May 7,2020
7.2 Continue

Heauples orthagonal metrices in \mathbb{R}^{2}

$$
\underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}_{\mathrm{P} \text { ortlogonal }}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

Rotation courterclockwise. for θ radians, If we consider

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

P.v $=w$ as a function
 acting on fixed coordinates

Example

$$
Q\left(x_{1}, x_{2}\right)=9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}
$$

(1) Make change of variables to obtain a quadratic form with no erossterms

$$
A=\left[\begin{array}{cc}
9 & -4 \\
-4 & 3
\end{array}\right]
$$

Orthogonally diagonalize A

$$
\begin{aligned}
&\left|\begin{array}{cc}
9-\lambda & -4 \\
-4 & 3-\lambda
\end{array}\right|=(9-\lambda)(3-\lambda)-16 \\
&=27-12 \lambda+\lambda^{2}-16 \\
&=\lambda^{2}-12 \lambda+11 \\
& {\left[\begin{array}{cc}
9-4 \\
-4 & 3
\end{array}\right] } \\
& a_{11}+a_{22}=9+3=\text { trace }=\lambda_{1}+\lambda_{2} \quad d_{2} \quad \begin{array}{l}
11 \\
\lambda_{2}
\end{array} \\
& \lambda^{2}-12 \lambda+11=(\lambda-11)(\lambda-1) \quad\left|\begin{array}{cc}
9 & -4 \\
-4 & 3
\end{array}\right|=11 \\
& \lambda_{1}=1 \\
& \lambda_{2}=11
\end{aligned}
$$

$\lambda=1$ eigenspace

$$
\begin{gathered}
A-I=\left[\begin{array}{cc}
8 & -4 \\
-4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
\lambda= & \| \\
& A-\| I=\left[\begin{array}{cc}
-2 & -4 \\
-4 & -8
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1
\end{array}\right] . } \\
& \left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right\} \text { orthoganal busis }
\end{aligned}
$$

length $\sqrt{5} \sqrt{5}$

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right],\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]\right\} \text { orthonormal basis } \\
& {\left[\begin{array}{cc}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}
\end{aligned}
$$

$$
P \quad y=x
$$

Observe that $子 \theta_{0}$ angle sit. $\cos \theta_{0}=\frac{1}{\sqrt{5}}$

$$
\sin \theta_{0}=\frac{2}{\sqrt{5}}
$$

P is a station matrix. (w reflection in this example)

$$
Q=9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}=y_{1}^{2}+11 y_{2}^{2}
$$

Part 2

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]
$$

graph

$$
9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}=y_{1}^{2}+11 y_{2}^{2}=1
$$

Part 3 Plot 3-D graph

$$
x_{3}=9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}
$$

for $x_{3}=2$
level set for

$$
x_{3}=1=9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}
$$

Part 4 What is the largest value of $9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}$ with the constraint

$$
x_{1}^{2}+x_{2}^{2}=1
$$

Save as as

$$
\left.y_{1}^{2}+11 y_{2}^{2} \text { with } y_{1}^{2}+y_{2}^{2}=1\right\}
$$

Answer: 11
Why are they the same? $\left\{\begin{array}{l}\text { under } P_{y}=x \\ \text { ore circle } \\ \text { goes to the } \\ \text { other. }\end{array}\right.$
(LASSIFYING QUADRATIC FORM)
A quadratic form is called positive definite If $Q(x)>0$ for all $x \neq 0$

A quadratic form is called negative definite if $Q(x)<0$ for all $x \neq 0$

A quadratic form is called indefinite if

$$
\begin{aligned}
& Q(x)<0<Q(y) \\
& \text { for some } x, y \text { both nou-zero. }
\end{aligned}
$$

Theorems: Let A be a symmetric matrix.

$$
Q(x)=x^{\top} A x \text { is }
$$

- positive defmite \Longleftrightarrow all eigenvalues of A are positive
- negative definite \Longrightarrow all eigenvalues of A are negative
- Indefinite \Longleftrightarrow A has both positive and negative eigenvalues.

Graphs $x_{n+1}=x^{\top} A x$ (A, $1, n \times n$.)

positive definite negative definite indefinite
Ax $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]=A$ when is $Q(x)=x^{\top} A x$ + ,-, indefinite

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}=\operatorname{det}=a d-b^{2} \\
& \lambda_{1}+\lambda_{2}=a+d
\end{aligned}
$$

Y: $Q(x)$ is indefinite $\Longleftrightarrow a d-b^{2}<0$
$\begin{aligned} & Q(x) \text { is positive definite } \Longleftrightarrow a+d>0 \\ &\{(x) \text { is negative } \Longleftrightarrow \text { both } \\ & a d-b^{2}>0\end{aligned}$
$Q(x)$ is negative definite $\Longleftrightarrow a+d<0$,

