Ratio Test
Let $\sum_{n=1}^{\infty} a_{n}$ be given, $a_{n} \neq 0$ th.
Let $\alpha=\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$
(a) If $\alpha<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\left|\frac{a_{n+1}}{a_{n}}\right| \geqslant 1 \quad$ Zn $\in N, n \geqslant N$ for som N then $\sum a_{n}$ diverges

Proof Sf (b)

$$
\begin{gathered}
0 \neq\left|a_{n}\right| \leq\left|a_{n+1}\right| \leq \ldots \leq\left|a_{n+k}\right|+k \geqslant 0 \\
F_{\varnothing} N \quad \forall n \geqslant N \quad\left|a_{n}\right| \geqslant\left|a_{N}\right|>0 \\
\lim _{n \rightarrow \infty} a_{n} \neq 0 .
\end{gathered}
$$

(Recall that $\sum a_{n}$ convergent $\Rightarrow \lim a_{n}=0$)
Hence $\sum a_{n}$ is ot convergent.

Proof of Ratio test (a)
Since $0 \leq \alpha<1$
$\exists \beta \quad 0 \leq \alpha<\beta<1$.
$\exists N \quad t_{n} \geqslant N \quad\left|\frac{a_{n+1}}{a_{n}}\right| \leq \beta$ since $\beta>\alpha$
(recall Pap. 3.176 on Mack 13)

$$
\begin{aligned}
& \left|a_{n+1}\right| \leq \beta\left|a_{n}\right| \quad \not \quad n \geqslant N \\
& \left|a_{N+1}\right| \leq \beta\left|a_{N}\right| \\
& \left|a_{N+2}\right| \leq \beta\left|a_{N+1}\right| \leq \beta^{2}\left|a_{N}\right| \\
& \vdots \\
& \left|a_{N+L}\right| \leq \beta^{k}\left|a_{N}\right| .
\end{aligned}
$$

Use
Comparison
Test
Thun 3.25

Compare $\sum_{k=0}^{\infty} a_{N+k}$ to $\sum_{k=0}^{\infty} p^{k}\left|a_{N}\right|$
"fixes \# convergent $\sin { }^{\circ} \mathrm{K} \beta<1$
$\sum_{k=0}^{\infty} a_{N+n}=\sum_{n=N}^{\infty} a_{n}$, it is convergent singergent

$$
\sum_{n=0}^{\infty} a_{n}=\underbrace{a_{0}+a_{1}+\cdots+a_{N-1}}_{\text {finite sum. }}+\sum_{n=N}^{\infty} a_{n}{ }_{\text {convergent. }} \text { is }
$$

E) ∞ Compare Rest x Ratio tests on $\sum_{n=0}^{\infty} a_{n}$ where

$$
a_{n}= \begin{cases}(1 / 4)^{n / 2} & \text { if } n \text { is even } \\ (1 / 9)^{\frac{n-1}{2}} & \text { if } n \text { is add. }\end{cases}
$$

$\operatorname{limsur} \sqrt[4]{\left|\sigma_{n}\right|}=\frac{1}{2}<1$, hence this series csuserges, by roost test

Ratio test

$$
\begin{aligned}
& \frac{a_{2 n+1}}{a_{2 n}}=\left(\frac{1}{9}\right)^{n} /\left(\frac{1}{4}\right)^{n}=\left(\frac{4}{9}\right)^{n} \rightarrow 0 \\
& \begin{aligned}
\frac{a_{2 n}}{a_{2 n-1}} & =\left(\frac{1}{9}\right)^{n} /\left(\frac{1}{9}\right)^{\frac{2 n-1-1}{2}}
\end{aligned}=\left(\frac{1}{4}\right)^{n} /\left(\frac{1}{9}\right)^{n-1} \\
& \\
& =9 \cdot\left(\frac{9}{4}\right)^{n} \rightarrow \infty . \\
& \lim _{n \rightarrow \infty} \rightarrow\left|\frac{a_{n+1}}{a_{n}}\right|=+\infty ., \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0
\end{aligned}
$$

Ratio tart is inconclusive,
Also.

The Let $\left\{c_{n}\right\}$ be a sequence of positive real numbers. Then

$$
\begin{aligned}
& \liminf _{n} \frac{C_{n+1}}{C_{n}} \leq \underbrace{\liminf _{n} \sqrt[n]{C_{n}} \leq \limsup _{n}^{C_{n}} \leq \limsup _{n} \frac{C_{n+1}}{C_{n}}}_{\text {obvious }} \\
& \text { Prosfof (1): WTS } \limsup _{n} \sqrt[n]{C_{n}} \leq \limsup _{n} \frac{C_{n+1}}{c_{n}} .
\end{aligned}
$$

If limsup $\frac{c_{n+1}}{c_{n}}=+\infty$, there is nothing to prove.
So We can assume $\limsup _{n} \frac{C_{n+1}}{c_{n}}=\alpha \in \mathbb{R}$.
Choose $\beta \in \mathbb{R}$ sit. $\quad \alpha<\beta<\infty$.
By using $P_{\infty} 3.17 \exists N \quad \not \quad \forall \geqslant N \quad \frac{C_{n+1}}{c_{n}} \leqslant \beta$.

$$
\begin{aligned}
& C_{N+1} \leq \beta C_{N} \\
& C_{N+2} \leq \beta C_{N+1} \leqslant \beta^{2} C_{N} \\
& \vdots \\
& C_{N+k} \leq \beta^{k} C_{N}
\end{aligned}
$$

sub, titute $m=N+k$

$$
\begin{aligned}
& \forall m \geqslant N \quad c_{m} \leq \beta^{m-N} C_{N} \\
& \sqrt[m]{C_{m}} \leqslant\left(\frac{\beta^{m}}{\beta^{N}} C_{N}\right)^{\frac{1}{m}}=\beta \cdot \sqrt[m]{\frac{1}{\beta^{N}}} \sqrt[m]{C_{N}} \rightarrow \beta \cdot 1 \cdot 1 \\
& f_{i x e r}, m \rightarrow \infty
\end{aligned}
$$

By Prop. $3.19 \quad$ lineup $\sqrt[m]{c_{m}} \leq \beta . \quad \forall \beta>\alpha$.
$l_{\text {imsup }} \sqrt[m]{c_{m}} \leqslant \alpha$.
$\#$

Power Series
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ in \mathbb{R} centered at a.
Formal sum, convergency depends on the choice of x.

Ex $\sum_{n=0}^{\infty} x^{n} \quad \begin{aligned} & \text { converges if }|x|<1 \\ & \text { diverges if }|x| \geqslant 1\end{aligned}$
Convention: $u=0, x=0$, we take it as 1 .
Actually we know if $|x|<1$, then

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots=\frac{1}{1-x} .
$$

If $|x| \geqslant 1$, this equality is ot tree: in general

$$
\begin{aligned}
& x=2 \quad \sum_{n=0}^{\infty} x^{n}=1+2+4+\cdots \neq \frac{1}{1-2}=-1 \\
& x=1 \quad \sum_{n=0}^{\infty} x^{n}=1+1+1+1 \cdots \text { divergent } \\
& x=-1 \quad \sum_{n=1}^{\infty}(-1)^{n}=\underbrace{1-1+1-1+1 \cdots \text { divergent }}_{\neq \frac{1}{1-(-1)}=\frac{1}{2}}
\end{aligned}
$$

Domain of convergence: $(-1,1)$

$$
\leftrightarrows_{-1} \quad \underbrace{}_{\text {R }}) R=R=R \text { is } 1
$$

3.39 Theorem: Given $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$,
let $\alpha=\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}$, and let $R=\frac{1}{\alpha}$.
(if $\alpha=0$, take $R=\infty$;
if $\alpha=\infty$, take $R=0$).
Then

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n} & \text { converges for }|x-a|<R \\
& \text { diverges for }|x-a|>R
\end{array}
$$

$\underset{a-R}{\leftarrow} \underset{a+R}{\longrightarrow}$ inconclusive for $|x-a|=R$.
Proof Straight forward application of Root test.
Fix $x \in \mathbb{R}$, set $a_{n}=c_{n}(x-a)^{n}$

$$
\begin{aligned}
& \sqrt[n]{\left|a_{u}\right|}=\sqrt[n]{\left|c_{n}\right||x-a|^{n}}=\sqrt[n]{\left|c_{n}\right|} \cdot|x-a| \\
& \lim _{n} \sup _{n} \sqrt[n]{\left|a_{n}\right|}=\operatorname{limssup}_{n}|x-a| \cdot \sqrt[n]{\left|c_{n}\right|}=|x-a| \cdot \alpha \\
& \text { since }|x-a| \geqslant 0 \\
& e \text { fixed. }
\end{aligned}
$$

Root test convergent $\Leftarrow\left\{\begin{array}{l}\alpha|x-a|<1 \text { i.e. } \\ |x-a|<\frac{1}{\alpha}=R .\end{array}\right.$

$$
\text { dwergent } \Leftarrow\left\{\begin{array}{l}
\alpha|x-a|>1 \text { i.e } \\
|x-a|>\frac{1}{\alpha}=R .
\end{array}\right.
$$

Examples
(a) $\sum_{n=0}^{\infty} x^{n}, \quad c_{n}=1, \quad \lim \sup ^{n} \sqrt[n]{c_{n}}=1=\alpha$

$$
R=\frac{1}{\alpha}=1
$$

Domain of convergence $(-1,1)$
Discyssed divergence at ± 1
(b) $\sum_{n=0}^{\infty}(x-a)^{n} \frac{1}{n!}=e^{x-a}$

$$
c_{n}=\frac{1}{n!} \quad \sqrt[n]{c_{n}}=\left(\frac{1}{n!}\right)^{\frac{1}{n}} \rightarrow 0 \quad \text { since }
$$

Stirlings formula $n: \approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$
$\alpha=0, R=\infty$, Doneain of convergence \mathbb{R}.
(c) $\begin{array}{ll}\sum_{n=0}^{\infty} n!(x-a)^{n}, & \alpha\end{array}$

Domeain of exnvergence $\{a\}$.

More Examples
(d) $\sum_{n=0}^{\infty} n(x-a)^{n} \quad \sqrt[n]{n} \rightarrow 1^{\prime \prime}, \quad R=1$, converges on $(a-1, a+1)$
and p ts. Take $\dot{a}=0$ for simplicity $\sum_{n=0}^{\infty} n x^{n}$
diverges at \quad both end pts. $\left\{\begin{array}{l}n=0,1+2+3+4+\cdots \rightarrow \infty . \\ x=1 \quad-1+2-3+4-5+6 \ldots \\ x=-1 \quad-1,1,-2,2,-3,3 \\ \text { parkal sums diverges }\end{array}\right.$
(e) $\sum_{n=1}^{\infty} \frac{1}{n} x^{n} \quad \alpha=1, \quad R=1$
converges on $[-1,1)$
different
behavior
at each $\begin{cases}x=1 & \sum \frac{1}{n} \cdot 1^{n}=+\infty \\ x=-1 & \sum \frac{1}{n}(-1)^{n}=-1+\frac{1}{2}-\frac{1}{3} \cdots \cdot=-\ln 2\end{cases}$
we will discuss alternating series later.
(f) $\quad \sum_{n=1}^{\infty} \frac{2^{x}}{n^{2}}(x-3)^{n} \quad \sqrt[n]{\frac{2^{n}}{n^{2}}} \Rightarrow 2=\alpha \quad R=\frac{1}{2}$.
domain of convergence

Converges	
at both	$x=\frac{5}{2}$
end pts.	$\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}<\infty$.

\Uparrow (Them 3.25)

$$
x=\frac{7}{2} \quad \sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}\left(+\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \text { (The 3.28) }
$$

