $I=[a, b]$, then $f(I)=f([a, b])=[m, M]$.

Using Extreme Value Thu.

Remark: IVT (and $E V T$) \Rightarrow (i) and (ii). We prove here.
Also (i) \Rightarrow IVT, and (ii) \Rightarrow IVT. (HF)
Proof of Corollary* ((By IVT \times EMT)
(i) Let $k_{1}, k_{2} \in f(I)$ be given, st. $k_{1}<k_{2}$.

Assume $k_{1}<k<k_{2}$, for an arbitrary $k \in \mathbb{R}$

$$
\exists a_{1}, a_{2} \in I \quad \begin{aligned}
& f\left(a_{1}\right)=k_{1} \\
& f\left(a_{2}\right)=k_{2}
\end{aligned}
$$

By IVT $\Rightarrow \exists c$ between a_{1} and a_{2} sit.

$$
f(c)=k \text {. }
$$

$a_{1}, a_{2} \in I ; I$ interval: $c \in I$.

$$
k .=f(c) \in f(I) \text {. }
$$

Hence $\forall k_{1}, k_{2} \in f(I) \forall k \in \mathbb{R}$

$$
k_{1}<k<k_{2} \Rightarrow k \in f(I) .
$$

$f(I)$ is an interval.
(ii) $I=[a, b] \quad f: I \rightarrow \mathbb{R}$ contiunoove
$[a, b]$ compact $\Rightarrow f$ attains its wear and min values on $[a, b] ; \exists p, a \in[a, b]$ s.t.

$$
\forall x \in[a, b] \quad f(p)=m \leq f(x) \leq M=f(q)
$$

EVT (By Extreme Value Tum.)

$$
\begin{align*}
& \Rightarrow f([a, b]) \leq[m, M] \tag{1}\\
& \forall k \in[m, M], \quad f(p) \leq k \leq f(q)
\end{align*}
$$

$\Rightarrow \exists c$ either between p and q or $p=c$ or $q=c \quad s t$.

$$
\begin{aligned}
& f(c)=k \in f([a, b]) \quad \text { by IV. } \\
& \forall k \in[m, M], \quad k \in f([a, b]) \\
& {[m, M] \leq f([a, b])(2) \text { Hence" }=}
\end{aligned}
$$

Caution: Other than compact intervals $[a, b], I$ and $f(I)$ may be different type of intervals.
Ex $\quad f(x) \equiv 0$

$$
\begin{aligned}
& f([1, \infty))=[0,0] . \\
& f((-2,5))=[0,0] .
\end{aligned}
$$

Ex $f(x)= \begin{cases}\sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{cases}$

but f satisfies intermediate Value Property:

$$
\forall a, b \in \mathbb{R} \text {, if } f(a)<k<f(b) \text {, then }
$$

$$
\exists c \in(a, b) \text { sit. } \quad f(c)=k .
$$

Why $\forall \varepsilon>0 \quad f([-\varepsilon, \varepsilon])=[-1,1]$.
For $a, b>0 \quad f$ is continuous between $a \times L$.

$$
a, b<0 \text {. . . } a \times b \text {. }
$$

