MATH 2850 **Practice questions for Midterm 2.**

Your test is 50 minutes long. All of these 17 questions should be doable in 3 hours, so in average each should take 10 minutes. (Caution some are 5-minute and some are 15-minute problems.)

Problem 1. Let $f(x, y) = x^3 - 3x^2 + y^3 - 27y : \mathbb{R}^2 \to \mathbb{R}$. **a**. Find all critical points of *f*.

b. Find all of the local maxima, local minima, and saddle points of f.

Problem 2. a. Evaluate $\int_{0}^{2} \int_{0}^{2x} \int_{0}^{3y} xyz \, dz \, dy \, dx$.

b. Sketch the domain of integration of the integral above.

Problem 3. Consider the integral $\int_{0}^{3} \int_{x^{2}}^{9} 4xe^{(y^{2})} dy dx$.

a. Sketch the domain of integration.

b. Reverse the order of integration.

c. Find the (numerical) value of the integral above.

Problem 4. Find the maximum and minimum values of $f(x, y) = x^2 + xy + y^2$ on the domain defined by $g(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2 \le 1$. Indicate any theorem you use in your solution, where and how it is used.

Problem 5. Let $\mathbf{X}(t) = (4\cos t, 4\sin t, 3t)$ for $0 \le t \le 2\pi$.

a. For the parametric motion defined by $\mathbf{X}(t)$, find its velocity, acceleration and speed.

- **b**. Find a parametric equation for the tangent line to $\mathbf{X}(t)$ when $t = \pi$.
- **c**. Find the length of $\mathbf{X}(t)$.
- **d**. Sketch the curve $\mathbf{X}(t)$, and include the coordinates of its end points.

Problem 6. Find the first order Taylor polynomial for $f(x, y) = x^2 \cos 3y + xy^2$ near (a,b) = (3,0).

b.Use part (a) to approximate f(3.04, 0.03).

c. Find the second order Taylor polynomial for f near (a,b) = (3,0).

Problem 7 a. Sketch the domain of integration of the integral and reverse the order of integration: $\int_{0}^{1} \int_{0}^{2x} e^{x} \cos y \, dy \, dx.$

b. Sketch the domain of integration of the integral $\int_{0}^{\pi/2} \int_{y}^{4-y} x \sin y \, dx \, dy$ and calculate the value of the integral.

Problem 8. Let $h(x, y) = x^2 - y^2 - 2y$.

a. Find all critical points of h(x, y) on \mathbb{R}^2 . Determine whether each critical point is a relative maximum, minimum, or saddle point.

b. Find the points at which the function $h(x, y) = x^2 - y^2 - 2y$ attains its maximum and minimum values on the circle $x^2 + y^2 = 1$. State the maximum and minimum values.

Problem 9.

Let $f(x, y, z) = x^2y^3 - yz + 2xz$ a. Calculate ∇f .

b. Calculate the directional derivative of *f* at (x, y, z) = (1, 0, 2) in the direction of the vector (2, -2, 1).

c. In which direction does f decrease fastest at (1,0,2)?

d. Find an equation for tangent plane to the level set $x^2y^3 - yz + 2xz = 4$ at (1,0,2).

Problem 10. Find all critical points of $f(x, y) = x^3 - 2xy + y^2 - x : \mathbb{R}^2 \to \mathbb{R}$, and determine whether each critical point is a local maximum, a local minimum or a saddle point by using the Second Derivative Test.

Problem11. a. Why do the equations $\begin{cases} x^2 + y^2 + z^2 - w = 1\\ x - y + z + w^2 = 5 \end{cases}$ implicitly define

x and y as functions of z and w near the point $(x, y, z, w) = (1, 1, 1, 2) = \mathbf{p}$?

b. If g(z, w) = (x, y) is the solution function near **p**, compute the derivative matrix g' near **p** in terms of x, y, z and w.

Problem 12. For each of the following iterated integrals, sketch the domain of integration of the integral and find the value of the integral.

a.
$$\int_{0}^{2} \frac{dx}{2x} \int_{0}^{2} \frac{dy}{2x} \int_{0}^{2} e^{z} dz$$

b.
$$\int_{0}^{2} \frac{dx}{2x} \int_{2x}^{2} \cos(y^{2}) dy$$

Problem 13. Let *B* be the subset of \mathbb{R}^3 , defined by $y^2 \ge z$, $x + y \le 1$, $x \ge 0$, $y \ge 0$, and $z \ge 0$. **a.** Sketch the region *B*. **b.** Calculate the volume of *B*. **c.** Calculate $\iiint_B 12yz \, dV$

Problem14. Sketch the region *D* defined by $x^2 + y^2 \le 9$, $x \ge 0$ and $y \ge 0$ in \mathbb{R}^2 , describe the region *D* by using polar coordinates, and calculate $\iint_D \sqrt{x^2 + y^2} dx dy$.

Problem 15. Let a transformation *T* from the *uv*-plane to the *xy*-plane be defined by x = u + v and y = u - v. Let R_{uv} be the rectangular region given by $0 \le u \le 2$, and $0 \le v \le 1$ in the *uv*-plane.

a. Find and sketch the region $R_{xy} = T(R_{uv})$, the image of R_{uv} under the transformation *T*. **b**. Find $\frac{\partial(x,y)}{\partial(u,v)}$.

c. Transform $\int_{R_{xy}} xy \, dx \, dy$ to an integral over R_{uy} . Write the integral as an iterated integral, but do not evaluate it.

Problem 16. For the curve *L* parametrized by $g(t) = (2t, \ln t, t^2)$, for $1 \le t \le e^2$, calculate the following.

a. the velocity

b. the speed

- **c**. The length of *L*
- **d**. The equation of the tangent line to *L* when t = e.

Problem 17. Let $S = \{(x, y) : 2y = x^2\}$ and (0, a) be a given point on the y - axis in \mathbb{R}^2 . Find the closest point(s) of *S* to (0, a) in terms of *a*.

HINTS: It is easier to minimize the square of the distance function from (0, a). Also, you will have different types of answers depending on whether *a* is large or small.