April 8,2020
Chop IV
CAution: Let $f:\left(\bar{X}, J_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be continuous

$$
A \leq \bar{X}, \quad B \leq Y \text {. }
$$

A open $\Rightarrow f(A)$ open (1)
$A$ closed $\nRightarrow f(A)$ closed (3)@
Them A compact $\Rightarrow f(A)$ compact (to prove today)
A bounded $\nRightarrow f(A)$ bounded (2)

Pop $B$ open $\Rightarrow f^{-1}(B)$ open
Prop $B$ closed $\Rightarrow f^{-1}(B)$ coxa
$B$ comport $\nRightarrow f^{-1}(B)$ compact (1)
$B$ bounded $\nRightarrow f^{-1}(B)$ bounded (1)
A (1) $f(x) \equiv 1: \mathbb{R} \rightarrow \mathbb{R}$ standard metric
$\mathbb{R}$ open, $f(\mathbb{R})=$ lis not open
$B=$ is) bounded $f^{-1}(1,4)=\mathbb{R}$ unbounded
$B=\{$,$\} compact f^{-1}(\{\})=,\mathbb{R}$ not compact

Example (2) $f:(0,1) \rightarrow(1, \infty)$
$f(x)=\frac{1}{x},(0,1)$ bounded
$f((0,1))$ unbounded.
Example (3) "projection" $g(x, y)=x: \mathbb{R}^{2} \rightarrow \mathbb{R}$, continuous
(a) $A=\{(x, y) \mid x y=1\}$ is ${ }^{a}$ closed set
since $h(x, y)=x y: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, $A=h^{-1}(\{1\})$.

(b) Although in example (1) we saw that $f$ (open set) need wot be an open set for arbitrary continuous functions; some Junctions such as $g(x, y)=x: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy "g(open set) is open". Called open maps. 9 is an open map. This is because it takes interior points to interior points.

$$
g(\underbrace{N_{\delta}(p)}_{\text {open in } \mathbb{R}^{2}})=(\underbrace{g(p)-\delta, g(p)+\delta}_{\text {open in } \mathbb{R}^{\prime}})
$$

Theorem $4.14 * * * * *$
Let $f:\left(\bar{X}, d_{\Sigma}\right) \rightarrow\left(Y, d_{Y}\right)$ be continuous, where $(\bar{X}, d \bar{X})$ and $\left(Y, d_{Y}\right)$ are metre spaces.
If $K$ is a compact subset of $\bar{X}$, then $f(K)$ is a compact subset of $T$.

Post Let $\left\{V_{\alpha} \mid \alpha \in \Lambda\right\}$ be an arbitrary open cover of $f(K)$, in $Y$

By The 4.8 :

$$
f(K) \subseteq \bigcup_{\alpha \in \lambda} V_{\alpha} \cdot \subseteq Y
$$

$\forall \alpha V_{\alpha}$ open, $f$ continuous $f^{-1}\left(V_{\alpha}\right)$ is open

$$
\text { in } \bar{X} \text {. }
$$

$\forall \alpha$ Let $U_{\alpha}=f^{-1}\left(V_{\alpha}\right) . U_{\alpha}$ is open in $\bar{X}$.

$$
\begin{array}{ll}
\forall x \in K, & f(x) \in f(K) \leq \bigcup_{\alpha \in \Lambda} V_{\alpha} \\
\exists \alpha_{0} \text { sit. } & f(x) \in V_{\alpha_{0}} \\
& x \in f^{-1}\left(V_{\alpha_{0}}\right)=U_{\alpha_{0}} \leq \bigcup_{\alpha \in \Lambda} U_{\alpha} \\
\forall x \in K, & x \in \bigcup_{\alpha \in \Lambda} U_{\alpha .} .
\end{array}
$$

$K \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$, hence $\left\{\left.U_{\alpha}\right|_{\alpha \in \Lambda}\right\}$ is an open cover of $K$.
$K$ is compact. $\exists \alpha_{1}, \alpha_{2} \ldots \alpha_{l}$ sit.

$$
\begin{aligned}
K & \subseteq \bigcup_{i=1}^{l} u_{\alpha_{i}} \\
f(K) & \leq f\left(\bigcup_{i=1}^{l} u_{\alpha_{i}}\right)=\bigcup_{i=1}^{l} f\left(u_{\alpha_{i}}\right)
\end{aligned}
$$

$\forall_{i} \quad f\left(U_{\alpha_{i}}\right)=f\left(f^{-1}\left(V_{\alpha_{i}}\right)\right) \leq V_{\alpha_{:}}$


$$
f(k) \subseteq \bigcup_{i=1}^{l} V_{\alpha:}
$$

We showed that for every open cover $\left\{V_{\alpha} \mid \alpha \in \Lambda\right\}$ of $f(k)$, there exist, a finite open subcover:

$$
f(k) \leq \bigcup_{i=1}^{\ell} V_{\alpha_{i}}
$$

$f(K)$ is compact.

Defy A function $f:\left(\bar{X}, d_{\Sigma}\right) \rightarrow\left(Y, d_{Y}\right)$ is called bounded if $f(\bar{X})$ is a bounded subset of $Y: \exists y_{0} \in Y, \exists R_{0} \in \mathbb{R}$ sit.

$$
f(\bar{x}) \subseteq N_{R_{0}}\left(y_{0}\right) .
$$

(4.15) Prop: if $f_{2}\left(\bar{X}, d_{\bar{X}}\right) \rightarrow\left(\mathbb{R}^{k},\|\cdot\|\right)$ continuous, and $X$ is compact, then $f(\bar{X})$ is compact, and hence closed $x$ bounded. $f$ is a bounded function.

Theorem: (Extreme Value The.) Let $\bar{X} \neq \varnothing$, Let $f:(\mathbb{X}, d) \rightarrow \mathbb{R}$, be continuous, and X be compact. Then $\exists p, q \in \mathbb{X}$ sit. $\forall x \in I$

$$
-\infty<\min _{\Sigma} f=f(p) \leq f(x) \leq f(q)=\max _{\Sigma} f<\infty .
$$

4.15 is a corollary of 4.14.

Prof st 4.16 .
X compact, $f$ continuous $\Rightarrow f(\bar{X})$ compact in $\mathbb{R}$
$\Rightarrow f(X)$ is ${ }_{\hat{a}}$ bounded set in $\mathbb{R}$.
$\Rightarrow \exists m, M \in \mathbb{R}$ sit.

$$
-\infty<m=\ln f(f(\bar{X})) \leqslant \sup (f(\bar{X}))=M<\infty
$$

$f(\bar{x})$ closed since it is compact.

$$
\begin{aligned}
& \inf (f(\bar{x}))=m \in \overline{f(\bar{X})}=f(\bar{x}) \text { prop } 2.28 \\
& \sup (f(\bar{x}))=M \in \overline{f(\Sigma)}=f(\bar{x}) \\
& m \in f(\bar{X}) \Longrightarrow \exists p \in \bar{X}, \quad f(p)=m \\
& M \in f(\mathbb{X}) \Longrightarrow \exists q \in \bar{X}, f(q)=M \text {. } \\
& \forall x \in \mathbb{X} \quad f(p)=m \leq f(x) \leq \mu=f(q) \text {. }
\end{aligned}
$$

Them 4.9 Let $f_{1} g:\left(\bar{X}, d_{\bar{x}}\right) \rightarrow \mathbb{R}($ or $\mathbb{C})$.
See if $f$ and $g$ are continuous on $\mathbb{\Sigma}$, then $4.4 \quad f \pm g, f \cdot g, f / g(g \neq 0)$ are continuous on $\bar{X}$

The 4,10 Let $F=\left(\stackrel{f_{1}, f_{2}, \cdots f_{k}}{\text { components }}\right):\left(\underline{x}, \frac{\downarrow}{\mathbb{D}}\right) \rightarrow\left(\mathbb{R}^{k},\|\cdot\|\right)$.
$F$ is continuow on $\bar{X} \Leftrightarrow \forall_{j=1, \ldots k}, f_{j}$ is continuous
Poof $\forall \vec{x}=\left(x_{1}, x_{2}, \cdots x_{k}\right) \in \mathbb{R}^{k}$

$$
\begin{aligned}
& \forall_{j} \quad\left|x_{j}\right| \leq\|\vec{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}} \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots\left|x_{k}\right|
\end{aligned}
$$

Consequently $\forall p, q \in \bar{X}, F(p), F(q) \in \mathbb{R}^{k}$, and
$\forall j\left|f_{j}(p)-f_{j}(q)\right| \leq\|F(p)-F(q)\| \leqslant \sum_{i=1}^{k}\left|f_{i}(p)-f_{i}(q)\right|$
$\Leftrightarrow$ :) Assume $F$ is continuous.
For each; $\forall p \in \bar{X} \forall \varepsilon>0 \exists \delta>0 \forall q \in \mathbb{X}$

$$
d(p, q)<\delta \Rightarrow\left|f_{j}(p)-f_{j}(q)\right| \leq\|F(p)-F(q)\|<\varepsilon
$$

$\left(\Leftrightarrow:\right.$ Assume exch $f_{j}$ is continuous.

$$
\begin{aligned}
& \forall p \in \bar{X} \quad \forall \varepsilon>0 \quad \forall j \exists \delta_{j}>0 \quad \forall q \in \Phi \\
& \text { Let } \delta=\text { min } \delta_{i}>0 . \quad d_{\mathscr{C}}(\rho, 9)<\delta_{j} \Rightarrow\left|f_{j}(\rho)-f_{j}(q)\right|<\frac{\varepsilon}{k} \\
& \begin{array}{ll}
\text { Let } \delta=\min _{i n} \delta_{i}>0 . \\
\forall q \in \bar{X} \quad{ }_{\delta}(p, q)<\delta \Rightarrow\|F(p)-F(q)\| \leq \sum_{j=1}^{k}\left|f_{j}(p)-f_{j}(q)\right|
\end{array} \\
& <k \cdot \varepsilon / k=\varepsilon \text {. }
\end{aligned}
$$

Ex Let $f: \underbrace{[0,2 \pi)}_{|a-b|=d i s+(a, b)} \rightarrow \underbrace{\mathbb{U}^{\prime}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}}_{d(p, y)=\|p-q\|} \subseteq \mathbb{R}^{2}$

$$
|a-b|=d_{1} s+(a, b)
$$

be defined by

$$
f(t)=(\cos t, \sin t)
$$

$f$ is continnous:

since $\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right| \leqslant\left|t_{1}-t_{2}\right|$ :
Cuse $1\left|t_{1}-t_{2}\right| \leq \pi$ :

Case2 $\left|t_{1}-t_{2}\right| \geqslant \pi$ :


No prosf: $f$ is $1-1$

- $f$ is outo $S^{\prime}$

$$
\begin{aligned}
\exists f^{-1}=g: S^{\prime} & \longrightarrow \bar{X}=[0,2 \pi) \\
(\cos t, \sin t) & \rightarrow t
\end{aligned}
$$

Claim $g$ is nat continuous (at $(1,0)$ )

$$
g: S^{\prime} \longrightarrow[0,2 \pi)
$$

$g$ is not continuous at $(1,0)$ :
METHOD I


Let $p_{n}=f\left(2 \pi-\frac{1}{n}\right) \quad \forall_{n} \in \mathbb{N}$
$p_{n}=\left(\cos \left(2 \pi-\frac{1}{n}\right), \sin \left(2 \pi-\frac{1}{n}\right)\right)$

$$
\lim _{n \rightarrow \infty} p_{n}=(1,0) \text { in } S^{1}
$$

$$
\lim _{n \rightarrow \infty} g\left(p_{n}\right)=\underbrace{\lim _{n \rightarrow \infty}\left(2 \pi-\frac{1}{n}\right)}_{\text {actually DNE in }[0,2 \pi)}=2 \pi \text { in } \mathbb{R}
$$

$$
\begin{aligned}
& g\left(\lim _{n \rightarrow \infty} p_{n}\right)=g((1,0))=0 \\
& \lim _{n \rightarrow \infty} g\left(p_{n}\right) \neq g\left(\lim _{n \rightarrow \infty} p_{n}\right) \Rightarrow g_{\text {continuous at }} \text { is }(1,0)
\end{aligned}
$$

METHOD II $\forall \varepsilon>0 \quad \underbrace{[0, \varepsilon)}$ is open in $[0,2 \pi)$.

$$
N_{\varepsilon}(0) \text { in }[0,2 \pi)
$$

$$
g^{-1}([0, \varepsilon))=f([0, \varepsilon))
$$


not open in $S^{\prime}$.
Use Thu 4.8.

