5.3 Coutinue

Example Diagonatize if possible:

$$
\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

Solution: We are not given eigenvalues. so find them.

$$
\begin{aligned}
& =(2-\lambda)\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
1 & 3-\lambda & 1 \\
0 & -1 & 1
\end{array}\right| \xlongequal{R_{3}}\left|=\left|\begin{array}{ccc}
3-\lambda & 2 & 1 \\
1 & 4-\lambda & 1 \\
0 & 0 & 1
\end{array}\right|(2-\lambda)\right. \\
& =(2-\lambda)\left|\begin{array}{cc}
3-\lambda & 2 \\
1 & 4-\lambda
\end{array}\right|=(2-\lambda)((3-\lambda)(4-\lambda)-2) \\
& =(2-\lambda)\left(12-3 \lambda-4 \lambda+\lambda^{2}-2\right) \\
& =(2-\lambda)\left(\lambda^{2}-7 \lambda+10\right) \\
& \text { 2,2,5 } \\
& =(2-\lambda)(\lambda-5)(\lambda-2)
\end{aligned}
$$

Find eigenspace for $\lambda=2$

$$
\left.\begin{array}{l}
A-2 I=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \underset{R R}{ }\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & \uparrow
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1}+x_{2}+x_{3}=0 ;
\end{array}\right]} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-x_{2}-x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

basis for eigen spuce for 2
Find eigenspace for $\lambda=5$

$$
\begin{aligned}
& A-5 I=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] \xrightarrow[\substack{R_{1}+2 R_{3} \\
R_{2}-R_{3}}]{\longrightarrow}\left[\begin{array}{ccc}
0 & 3 & -3 \\
0 & -3 & 3 \\
1 & 1 & -2
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & 1 & -1 \\
0 & 3 & -3
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
& 1
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1}-x_{3}=0 \\
x_{2} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{3}-x_{3}=0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}
\end{aligned}
$$

basisfor eigonspace 5

$$
\begin{gathered}
\lambda=2 \\
\downarrow=\left[\begin{array}{ccc}
\lambda=2 & \lambda=5 \\
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]
\end{gathered}
$$

Diagunalizalle.

Check (i) Is Pinvertible? Yes since

$$
\left|\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right| \underset{R_{1}+R_{2}}{=}\left|\begin{array}{ccc}
-1 & -1 & 1 \\
0 & -1 & 2 \\
0 & 1 & 1
\end{array}\right|=-\left|\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right|=3 \neq 0
$$

Check(ii) Is $A=P D P^{-1}$?
Suffices to check $A P=P D$.

$$
\begin{aligned}
& A P=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -2 & 5 \\
2 & 0 & 5 \\
0 & 2 & 5
\end{array}\right] \\
& P D=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -2 & 5 \\
2 & 0 & 5 \\
0 & 2 & 5
\end{array}\right]
\end{aligned}
$$

This way you do not need to find P^{-1}.

The following theorems are true when we do all of our calculations, factorizations eigenvalues, eigenvectors and bases by using real numbers only (no complex numbers). In this course, we will not discuss diagonalization over complex numbers.

Thu: A n xn matrix with n distinct (real) eigenvalues is diagonalizable.

Thu 7 Let A be an $n \times n$ matrix with distinct (real) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{p}$.
(a) For each $k=1,2, \ldots p$

$$
1 \leq(\underbrace{\begin{array}{l}
\text { dimension of the } \\
\text { eigenspace for } \lambda_{k}
\end{array}}_{\text {call } d_{k} .}) \leqslant \underbrace{\begin{array}{l}
\text { multiplicity of } \lambda_{k} \\
\text { in the characteristic } \\
\text { polynomial }
\end{array}}_{\text {Call } m_{k} .}
$$

(b) A is diagonalizable

$$
\Leftrightarrow d_{1}+d_{2}+\cdots+d_{p}=n
$$

$\left\{\begin{array}{l}\text { (i) Characteristic polynomial of } A \\ \text { factors into } n \text { linear factors }\end{array}\right.$ factors into n linear factors (namely all roots are real), and
(ii) For all $k \quad d_{k}=m_{k}$.
(c) If A is diagonalizable, and B_{k} is a basis for the eigenspace for d_{k}, for all k, then combining all n vectors from all $B_{(k)}$ one - blains an eigenvector basis for \mathbb{R}^{n}.
$\frac{\text { Last example }}{\text { today }}\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$

$$
\begin{array}{llll}
\lambda_{1}=2 & m_{1}=2 & d_{1}=2 & d_{1}+d_{2}=3=n \\
\lambda_{2}=5 & m_{2}=1 & d_{2}=1 & \text { diagonalizable. }
\end{array}
$$

Examples from April 7

$$
\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right] \quad \begin{array}{ll}
\lambda_{1}=-2 & m_{1}=1 \geqslant d_{1} \geqslant 1 \\
\lambda_{2}=5 & m_{2}=1 \geqslant d_{2} \geqslant 1
\end{array}
$$

$C P=(\lambda-5)(\lambda+2) \quad 2$ distinct eigenvalues

$$
\Rightarrow \text { diagonalizable }
$$

- $\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right] \rightarrow C P=(\lambda-3)^{2}$

$$
\lambda_{1}=3 \quad m_{1}=2>d_{1}=1
$$

not diagonalizable.

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{ll}
\lambda_{1}=0 & m_{1}=1 \geqslant d_{1} \geqslant 1 \\
\lambda_{2}=2 & m_{2}=1 \geqslant d_{2} \geqslant 1 \\
\lambda_{3}=3 & m_{3}=1 \geqslant d_{3} \geqslant 1
\end{array}
$$

diagonalizable.

Exc \#18 from April 7

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & h & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { Char. Poly }=(5-\lambda)^{2}(3-\lambda)(1-\lambda) \\
& \lambda_{1}=1 \quad m_{1}=1 \geqslant d_{1} \geqslant 1 \\
& \lambda_{2}=3
\end{aligned} \quad m_{2}=1 \geqslant d_{2} \geqslant 1 \geqslant 1 . m_{3} \geqslant 2 \geqslant 1 . \begin{aligned}
& d_{3} \geqslant 1
\end{aligned}
$$

recall example

$$
\text { If } h \neq 6 \quad d_{3}=1
$$

$$
d_{1}+d_{2}+d_{3}=3 \neq 4
$$

not diagoralizable

$$
\text { If } h=6 \quad \begin{aligned}
& d_{3}=2 \\
& \\
& \\
& d_{1}+d_{2}+d_{3}=4
\end{aligned}
$$

diagonatizable.

Example Diagonalize if possible

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
4 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] } \\
&\left|\begin{array}{ccc}
0-\lambda & -1 & 0 \\
4 & 0-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
-\lambda & -1 \\
4 & -\lambda
\end{array}\right| \\
&=(1-\lambda)\left(\lambda^{2}+4\right)
\end{aligned}
$$

$\lambda_{1}=1$ only real eigenvalue $O=\lambda^{2}+4$ has no real nos.

$$
\begin{array}{r}
\lambda_{1}=1 \quad m_{1}=1 \geqslant d_{1} \geqslant 1 \\
d_{1} \neq n=3 .
\end{array}
$$

not diagonalizable over \mathbb{R}

Exc

$$
A=\left[\begin{array}{lll}
2 & -2 & -2 \\
3 & -3 & -2 \\
2 & -2 & -2
\end{array}\right] \quad \text { given } \lambda=0,-1,-2
$$

Is it diagoralizchle?
If so find D, P sit. $A=P D P^{-1}$.
Diagonalizalle. 3 distinct real roots/ eigenvalues for a 3×3 matrix. I can take

$$
D=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

No short-cut for P.

$$
\begin{aligned}
& A-\lambda I=A-O=\left[\begin{array}{lll}
2 & -2 & -2 \\
3 & -3 & -2 \\
2 & -2 & -2
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{lll}
1 & -1 & -1 \\
3 & -3 & -2 \\
2 & -2 & -2
\end{array}\right] \\
& \xrightarrow[\substack{R_{2}-3 R_{1} \\
R_{3}-2 R_{1}}]{\longrightarrow}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \\
& \\
& \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { basis } x_{2}}
\end{aligned}
$$

Check $\left[\begin{array}{lll}2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=0\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \lambda=-1 \\
& A-\lambda I=A+I=\left[\begin{array}{ccc}
3 & -2 & -2 \\
3 & -2 & -2 \\
2 & -2 & -1
\end{array}\right] \xrightarrow[R_{2}-R_{1}]{\longrightarrow}\left[\begin{array}{ccc}
3 & -2 & -2 \\
0 & 0 & 0 \\
2 & -2 & -1
\end{array}\right] \\
& \overrightarrow{R_{1}-R_{3}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
2 & -2 & -1
\end{array}\right] \xrightarrow{R_{3}-2 e_{1}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & -2 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{c}
x_{1} \\
x_{2} \\
-x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
\frac{1}{2} x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

Check $\left[\begin{array}{lll}2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2\end{array}\right]\left[\begin{array}{c}1 \\ 1 / 2 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ -\frac{1}{2} \\ -1\end{array}\right]=-1\left[\begin{array}{l}1 \\ 1 / 2 \\ 1\end{array}\right] \quad$ Basis for \quad e. space -1

$$
\begin{aligned}
& \lambda=-2 \\
& A+2 I=\left[\begin{array}{ccc}
4 & -2 & -2 \\
3 & -1 & -2 \\
2 & -2 & 0
\end{array}\right] \xrightarrow[\frac{1}{2} R_{3}]{\longrightarrow}\left[\begin{array}{ccc}
4 & -2 & -2 \\
3 & -1 & -2 \\
1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0 & 2 & -2 \\
0 & 2 & -2 \\
1 & -1 & 0
\end{array}\right] \\
& \left.\left.\longrightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
R_{2}-3 R_{3} \\
\hline
\end{array} \right\rvert\, \begin{array}{l}
x_{1} \\
x_{2} \\
2
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{3} \\
2
\end{array}\right]=x_{3}
\end{aligned}
$$

$$
\text { Check }\left[\begin{array}{lll}
2 & -2 & -2 \\
3 & -3 & -2 \\
2 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right]=-2\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] v
$$

