Continue 7.1
Example $\sim 24$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right], \text { given eigenvectors } \\
{\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .}
\end{gathered}
$$

Orthogonally diagonalize
Solution

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-20 \\
20 \\
10
\end{array}\right]=10\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \quad \lambda_{1}=10} \\
& {\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \lambda_{2}=1 .}
\end{aligned}
$$

What is $\lambda_{3}=$ ?

$$
\begin{aligned}
& =\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right) \\
& =-\lambda^{3}+(\underbrace{\lambda_{1}+\lambda_{2}+\lambda_{3}}) \lambda^{2}-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right) \lambda+\underbrace{\lambda_{1} \lambda_{2} \lambda_{3}} \\
& a_{11}+a_{22}+a_{33}=12=\operatorname{trace} A \longrightarrow \lambda_{3}=1 \longleftarrow \quad 10=\underbrace{\operatorname{det} A}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 0 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 9 & 2 \\
0 & 4 & 2
\end{array}\right| \\
& =\left|\begin{array}{ll}
9 & 2 \\
4 & 2
\end{array}\right|=10=\operatorname{det} A=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

Evalues $10,1,1 \quad \lambda=10:$ multiplicity 1
eigenspace for $\lambda=10$ No need to $R R \quad A-10 I$, since multiplicity of 10 is 1
$\Rightarrow$ dimension eigenspuce for $\lambda=10$ is 1
We know $\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]$ is in this eigenspace, use
$\underbrace{\text { Eigenspace for } \lambda=1}_{\text {dimensisu is } 2}$ : Wee have $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, since multiplicity is 2 ,
need another basis vector

$$
\begin{aligned}
& A-I=\left[\begin{array}{ccc}
4 & -4 & -2 \\
-4 & 4 & 2 \\
-2 & 2 & 1
\end{array}\right] \stackrel{R R}{ }\left[\begin{array}{ccc}
1 & -1 & -\frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot x_{1}-x_{2}-\frac{1}{2} x_{3}=0 \\
& {\left[\begin{array}{l}
\text { pivot free } \\
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+\frac{1}{2} x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
+\frac{1}{2} \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
\lambda_{1}=10 \\
\left\{\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]
\end{array},\left[\begin{array}{c}
\lambda_{2}=1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
+\frac{1}{2} \\
0 \\
1
\end{array}\right]\right\} \text { A basis with } \\
& u_{1} \quad\left[\begin{array}{c}
u_{3} \\
u_{2}
\end{array}\right. \\
& \left.\begin{array}{l}
u_{1} \cdot u_{2}=0 \\
u_{1} \cdot u_{3}=0
\end{array}\right\} \text { from different eigenspaces. }
\end{aligned}
$$

Apply Gram-Scmidt to $u_{2} u_{3}$

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] ; \quad v_{2}=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
1
\end{array}\right]-\frac{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 / 2 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \\
& =\left[\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right]-\frac{1 / 2}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 4 \\
-1 / 4 \\
1
\end{array}\right] \\
& \left\{\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right]\right\} \begin{array}{ll}
\text { can use } \\
\text { any } \\
\text { multiple } \\
\text { basis } & \text { (non-zer) }
\end{array}
\end{aligned}
$$

lengths $3 \quad \sqrt{2} \quad \sqrt{18}=3 \sqrt{2}$ need orthonormal

$$
P=\left[\begin{array}{ccc}
-2 / 3 & 1 / \sqrt{2} & 1 / 3 \sqrt{2} \\
2 / 3 & 1 / \sqrt{2} & -1 / 3 \sqrt{2} \\
1 / 3 & 0 & 4 / 3 \sqrt{2}
\end{array}\right] \quad D=\left[\begin{array}{ccc}
10 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

You may want to rationalize the denominators: $1 / 3 \sqrt{2}=\frac{\sqrt{2}}{6}$ etc.

Spectral Decomposition:

$$
\begin{aligned}
& A=P D P^{\top}= \\
A= & {\left[\begin{array}{cccc}
u_{1} & u_{2} & \cdots & u_{n} \\
\underbrace{}_{\text {column rectors }}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \lambda_{2} & \\
0 & & \ddots \\
u_{n}
\end{array}\right] \underbrace{\left[\begin{array}{l}
u_{1}^{T} \\
u_{2}^{T} \\
u_{n}^{T}
\end{array}\right]}_{\text {row -vectors }} }
\end{aligned}
$$

$\underset{\substack{\text { projection } \\ \text { matrices }}}{ }=\underbrace{\lambda_{1} u_{1} u_{1}{ }^{\top}+\lambda_{2} u_{2} u_{2}{ }^{\top}+\cdots+\lambda_{n} u_{n} u_{n}{ }^{\top}}_{\text {Called spectral decomposition. }}$
Example We did $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]: \quad P=\left[\begin{array}{cc}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right] \quad D=\left[\begin{array}{cc}-4 & 0 \\ 0 & 6\end{array}\right]$

$$
\begin{aligned}
& u_{1} u_{1}^{\top}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
& u_{2} u_{2}^{\top}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
&-4 u_{1} u_{1}^{\top}+6 u_{2} u_{2}^{\top}=-4\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]+6\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]= \\
&=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]+\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 5 \\
5 & 1
\end{array}\right]
\end{aligned}
$$

(7.2) QUADRATIC FORMS

Defn Let $A$ be an $n \times n$ symmetric matrix Define $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
Q(\vec{x})=x^{\top} A x
$$

$Q$ is called the quadratic form associated to $A$.
Ex 0

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\underbrace{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}_{\vec{x} \cdot \vec{x}}
$$

Ex 1

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -3
\end{array}\right] \\
& x^{\top} A x=2 x_{1}^{2}+5 x_{2}^{2}-3 x_{3}^{2}
\end{aligned}
$$

Ax

$$
\begin{aligned}
& 2\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 3 \\
1 & -1 & 5 \\
3 & 5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 x_{1}+x_{2}+3 x_{3} & x_{1}-x_{2}+5 x_{3}
\end{array} 3 x_{1}+5 x_{2}+4 x_{3}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Compare:

$$
\begin{aligned}
&=\left(2 x_{1}^{2}+x_{1} x_{2}+3 x_{1} x_{3}\right)+\left(x_{2} x_{1}-x_{2}^{2}+5 x_{2} x_{3}\right)+ \\
&+\left(3 x_{3} x_{1}+5 x_{3} x_{2}+4 x_{3}^{2}\right) \\
&=2 x_{1}^{2}-x_{2}^{2}+4 x_{3}^{2}+2\left(x_{1} x_{2}+3 x_{1} x_{3}+5 x_{2} x_{3}\right)
\end{aligned}
$$



Easily doable backwards

$$
\text { Ire } \mathbb{R}^{2} 3 x_{1}^{2}+5 x_{2}^{2}-7 x_{1} x_{2} \rightarrow\left[\begin{array}{cc}
3 & -\frac{7}{2} \\
-\frac{7}{2} & 5
\end{array}\right]
$$

Caution
In $\mathbb{R}^{3} 3 x_{1}^{2}+5 x_{2}^{2}-7 x_{1} x_{2} \longrightarrow\left[\begin{array}{ccc}3 & -\frac{7}{2} & 0 \\ -\frac{7}{2} & 5 & 0 \\ 0 & 0 & 0\end{array}\right]$
th $\mathbb{R}^{3} \quad 3 x_{1}^{2}+6 x_{1} x_{2}-7 x_{2}^{2}+3 x_{1} x_{3}+8 x_{2} x_{3}:$

$$
\longrightarrow\left[\begin{array}{ccc}
3 & 3 & 3 / 2 \\
3 & -7 & 4 \\
3 / 2 & 4 & 0
\end{array}\right]
$$

CHANGE of VARIABLES in Quadratic Forms.

$$
\begin{aligned}
x & =P y \\
x^{\top} A x & =(P y)^{\top} A P y=y^{\top} P^{\top} A P y
\end{aligned}
$$

A symmetric if we find $P$ sit.

$$
A=P D P^{\top}
$$

for $D$ diagonal
$P$ orthogonal $\left(P^{T}=P^{-1}\right)$
then

$$
\begin{aligned}
P^{\top} A P & =P^{\top}\left(P D P^{\top}\right) P \\
& =\left(P^{\top} P\right) \cdot D\left(P^{\top} P\right)=D . \\
& \text { diagonal. }
\end{aligned}
$$

PRINCIPAL AXIS THEOREM
Let $A$ be a $n \times n$ symmetric matrix. Then there exists an or thogonal change of variable $x=P y$ that transforms the quadratic form $x^{\top} A x$ into a quadratic form $y^{\top} D y$ when has no cross-product terms.

Exauple

$$
\begin{gathered}
Q(x)=x_{1}^{2}+10 x_{1} x_{2}+x_{2}^{2} \\
A=\left[\begin{array}{cc}
1 & 5 \\
5 & 1
\end{array}\right] \\
P=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad D=\left[\begin{array}{cc}
-4 & 0 \\
0 & 6
\end{array}\right] \\
x=P_{y} \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
x_{1}=\frac{1}{\sqrt{2}}\left(-y_{1}+y_{2}\right) \\
x_{2}=\frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right) \\
=\frac{1}{2}\left(y_{2}^{2}+y_{1}\right)^{2}+10 \cdot \frac{1}{2}\left(y_{2}-y_{2}+x_{2}^{2}=\left(y_{2}+y_{1}\right)+\frac{1}{2}\left(y_{1}+y_{2}\right)^{2}\right. \\
=\frac{1}{2}\left(y_{2}^{2}-2 y_{y} y_{2}+y_{1}^{2}\right)+\frac{1}{2}\left(10 y_{2}^{2}-10 y_{1}^{2}\right)+\frac{1}{2}\left(y_{1}^{2}+2 y_{1} y_{2}+y_{1}^{2}\right) \\
=y_{2}^{2}\left(\frac{1}{2}+5+\frac{1}{2}\right)+y_{1}^{2}\left(\frac{1}{2}-5+\frac{1}{2}\right) \\
=-4 y_{1}^{2}+6 y_{2}^{2} \quad \text { compare to } D=\left[\begin{array}{ll}
-4 & 0 \\
0
\end{array}\right] .
\end{gathered}
$$

