EIGEN VALVES + EIGENVECTORS
over view
Given a square matrix $A, n \times n$.
We want to find real numbers λ and vectors $v \neq 0$ satisfying

$$
\begin{aligned}
& A \cdot v=\lambda \cdot v \\
& A \cdot v=\lambda \cdot v \Leftrightarrow(A-\lambda I) v=0 \\
& v=0 \text { is a always } \\
& \text { a solution } \\
& \text { (A -dI) } v=0 \text { has a nou-trivial sol } \\
& \Leftrightarrow(A-\lambda I) \text { is nt invertible (This } 8 \text {) } \\
& \begin{array}{l}
\text { Section 3.2 } \\
\text { Tum 4 }
\end{array}
\end{aligned}
$$

(1) If you want to find eigenvalues, Solve $\operatorname{det}(A-\lambda I)=0$. (5.2)
(2) if you know a particular eigen value λ for A, then

- Find $A-\lambda I$.
- RowReduce A- dI
- Must have a free variable in $\operatorname{RREF}(A-\lambda I)$ (otherwise λ is not an eigenvalue)
- Write vector parametric solution of $(A-\lambda I) \cdot x=0$ as in 1.5
- Obtain a basis for the null-space of $A-\lambda I$ as in 2.8

Null space $(A-\lambda I)=$ Ergenspace of A for eigenvalue λ.

- Dimension of Eigenspuce of A for λ = \# of parameters in sol" of $(A-\lambda I) \cdot \vec{x}=0$
\# vectors in a. basis of the eigenspace for λ.

More examples from 5.1
Ex.

$$
A=\left[\begin{array}{llll}
3 & 0 & 2 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \quad \lambda=4 \text {, eigenvalue }
$$

Find a basis for the eigenspace for $\lambda=4$.

$$
\begin{aligned}
& A-4 I=\left[\begin{array}{cccc}
-1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \underset{\substack{R_{1}+R_{2} \\
\downarrow}}{ }\left[\begin{array}{cccc}
-1 & 0 & 2 & 0 \\
0 & -1 & 3 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow[\substack{R_{2}+R_{3} \\
\downarrow}]{\longrightarrow}\left[\begin{array}{cccc}
-1 & 0 & 2 & 0 \\
0 & -1 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[\substack{-R_{1} \\
-R_{2}}]{\longrightarrow}\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \stackrel{\downarrow}{R_{3}} \\
& x_{1}-2 x_{3}=0 \\
& \uparrow \uparrow \\
& x_{1}-3 x_{3}=0 \\
& x_{3} x_{4} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 x_{3} \\
3 x_{3} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \text {. }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A basisfor } \\
& \text { Eigenspacefor } 4 \\
& \operatorname{dim}_{\text {Em }}=2
\end{aligned}=\left\{\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(1) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$ find ore eigenvalue

2 Identical rows $\Rightarrow \operatorname{det} A=0$.
Always froe: (for all square matrices) $\operatorname{det} A=0 \Leftrightarrow \operatorname{det}(A-0 \cdot I)=0$
$\Leftrightarrow 0$ is an eigenvalue.
(A) A 2×2 matrix can have at most two distinct eigenvalues. Why?
The: $\vec{v}_{1}, \ldots \vec{v}_{r}$ eigenvectors to distinct eigenvalues λ_{1}, λ_{r}. for $A(n \times n)$ $\Rightarrow\left\{\vec{v}_{1}, \vec{v}_{2}, . . \vec{v}_{f}\right\}$ linearly independent.

But 3 vectors in \mathbb{R}^{2} are lineally dependant. There cannot be 3 or more distinct eigenvalues.
(Ex) 2×2 matrix with one eigenvalue

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] . \quad \lambda=0
$$

For any $\lambda \neq 0 \quad \operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}-\lambda & 0 \\ 0 & -\lambda\end{array}\right]$

$$
=+\lambda^{2} \neq 0
$$

A cannot have a non-zero eigenvalue.
(5.2)

Defu For a given matrix $A(n \times n)$ $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

- Actually $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n, if A is $n \times n$.
- The eigenvalues are the roots of $\operatorname{det}(A-\lambda I)=0$, and vice versa (meaning: all roots of $\operatorname{det}(A-\lambda I)=0$ are eigenvalues of A.)

Basic facts to remember from HS (or learn now if not seen before)

- All polynomials of degree $n^{11^{\prime}}$ in \mathbb{C} must have exactly n roots in \mathbb{C}, if counted with multiplicty. (Fundamental The of Algebra.)

Ex $\quad(\lambda-5)^{2}\left(\lambda^{2}+1\right)=0=\lambda^{4}-10 \lambda^{3}+26 \lambda^{2}-10 \lambda+25$.
Roots $\lambda=5,5, i,-i \quad 4$ coots
multiplicity 2

- All polynomials of degree n in \mathbb{R} must have at most n roots in \mathbb{R}.
- Let $P(\lambda)$ be a polynomial in \mathbb{R} (or \mathbb{C}), where λ is the variable. Let a be a real number. Then

$$
P(a)=0 \quad \Longleftrightarrow P(\lambda)=(\lambda-a) Q(\lambda)
$$

for some polynomial $Q(\lambda)$
Example We want to find the roots of

$$
P(\lambda)=\lambda^{3}-2 \lambda^{2}-5 \lambda+6=0
$$

Observe $P(1)=1-2-5+6=0$.
So, $\lambda^{3}-2 \lambda^{2}-5 \lambda+6=(\lambda-1) Q(\lambda)$
By Long division, divide $\lambda^{3}-2 \lambda^{2}-5 \lambda+6$ by $\lambda-1$.

$$
\begin{aligned}
\left(\lambda^{3}-2 \lambda^{2}-5 \lambda+6\right) & =(\lambda-1)\left(\lambda^{2}-\lambda-6\right) \\
& =(\lambda-1)(\lambda-3)(\lambda+2)
\end{aligned}
$$

Roots of $P(\lambda)$ are $1,3,-2$.
Arampl(1) @Find Characteristic Polynomial x eigenvalues

$$
\text { for } A=\left[\begin{array}{cc}
-4 & -1 \\
6 & 1
\end{array}\right]
$$

Sols $A-\lambda I=\left[\begin{array}{cc}-4 & -1 \\ 6 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-4-\lambda & -1 \\ 6 & 1-\lambda\end{array}\right]$
$\operatorname{det} A-\lambda I=\left|\begin{array}{ccc}-4-\lambda & -1 \\ 6 & 1-\lambda\end{array}\right|=(-4-\lambda)(1-\lambda)+6$

$$
\begin{aligned}
& =-4+4 \lambda-\lambda+\lambda^{2}+6=\underbrace{\lambda^{2}+3 \lambda+2}_{\text {Elgar. Poly. }}=(\lambda+1)(\lambda+2) .
\end{aligned}
$$

(b) Let us find the eigenspaces:

$$
\begin{aligned}
& A=-1 \\
& A-\lambda I=A+I=\left[\begin{array}{cc}
-4 & -1 \\
6 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
6 & 2
\end{array}\right] .
\end{aligned}
$$

Row Redure $\left[\begin{array}{rr}-3 & -1 \\ 6 & 2\end{array}\right] \rightarrow\left[\begin{array}{rr}-3 & -1 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & \frac{1}{3} \\ 0 & 0\end{array}\right]$

$$
A-\lambda I=A+2 I=\left[\begin{array}{rr}
-2 & -1 \\
6 & 3
\end{array}\right] \xrightarrow{R R}\left[\begin{array}{cc}
-2 & -1 \\
0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} y \\
y
\end{array}\right]=y\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

$$
x+\frac{1}{2} y=0 \quad\left[\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 0
\end{array}\right]
$$

4 free

- basir for eigenspace for

$$
\lambda=-2
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 / 3 y \\
y
\end{array}\right]=y\left[\begin{array}{c}
1 / 3 \\
1
\end{array}\right] \quad x+\frac{1}{3} y=0 \text { porameter } y} \\
& \lambda=-1 \text {. } \\
& \lambda=-2
\end{aligned}
$$

(Ex) Find characteristic polynomial x eigenvalues for

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 1 & 1 \\
0 & 5 & 0 \\
-2 & 0 & 7
\end{array}\right]} \\
& \operatorname{det} A-\lambda I=\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
0 & 5-\lambda & 0 \\
-2 & 0 & 7-\lambda
\end{array}\right|=(5-\lambda)\left|\begin{array}{cc}
3-\lambda & 1 \\
-2 & 7-\lambda
\end{array}\right| \\
& \left.\begin{array}{l}
=(5-\lambda)((3-\lambda)(7-\lambda)-(-2) 1) \\
=(5-\lambda)\left(21-7 \lambda-3 \lambda+\lambda^{2}+2\right)
\end{array}\right\} \text { ckarac. } \\
& \begin{array}{l}
=(5-\lambda)\left(\lambda^{2}-10 \lambda+23\right) \\
=5 \lambda^{2}-50 \lambda+115-\lambda^{3}+10 \lambda^{2}-23 \lambda
\end{array} \quad \text {.p=1y. } \\
& =-\lambda^{3}+15 \lambda^{2}-73 \lambda+115
\end{aligned}
$$

Eigenvalues solve $0=-\lambda^{3}+15 \lambda^{2}-73 \lambda+115$
Better use $O=(5-\lambda)\left(\lambda^{2}-10 \lambda+23\right)$

$$
\begin{aligned}
& \lambda=5 \\
& \lambda=\frac{+10 \pm \sqrt{100-92}}{2} \\
&=\frac{10 \pm \sqrt{8}}{2}=5 \pm \sqrt{2}
\end{aligned}
$$

Eigenvalues: $5,5+\sqrt{2}, 5-\sqrt{2}$ all real

Upper triangular / Lowertriangular/diagsnal matrices

$$
\begin{aligned}
& \underline{X} A=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
5 & 2 & 0 & 0 \\
7 & 6 & 1 & 0 \\
-1 & 3 & 4 & -3
\end{array}\right] . \\
& \operatorname{det} A-\lambda I=\left|\begin{array}{cccc}
2-\lambda & 0 & 0 & 0 \\
5 & 2-\lambda & 0 & 0 \\
7 & 6 & 1-\lambda & 0 \\
-1 & 3 & 4 & -3-\lambda
\end{array}\right|
\end{aligned}
$$

open along first row

$$
\begin{aligned}
& \operatorname{det}=(2-\lambda)\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
6 & 1-\lambda & 0 \\
3 & 4 & -3-\lambda
\end{array}\right| \\
& =(2-\lambda)(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 0 \\
4 & -3-\lambda
\end{array}\right| \\
& =(2-\lambda)(2-\lambda)(1-\lambda)(-3-\lambda)
\end{aligned}
$$

eigenvalues $\underbrace{2,2,1,-3}$
they are the diagonal entries.

Example
Find characteristic polynomial x eigenvalues of

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & 1 \\
-3 & 3 & 2
\end{array}\right]
$$

$\left|\begin{array}{ccc}1-\lambda & 1 & 1 \\ 2 & 0-\lambda & 1 \\ -3 & 3 & 2-\lambda\end{array}\right|$
can be calculated directly
to obtain

$$
-\lambda^{3}+3 \lambda^{2}-4 .
$$

Do you know how to solve a cubic eq", in general? Sometimes, if possible it is useful to keep factors, rather than multiplying out.

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
2 & 0-\lambda & 1 \\
-3 & 3 & 2-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
2 & -\lambda-1 & 1 \\
-3 & 1+\lambda & 2-\lambda
\end{array}\right|
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (} \lambda+1) \text { factors } \\
\text { in column }
\end{array} \\
& =\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
2 & -1(\lambda+1) & 1 \\
-3 & 1(\lambda+1) & 2-\lambda
\end{array}\right|=(\lambda+1)\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
2 & -1 & 1 \\
-3 & 1 & 2-\lambda
\end{array}\right| \begin{array}{r}
\text { add } R_{2} \\
+R_{3}
\end{array} \\
& =(\lambda+1)\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
2 & -1 & 1 \\
-1 & 0 & 3-\lambda
\end{array}\right|=-(\lambda+1)\left|\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right| \\
& =\begin{array}{l}
\text { allowed operations are }
\end{array} \\
& =-(\lambda+1)\left(\lambda^{2}-4 \lambda+4\right)
\end{aligned}
$$

open along column 2
e. values: $-\frac{1,2,2}{\text { double }}$

