MATH $2850 \quad$ Practice questions for Midterm 2.

Your test is 50 minutes long. All of these 17 questions should be doable in 3 hours, so in average each should take 10 minutes. (Caution some are 5 -minute and some are 15 -minute problems.)

Problem 1. Let $f(x, y)=x^{3}-3 x^{2}+y^{3}-27 y: \mathbf{R}^{2} \rightarrow \mathbf{R}$.
a. Find all critical points of f.
b. Find all of the local maxima, local minima, and saddle points of f.

Problem 2. a. Evaluate $\int_{0}^{2} \int_{0}^{2 x} \int_{0}^{3 y} x y z d z d y d x$.
b. Sketch the domain of integration of the integral above.

Problem 3. Consider the integral $\int_{0}^{3} \int_{x^{2}}^{9} 4 x e^{\left(y^{2}\right)} d y d x$.
a. Sketch the domain of integration.
b. Reverse the order of integration.
c. Find the (numerical) value of the integral above.

Problem 4. Find the maximum and minimum values of $f(x, y)=x^{2}+x y+y^{2}$ on the domain defined by $g(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2} \leq 1$. Indicate any theorem you use in your solution, where and how it is used.

Problem 5. Let $\mathbf{X}(t)=(4 \cos t, 4 \sin t, 3 t)$ for $0 \leq t \leq 2 \pi$.
a. For the parametric motion defined by $\mathbf{X}(t)$, find its velocity, acceleration and speed.
b. Find a parametric equation for the tangent line to $\mathbf{X}(t)$ when $t=\pi$.
c. Find the length of $\mathbf{X}(t)$.
d. Sketch the curve $\mathbf{X}(t)$, and include the coordinates of its end points.

Problem 6. Find the first order Taylor polynomial for $f(x, y)=x^{2} \cos 3 y+x y^{2}$ near $(a, b)=(3,0)$.
b.Use part (a) to approximate $f(3.04,0.03)$.
c. Find the second order Taylor polynomial for f near $(a, b)=(3,0)$.

Problem 7 a. Sketch the domain of integration of the integral and reverse the order of integration: $\int_{0}^{1} \int_{0}^{2 x} e^{x} \cos y d y d x$.
b. Sketch the domain of integration of the integral $\int_{0}^{\pi / 2} \int_{y}^{4-y} x \sin y d x d y$ and calculate the value of the integral.

Problem 8. Let $h(x, y)=x^{2}-y^{2}-2 y$.
a. Find all critical points of $h(x, y)$ on \mathbf{R}^{2}. Determine whether each critical point is a relative maximum, minimum, or saddle point.
b. Find the points at which the function $h(x, y)=x^{2}-y^{2}-2 y$ attains its maximum and minimum values on the circle $x^{2}+y^{2}=1$. State the maximum and minimum values.

Problem 9.

Let $f(x, y, z)=x^{2} y^{3}-y z+2 x z$
a. Calculate ∇f.
b. Calculate the directional derivative of f at $(x, y, z)=(1,0,2)$ in the direction of the vector (2, -2, 1).
c. In which direction does f decrease fastest at $(1,0,2)$?
d. Find an equation for tangent plane to the level set $x^{2} y^{3}-y z+2 x z=4$ at $(1,0,2)$.

Problem 10. Find all critical points of $f(x, y)=x^{3}-2 x y+y^{2}-x: \mathbf{R}^{2} \rightarrow \mathbf{R}$, and determine whether each critical point is a local maximum, a local minimum or a saddle point by using the Second Derivative Test.

Problem11. a. Why do the equations $\left\{\begin{array}{l}x^{2}+y^{2}+z^{2}-w=1 \\ x-y+z+w^{2}=5\end{array}\right.$ implicitly define x and y as functions of z and w near the point $(x, y, z, w)=(1,1,1,2)=\mathbf{p}$?
b. If $g(z, w)=(x, y)$ is the solution function near \mathbf{p}, compute the derivative matrix g^{\prime} near \mathbf{p} in terms of x, y, z and w.

Problem 12. For each of the following iterated integrals, sketch the domain of integration of the integral and find the value of the integral.
a. $\int_{0}^{2} d x \int_{2 x}^{4} d y \int_{0}^{y} e^{z} d z$
b. $\int_{0}^{2} d x \int_{2 x}^{4} \cos \left(y^{2}\right) d y$

Problem 13. Let B be the subset of \mathbf{R}^{3}, defined by
$y^{2} \geq z$,
$x+y \leq 1$,
$x \geq 0$,
$y \geq 0$, and
$z \geq 0$.
a. Sketch the region B.
b. Calculate the volume of B.
c. Calculate $\iiint_{B} 12 y z d V$

Problem14. Sketch the region D defined by $x^{2}+y^{2} \leq 9, x \geq 0$ and $y \geq 0$ in \mathbf{R}^{2}, describe the region D by using polar coordinates, and calculate $\iint_{D} \sqrt{x^{2}+y^{2}} d x d y$.

Problem 15. Let a transformation T from the $u v$-plane to the $x y$-plane be defined by $x=u+v$ and $y=u-v$. Let $R_{u v}$ be the rectangular region given by $0 \leq u \leq 2$, and $0 \leq v \leq 1$ in the $u v$-plane.
a. Find and sketch the region $R_{x y}=T\left(R_{u v}\right)$, the image of $R_{u v}$ under the transformation T.
b. Find $\frac{\partial(x, y)}{\partial(u, v)}$.
c. Transform $\int_{R_{x y}} x y d x d y$ to an integral over $R_{u v}$. Write the integral as an iterated integral, but do not evaluate it.

Problem 16. For the curve L parametrized by $g(t)=\left(2 t, \ln t, t^{2}\right)$, for $1 \leq t \leq e^{2}$, calculate the following.
a. the velocity
b. the speed
c. The length of L
d. The equation of the tangent line to L when $t=e$.

Problem 17. Let $S=\left\{(x, y): 2 y=x^{2}\right\}$ and $(0, a)$ be a given point on the $y-a x i s$ in \mathbf{R}^{2}. Find the closest point(s) of S to ($0, a$) in terms of a.

HINTS: It is easier to minimize the square of the distance function from ($0, a$). Also, you will have different types of answers depending on whether a is large or small.

