(Midterm2Review on April 16 lecture)
Char 6
(6.1) Many news vocabulary. Make sure to learn all.
Def u Let $\vec{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ be in \mathbb{R}^{n}.
Also $\quad \vec{u} \cdot \vec{v}$, the inner product of \vec{u} and \vec{v} is known defined to be:
$\underset{\text { product }}{\text { dot }}\left\{\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right.$
Obs If ore looks at \vec{u} and \vec{v} as $n \times 1$ matrices:

$$
u^{\top} \cdot v=\left[\begin{array}{lll}
\vec{u} \cdot \vec{v}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

Ex $\left[\begin{array}{l}3 \\ 5\end{array}\right] \cdot\left[\begin{array}{c}-6 \\ 2\end{array}\right]=3 \cdot(-6)+5 \cdot 2=-8$

$$
\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]=1 \cdot 4+(-1) \cdot 2+2 \cdot 0=2
$$

$\left[\begin{array}{l}2 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$ not defined.

Properties of"." Dot product / Inner product For all $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^{n} :

- $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
- $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$
- (c $\vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})$ for all c in \mathbb{R}.
- $\vec{u} \cdot \vec{u} \geqslant 0$, and ($\vec{u} \cdot \vec{u}=0 \Leftrightarrow \vec{u}=\overrightarrow{0})$

Question
we know

$$
(A B) C=A(B C) \text { for matrices. }
$$

ls it true that.

$$
(\vec{u} \cdot \vec{v}) \cdot \vec{w} \neq \vec{u}(\vec{v} \cdot \vec{w}) ?
$$

Ans No

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)\left[\begin{array}{l}
5 \\
6
\end{array}\right]=(3+8)\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
55 \\
66
\end{array}\right] \\
& {\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot(15+24)=\left[\begin{array}{l}
39 \\
78
\end{array}\right]}
\end{aligned}
$$

LENGTH if \vec{v} is in \mathbb{R}^{n}, then the length (or norm) of \vec{v} is defined to be $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$ Where $\vec{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$.
Obs. $\quad\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}$
Example $\left\|\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]\right\|=\sqrt{1^{2}+3^{2}+(-2)^{2}}=\sqrt{14}$

- A vector \vec{u} is called unit if $\|\vec{u}\|=1$.

Ex. $\left\|\left[\begin{array}{l}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right]\right\|=\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}}=\sqrt{\frac{1}{9}+\frac{4}{9}+\frac{4}{9}}=1$
So $\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right]$ is a unit vector.

- Normalization $\vec{v} \longrightarrow \frac{\vec{v}}{\|\vec{v}\|}$ if $\vec{v} \neq 0$

This gives a vector which is
(i) unit, and
(ii) In the same direction of the original.

Ex Given $\vec{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find a unit vector in the direction of $\vec{\theta}$.

Question Is it always true that

$$
\left\|\frac{v}{\|\vec{v}\|}\right\|=1, \quad \text { if } \vec{v} \neq 0 \text { ? YES: }
$$

$$
\left\|\frac{v}{\|v\|}\right\|^{2}=\frac{v}{\|v\|} \cdot \frac{v}{\|v\|}=\frac{v \cdot v}{\|v\|^{2}}=\frac{\|v\|^{2}}{\|v\|^{2}}=1 .
$$

Distance

$$
\begin{aligned}
\operatorname{dist}(\vec{u}, \vec{v}) & =\|\vec{u}-\vec{v}\| \\
& =\|\vec{v}-\vec{u}\|
\end{aligned}
$$

Distance between \vec{u} and \vec{v} actually means the distance between the terminal points (P and Q)

Example

$$
\operatorname{dist}\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right)=\left\|\left[\begin{array}{l}
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right\|=\sqrt{26}
$$

Discussion

$$
\begin{aligned}
& a=\|\vec{u}\| \\
& b=\|\vec{v}\| \\
& c=\|\vec{u}-\vec{v}\|
\end{aligned}
$$

Law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$.

$$
\begin{aligned}
c^{2} & =\|\vec{u}-\vec{v}\|^{2}=(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2 \vec{u} \cdot \vec{v} \\
& =a^{2}+b^{2}-2 \vec{u} \cdot \vec{v}=a^{2}+b^{2}-2 a b \cos \theta \\
& \Rightarrow \quad \vec{u} \cdot \vec{v}=a b \cos \theta \\
& \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
\end{aligned}
$$

$$
\text { If } \vec{u}, \vec{v} \neq 0, \quad \cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|u\| \| \vec{v}} \text {. }
$$

This formula extends to \mathbb{R}^{n} since the triangle with vertices $\overrightarrow{0}, \vec{u}, \vec{v}$ is contained in a 2 -plane, which is the same as \mathbb{R}^{2} metrically.

The discussion on page 5 justifies
Defy Two vectors \vec{u} and \vec{v} are orthogonal to each other if $\vec{u} \cdot \vec{v}=0$.

Defy For two non-zero vectors \vec{u} and $\overrightarrow{\vec{b}}$ in \mathbb{R}^{4}

$$
\theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right), \quad 0 \leqslant \theta \leqslant \pi
$$

Observe that if $\vec{u}, \vec{v} \neq 0$:

$$
\begin{aligned}
\vec{u} \cdot \vec{v}=0 & \Longleftrightarrow \cos \theta=0 \\
& \Longleftrightarrow \theta=\frac{\pi}{2} \\
& \Longleftrightarrow \vec{u} \perp \vec{v} .
\end{aligned}
$$

Ex Are $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ -5 \\ 2\end{array}\right]$ orthogonal?

$$
\begin{array}{r}
{\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-5 \\
2
\end{array}\right]=3 \cdot(-1)+1 \cdot(-5)+4 \cdot 2=0} \\
\text { Yes, orthogonal }
\end{array}
$$

Than: (Pythagorean Thu)

$$
\begin{aligned}
\vec{u} \cdot \vec{v}=0 & \Longleftrightarrow\|u+v\|^{2}=\|u\|^{2}+\|u\|^{2} \\
& \Longleftrightarrow\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

Why? put $u \cdot v=0$ on p(5) discussion.

Ex. Find angle between $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-3 \sqrt{5} \\ -\sqrt{7} \\ 2 \sqrt{7}\end{array}\right]$.

$$
\begin{aligned}
& \left\|\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right\|=\sqrt{4+4+1}=3 \\
& \left\|\left[\begin{array}{c}
-3 \sqrt{5} \\
-\sqrt{7} \\
2 \sqrt{7}
\end{array}\right]\right\|=\sqrt{45+7+28}=\sqrt{80}=4 \sqrt{5} \\
& {\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-3 \sqrt{5} \\
-\sqrt{7} \\
2 \sqrt{7}
\end{array}\right]=-6 \sqrt{5}-2 \sqrt{7}+2 \sqrt{7}=-6 \sqrt{5}} \\
& \cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{-6 \sqrt{5}}{3-4 \sqrt{5}}=-\frac{1}{2}
\end{aligned}
$$

$$
\theta=\frac{2 \pi}{3} \quad\left(120^{\circ}\right)
$$

Ex Let $\vec{u}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Calculate $\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} u$

$$
\begin{gathered}
\vec{u} \cdot \vec{v}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
3
\end{array}\right]=-2+6=4 \\
\vec{u} \cdot \vec{u}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=1+4=5 \\
\overrightarrow{\vec{u} \cdot \vec{u}} \cdot \overrightarrow{\vec{u}} \cdot \vec{u}=\frac{4}{5}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-4 / 5 \\
8 / 5
\end{array}\right] .
\end{gathered}
$$

ORTHOGONAL COMPLEMENTS
Def Given a subspace W of \mathbb{R}^{n}. The orthogoral complement W^{\perp} (of W) consists all vectors \vec{v} in \mathbb{R}^{u} sit. $\vec{v} \cdot \vec{w}=0$ for all vectors w in W.
E.

W^{+}Observe that if $V=W^{\perp}$, then $V^{\perp}=W$.

Exc Let $u=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
$W=$ the set of vectors \vec{x} in \mathbb{R}^{3} sit. $\vec{u} \cdot \vec{x}=0$

$$
\text { Set } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \vec{u} \cdot \vec{x}=x_{1}-2 x_{2}+3 x_{3}=0
$$

Rowreduce $\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]=A$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \hat{p} \begin{array}{l}
\text { free } \\
x_{2}, x_{3}
\end{array} \\
& \vec{a}_{1} \\
& \overrightarrow{a_{2}} \\
& W=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
1 \\
0
\end{array} \left\lvert\,,\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right.\right\}\right.
\end{aligned}
$$

$$
=\text { Null space of } A \text {. }
$$

$$
\left.\begin{array}{l}
u \cdot v_{1}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]=-3+0+3=0 \\
u \cdot v_{2}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=2-2+0=0 \\
0
\end{array}\right]=\vec{v}_{2}
$$

Theorems Let A be an man matrix. Both row space of A (Row A) and null space of $A($ nul A) are subspaces of \mathbb{R}^{n}; and

$$
\begin{aligned}
& (\text { Row } A)^{\perp}=N_{u} \mid A \text { and } \\
& \left(N_{u} \mid A\right)^{\perp}=\text { Row } A .
\end{aligned}
$$

