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Abstract. The thickness, NIR(K) of a knot or link K is defined to be the

radius of the largest open solid tube one can put around the curve without any
self intersections of the normal discs, which is also known as the normal injec-

tivity radius ofK. For C1,1 curvesK, NIR(K) = min{ 1
2
DCSC(K), 1

supκ(K)
)},

where κ(K) is the generalized curvature, and the double critical self distance
DCSD(K) is the shortest length of the segments perpendicular to K at both

end points. The knots and links in ideal shapes (or tight knots or links) be-

long to the minima of ropelength = length/thickness within a fixed isotopy

class. In this article, we prove that NIR(K) = 1
2
DCSC(K), for every relative

minimum K of ropelength in Rn for certain dimensions n, including n = 3.

1. Introduction

In this article, the local structure of C1,1 relatively extremal knots and links in
Rn will be studied, particularly the extremal knots and links with maximal constant
generalized curvature. The non-constant curvature case was studied in our earlier
article [6]. The thickness or the normal injectivity radius NIR(K,Rn) of a knotted
curve (or link) is the radius of the largest open tubular neighborhood around the
curve without intersections of the normal discs. Several different notations for
thickness appeared in the literature. R(K) was used for thickness in Litherland-
Simon-Durumeric-Rawdon [11] and Buck and Simon [1]. Gonzales and Maddocks
[8] showed that the thickness η∗(K) was equal to the minimum ∆(K) of ρG, the
global radius of curvature for C2 curves. In [2], Cantarella-Kusner-Sullivan defined
thickness τ(K) by the infimum of the global radius of curvature and proved that it
was the normal injectivity radius for C1,1 curves.

The ideal knots are the embeddings of S1 into R3, maximizing NIR(K,R3) in a
fixed isotopy (knot) class of fixed length. More generally, a relatively extremal knot
is a relative minimum of the ropelength or isoembolic length, `e(K) = `(K)

NIR(K,Rn)

in C1 topology, where ` denotes the usual length. We assume that the relative min-
ima are taken in fixed ambient isotopy classes, since the ropelength of the curves
with self intersections are not finite. The tight links and ideal knots belong to the
relative minima of the ropelength. The notion of ropelength has been defined and
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studied by several authors, Litherland-Simon-Durumeric-Rawdon (called its recip-
rocal thickness in [11]), Gonzales and Maddocks [8], Cantarella-Kusner-Sullivan [2]
and others. Cantarella-Kusner-Sullivan [2] defined ideal (thickest) knots as “tight”
knots.

As J. Simon pointed out that there are physical examples (no proofs) of rel-
atively extremal unknots in R3, which are not circles, and hence not ideal knots.
One can construct similar physical examples for composite knots. For dimensions
n 6= 3, every 1-dimensional knot is trivial through an isotopy of curves of zero
thickness. At a strict relative minimum K of ropelength, one can not isotope the n-
dimensional solid tube of radius NIR(K) around K without increasing the length
of K. Hence, one should not assume that all of the relative minima of ropelength
in Rn (for n 6= 3) is the absolute minimum, that is a planar circle.

The thickness can be written in terms of the generalized curvature κ and dou-
ble critical self distance DCSD(K) which is the shortest length of the segments
perpendicular to K at both end points. Section 2 has the formal definitions. Thick-
ness Formula was shown for C2−knots in R3 in [11], and for C1,1 knots in R3 by
Litherland in [10]. Also, [2] Lemma 1 proved the Thickness Formula below for C1,1

knots and links in R3, since the geometric and analytic focal radii are the same in
Rn, Fg = Fk = 1/(supκ) by [6] Lemma 2.

The notion of the global radius of curvature ρG developed by Gonzales and
Maddocks for smooth curves in R3 defined by using circles passing through 3 points
of the curve is another characterization of NIR(K,R3) [8]. This is still true for all
continuous curves by [2] Lemma 1. The construction of ρG and rolling ball radius
RO for curves in R3 are different in nature due to 3-point intersection condition
versus 1-point of tangency and 1-point of intersection condition. However, at the
infimum they tend towards the same quantity, NIR(K,R3) [2].

NIR(K,M) = RO(K,M), a rolling ball/bead description of the injectivity
radius in Rn, was known by Nabutovsky [13] for hypersurfaces, by Buck and Simon
for C2 curves [1], and by Cantarella, Kusner and Sullivan [2] Lemma 1. Although
the equality NIR(K,M) = RO(K,M) is generalizable to all dimensions and to
Riemannian manifolds [5], the notion of ρG can not be used beyond the spaces of
constant curvature.

In all of our results, the manifolds K are allowed to have several components
(unless stated otherwise). If K is one dimensional, we will use γ : D → K for a
parametrization of K where D can be taken as a finite disjoint union of intervals
and circles, S1. All closed curves are assumed to be C1 at the closing point.

GENERAL THICKNESS FORMULA Theorem 1 of [5]:
For every complete smooth Riemannian manifold Mn and every compact C1,1

submanifold Kk (∂K = ∅) of M,

NIR(K,M) = RO(K,M) = min{Fg(K),
1
2
DCSD(K)}.

THICKNESS FORMULA in Rn [2], [10], [5], [6]:
For every union of finitely many disjoint C1,1 simple closed curves K in Rn,

NIR(K,Rn) = RO(K,Rn) = min{Fk(K),
1
2
DCSD(K)}.

Remark 1. Since all problems we discuss in this article involve bounded cur-
vature in Rn, we rescale and take supκ = Λ = 1 to simplify our presentation.
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The main question we address in [6] and this article is Problem 1 which is
closely related to Problem 2, Markov-Dubins Problem:

Problem 1. For which relatively extremal knots and links for the ropelength
functional in Rn does one have NIR(K,Rn) = 1

2DCSD(K)?
Problem 2. (Markov [12]-Dubins [4]) Given p, q, v, w in Rn, with ‖v‖ =

‖w‖ = 1. Classify all of the shortest curves in C(p, q; v, w) which is the set of all
C1 curves γ between the points p and q in Rn with γ′(p) = v, γ′(q) = w and the
generalized curvature κ(γ) ≤ 1 = Λ.

Definition 1. A C1,1 curve γ : I = [a, b] → Rn is called a CLC−curve if
there are a ≤ c ≤ d ≤ b such that (i) γ([c, d]) is a line segment of possibly zero
length, and (ii) each of γ([a, c]) and γ([d, b]) is a planar circular arc of radius 1
and of length in [0, 2π). The curve γ need not be planar. Similarly, one can define
CCC-curves by C1−concatenation of 3 arcs of circles of curvature 1, where each
arc has positive length and successive arcs have different centers.

In an earlier article [6], the author resolved Problem 1 in Rn, if the curve K
did not have constant curvature, see below. The main tool in proving Theorem 2
of [6] is the study of CLC−curves. Let Ic(K) denote the minimal DCSD points on
K. Theorem 2 of [6] tells us that the sections of a relatively extremal knot in Rn

with Ic(K) removed are CLC−curves or overwound, i.e. κ ≡ Λ. This generalizes
one of the earliest results about the shape of ideal knots, that was obtained by
Gonzales and Maddocks [8] p 4771: A smooth ideal knot can be partitioned into
arcs of constant (maximal) global curvature and line segments.

Durumeric [6] Theorem 2:
Let K be a union of finitely many disjoint C1,1 simple closed curves in Rn and

γ : D → K ⊂ Rn be a parametrization. If K is a relative minimum for `e and
∃s0 ∈ D, κ(γ)(s0) < supκ(γ), then both of the following hold for γ(D) = K :

(i) NIR(K,Rn) = RO(K,Rn) = 1
2DCSD(K).

(ii) If s0 /∈ Ic(K), then there exists a, b such that s0 ∈ [a, b], γ([a, b]) is a
CLC( supκ(γ))-curve where the line segment has positive length and contains γ(s0),
and each circular part has at most π radians angle ending at a point of Ic(K).

Durumeric [6] Corollary 2: Let K be a union of finitely many disjoint C1,1

simple closed curves in Rn. If K is a relative minimum for `e and curvature of
K is not identically constant RO(K)−1, then the thickness of K is 1

2DCSD(K).
Equivalently, if there exists a relative minimum K for `e such that 1

2DCSD(K) >
RO(K) = Fk(K), then K must have constant generalized curvature Fk(K)−1.

Markov [12], Dubins [4] and Reeds and Shepp [14] studied the 2−dimensional
cases for Problem 2. In dimension 3, the following results of H. Sussmann obtain
the possible types solutions for this problem. A helicoidal arc is a smooth curve
in R3 with constant curvature 1 and positive torsion τ satisfying the differential
equation τ ′′ = 1.5τ ′τ−1 − 2τ3 + 2τ − ζτ |τ |1/2 for some nonnegative constant ζ.

Sussmann [15] Theorems:
1. For the Markov-Dubins problem in dimension three, every minimizer is

either (a) a helicoidal arc or (b) a concatenation of three pieces each of which is
a circle or a straight line. For a minimizer of the form CCC, the middle arc has
length ≥ π and < 2π.
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2. Every helicoidal arc corresponding to a value of ζ such that ζ > 0 is local
strict minimizer.

Sussmann further proves that CSC-conjecture (every minimizer is either CCC
or CLC, [14]) is false in R3: [15] Propositions 2.1 and 2.2. In [15], the details of
the steps of the proof of Theorem 1 (of Sussmann) are provided, but there are only
few remarks about proof of its Theorem 2.

The main result of this article is Theorem 1 below which shows the nonexistence
of a relative minimum K for `e with 1

2DCSD(K) > Fk(K), in all cases in certain
dimensions, including constant curvature cases. Only Corollary 1 invokes Theorem
1 of Sussmann [15]. The remaining results and proofs of this article including
Theorem 1 and [6] are independent of Sussmann [15], especially since they are not
restricted to dimension 3.

Theorem 1. Let n be a dimension such that (i) every minimizer for the
Markov-Dubins problem in Rn is either a smooth curve with curvature 1 and pos-
itive torsion, or a C1−concatenation of finitely many circular arcs of curvature 1
and a line segment, and (ii) every CCC−curve with the middle arc of length < π is
not a minimizer. Then, NIR(K,Rn) = 1

2DCSD(K) for every relative minimum
K of `e where K is a union of finitely many disjoint C1,1 simple closed curves in
Rn.

Corollary 1. Let K be a union of finitely many disjoint C1,1 simple closed
curves in R3. If K is a relative minimum of `e, then NIR(K,R3) = 1

2DCSD(K).

2. Definitions and Notation

We assume all parametrizations γ : D→ K ⊂ Rn are one-to-one and ‖γ′‖ 6= 0.

Definition 2. expNp v = p+ v : NK → Rn is the normal exponential map of
K in Rn. The thickness of K in Rn or the normal injectivity radius of expN is

NIR(K,Rn) = sup({0}∪{r > 0 : expN : {v ∈ NK : ‖v‖ < r} → Rn is one-to-one}).

Equivalently, if γ(s) parametrizes K, then

r > NIR(K,Rn)⇔

 ∃γ(s), γ(t), q ∈ Rn,
γ(s) 6= γ(t), ‖γ(s)− q‖ < r, ‖γ(t)− q‖ < r, and

(γ(s)− q) · γ′(s) = (γ(t)− q) · γ′(t) = 0

 .

Definition 3. For γ : I → Rn, define:

Dilation : dilαγ′(s, t) =
](γ′(s), γ′(t))
`(γ([s, t]))

for s 6= t

(Generalized) Curvature : κγ(s) = κ(γ)(s) = lim sup
t 6=u and t,u→s

dilαγ′(t, u)

Analytic focal distance : Fk(γ) = (sup
I
κγ(s))−1.

If K is a union of finitely many disjoint C1,1 curves γ(i) in Rn, then Fk(K) =
mini Fk(γ(i)).
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Definition 4. Let K be a finite union of disjoint C1 curves in Rn. For any
v ∈ UTRn

p and any r > 0, define

(i) Op(v, r) = {x ∈ Rn : ∃w ∈ Rn, v · w = 0, ‖w‖ = 1, ‖x− p− rw‖ < r}
(ii) Ocp(v, r) = Rn −Op(v, r)
(iii) Op(r;K) = Op(v, r) where v ∈ UTKp

(iv) O(r;K) =
⋃
p∈K

Op(r;K)

In all of the above, r may be omitted when r = 1. K will be omitted unless
there is an ambiguity.

Definition 5. Let K be a finite union of C1 curves in Rn. Define
(i) The ball radius of K in Rn to be RO(K,Rn) = inf{r > 0 : O(r;K) ∩K 6= ∅}
(ii) The pointwise geometric focal distance to be
Fg(p) = inf{r > 0 : p ∈ Op(r;K) ∩K} for any p ∈ K,
and the geometric focal distance to be Fg(K) = infp∈K Fg(p).

Definition 6. A pair of distinct points p and q in K are called a double critical
pair for K, if the line segment pq is normal to K at both p and q. The double critical
self distance is

DCSD(K) = inf{‖p− q‖ : {p, q} is a double critical pair for K}.

A double critical pair {p, q} is called minimal if DCSD(K) = ‖p− q‖ .

3. Review of Some Basic Tools

K denotes a union of finitely many disjoint C1,1 simple closed curves in Rn

and γ : D → K ⊂ Rn denotes a one-to-one non-singular parametrization, where
D =

⋃k
i=1S

1
(i), a union of k copies of disjoint circles, unless stated otherwise. When

‖γ′‖ ≡ 1 is assumed, S1
(i) are taken with the appropriate radius and length. A

knot or link class [θ] is a free C1 (ambient) isotopy class of embeddings of γ :
D → Rn with a fixed number of components. Since all of our proofs involve local
perturbations of only one component at a time, we will work with γ(i) : S1

(i) →
Rn and we will omit the lower index (i) to simplify the notation wherever it is
possible. We will identify S1 ∼= R/LZ, for L > 0, and use interval notation to
describe connected proper subsets of R/LZ. In other words, γ(i)(t + L) = γ(i)(t)

and γ′(i)(t + L) = γ′(i)(t), ∀t ∈ R with
∥∥∥γ′(i)∥∥∥ 6= 0 and γ(i) is one-to-one on [0, L).

See [6] Section 4 for proofs of the following propositions that will be used in this
article.

Definition 7. For any γ : D → K ⊂ Rn, one defines the ropelength or
extrinsically isoembolic length to be `e(γ) = `e(K) = `(K)

Ro(K) = vol1(K)
NIR(K,Rn) .

Lemma 1. Let γ : D → K ⊂ Rn be a C1 knot or link. (i) If DCSD(K) > 0,
then there exists a critical pair {p0, q0} such that DCSD(K) = ‖p0 − q0‖ . (ii) If
supκγ <∞, i.e. γ is C1,1, then DCSD(K) > 0.
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Proposition 1. Let {γm}∞m=1 : D → Rn be a sequence uniformly converging
to γ in C1 sense, i.e. (γm(s), γ′m(s)) → (γ(s), γ′(s)) uniformly on D. Let Km =
γm(D) for m ≥ 1 and K = γ(D).

(i) ([2] Lemma 3, and [10]) If RO(Km) ≥ r for sufficiently large m, then
RO(K) ≥ r. Consequently, lim supmRO(Km) ≤ RO(K).

(ii) If lim infmDCSD(Km) > 0, then lim infmDCSD(Km) ≥ DCSD(K).

Definition 8. For γ : D→ K ⊂ Rn, (with γ′ 6= 0) define

Ic =
{
x ∈ D : ∃y ∈ D such that ‖γ(x)− γ(y)‖ = DCSD(K) and

(γ(x)− γ(y)) · γ′(x) = (γ(x)− γ(y)) · γ′(y) = 0}

}
Iz = {x ∈ D : κγ(x) = 0}

Imx = {x ∈ D : κγ(x) = 1/RO(K)}
Ib = {x ∈ D : 0 < κγ(x) < 1/RO(K)}

Let Kc = γc = γ(Ic), Kz = γz = γ(Iz), Kmx = γmx = γ(Imx) and Kb = γb = γ(Ib).

Proposition 2. ([2] Theorem 7, [7], [9]) For any knot/link class [θ] in Rn,
∃γ0 ∈ [θ] such that

(i) ∀γ ∈ [θ], 0 < `e(γ0) ≤ `e(γ), and hence
(ii) ∀γ ∈ [θ], (`(γ0) = `(γ) =⇒ RO(γ0) ≥ RO(γ)) .

Proposition 3. Let {γm}∞m=1 : D→ Rn be a sequence uniformly converging to
γ in C1 sense, K = γ(D) and Km = γm(D), such that ∃C <∞,∀m, supκγm ≤ C.

(i) Let A ⊂ D be a given compact set with {s ∈ D : γm(s) 6= γ(s)} ⊂ A,∀m. If
A ∩ Ic = ∅, then ∃m1 such that ∀m ≥ m1, DCSD(Km) ≥ DCSD(K).

(ii) If Fk(K) < 1
2DCSD(K) and Fk(Km) ≥ Fk(K),∀m, then ∃m1 such that

∀m ≥ m1, RO(Km) ≥ RO(K).

Proposition 4. (Also see [8] p4771 for another version for smooth ideal
knots.) Let K be a C1,1 relatively minimal knot or link for the ropelength `e.

(i) If DCSD(K) = 2RO(K), then K − (Kc ∪ Kmx) is a countable union of
open ended line segments, and hence Ib ⊂ Ic.

(ii) If DCSD(K) > 2RO(K), then K−Kmx is a countable union of open ended
line segments, (in fact ∅ by Theorem 2 of [6]).

4. Proof of Theorem 1

In dimension 3, the following coincides with the standard definitions except the
sign of the torsion. For a C3 curve γ : I → Rn, n ≥ 3, parametrized by arclength,
i.e. ‖γ′(t)‖ = 1, define

(i) T =γ′(t),
(ii) κ = ‖T′‖ , and if κ > 0, define N = 1

κT′,
(iii) τ = ‖N′ + κT‖ ≥ 0, and if τ > 0, define B = 1

τ (N′ + κT) .
This definition yields an orthonormal set {T,N,B} along γ, if both κ, τ > 0.

Proposition 5. Let K be a union of finitely many disjoint C1,1 simple closed
curves in Rn and K be a relative minimum of `e. If K has a component K0 which is
a C4 simple closed curve of positive torsion τ > 0 everywhere, then NIR(K,Rn) =
1
2DCSD(K).
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Proof. (i) First prove the statement for a connected K. Let γ : S1 → K ⊂ Rn

parametrizeK. Proposition holds if curvature of γ is not identicallyNIR(K,Rn)−1,
by [6] Corollary 2. By rescaling, assume that κγ ≡ NIR(K,Rn)−1 = 1.

N′ = −κT+τB =−T+τB

T ·N′ = −T′ ·N = −κ = −1

N ·N′′ =
1
2

(N ·N)′′ −N′ ·N′= −‖−T+τB‖2 = −(1 + τ2)(4.1)

Consider the variation γε(t) = γ(t) + εN(t) and Γε(t) = L
`(γε)γε(t). By Lemma 2

below,

d

dε
κΓε

∣∣∣∣
ε=0

(t) = γ′′(t) ·N′′(t)− 2γ′(t) ·N′(t) +
1
L

∫ L

0

γ′(u) ·N′(u)du

= N ·N′′(t)− 2T ·N′(t) +
1
L

∫ L

0

T ·N′(u)du

= −(1 + τ2) + 2 +
1
L

∫ L

0

− 1du(4.2)

d

dε
κΓε

∣∣∣∣
ε=0

(t) = −τ2(t) < 0(4.3)

Since K is compact and κΓε is a C2 function of t and ε, there exists ε0 > 0 such
that ∀ε ∈ (0, ε0),∀t ∈ S1, (κΓε(t) < 1). Hence, ∀ε ∈ (0, ε0), maxκΓε < 1 and
Fk(Γε) > 1 = Fk(K). Obviously, Γ1/m → γ in C1 sense, as m→∞. Suppose that
1
2DCSD(K) > Fk(K). Let Km = Γ1/m(S1). By Proposition 1(ii),

lim inf
m

1
2
DCSD(Km) ≥ 1

2
DCSD(K) > Fk(K) = 1.

For sufficiently large m,

1
2
DCSD(Km) > 1

Fk(Km) > 1

NIR(Km,Rn) > 1 = Fk(K) = NIR(K,Rn) (Thickness Formula)

`e(Km) < `e(K), since `(Km) = L = `(K)

This contradicts to the fact that K is relative minimum of `e.
Consequently, 1

2DCSD(K) ≤ Fk(K), that is NIR(K,Rn) = 1
2DCSD(K).

(ii) To prove this statement for K with two or more components, let K0 be a C4

simple closed curve component of positive torsion τ > 0 everywhere. By Corollary
2 of [6], the only remaining case is when all of K has constant curvature 1. Let
γ : S1 → K0 ⊂ Rn, and take the variation and rescaling Γε(t) = `(K0)

`(γε) γε(t) only
along K0 and leave the other components invariant. Let K∗m = Γ1/m(S1)∪(K−K0).
Obviously, K∗m → K in C1 sense. Repeat the same proof as in (i) until and including
“Suppose that 1

2DCSD(K) > Fk(K)”. By Proposition 1(ii),

lim inf
m

1
2
DCSD(K∗m) ≥ 1

2
DCSD(K) > Fk(K) = 1.
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For sufficiently large m,
1
2
DCSD(K∗m) > 1

Fk(K∗m) = Fk(K −K0) = 1 < Fk(Γ1/m)

NIR(K∗m,R
n) = 1 = Fk(K) = NIR(K,Rn) (Thickness Formula)

`e(K∗m) = `e(K), since `(K∗m) = L = `(K0)

Since K is a relative minimum of `e, K∗m is a relative minimum of `e, for suffi-
ciently large m. K∗m does not have constant maximal curvature 1 everywhere, since
maxκΓ1/m < 1. Hence, by [6] Corollary 2, 1 = NIR(K∗m,R

n) = 1
2DCSD(K∗m) for

sufficiently large m, which contradicts above. Consequently, 1
2DCSD(K) ≤ Fk(K),

that is NIR(K,Rn) = 1
2DCSD(K). �

Lemma 2. Let γ : [0, L] → Rn be be a C2−curve parametrized by arclength
with constant curvature 1: ‖γ′(t)‖ = ‖γ′′(t)‖ = 1 and let V : [0, L] → Rn be a C2

vector field along γ normal to γ, i.e. V (t) · γ′(t) = 0. Define γε(t) = γ(t) + εV (t)
and Γε(t) = L

`(γε)γε(t), where L = `(γ). Then,

d

dε
κγε(t)

∣∣∣∣
ε=0

= γ′′(t) · V ′′(t)− 2γ′(t) · V ′(t) and(4.4)

d

dε
κΓε(t)

∣∣∣∣
ε=0

= γ′′(t) · V ′′(t)− 2γ′(t) · V ′(t) +
1
L

∫ L

0

γ′(u) · V ′(u)du(4.5)

Proof. We include this elementary computation for the sake of completeness.
Recall that:

(4.6) κα = ‖α′′(α′ · α′)− α′(α′′ · α′)‖ ‖α′‖−4

(4.7)
d

dε

∥∥v0 + εv1 + ε2v2
∥∥k∣∣∣∣

ε=0

= k(v0 · v1) ‖v0‖k−2

γ′′ · γ′ = 0

‖γ′‖ = ‖γ′′‖ = κγ = 1

γ′ε(t) = γ′(t) + εV ′(t)

γ′′ε (t) = γ′′(t) + εV ′′(t)(4.8)

γ′′ε (γ′ε · γ′ε)− γ′ε(γ′′ε · γ′ε) = γ′′ + ε [V ′′ + 2γ′′(V ′ · γ′)− γ′(V ′′ · γ′)− γ′(γ′′ · V ′)] + o(ε2)

:= w0 + εw1 + o(ε2)(4.9)

(4.10)
w0 · w1 = γ′′ · [V ′′ + 2γ′′(V ′ · γ′)− γ′(V ′′ · γ′)− γ′(γ′′ · V ′)] = γ′′ · V ′′ + 2(V ′ · γ′)

d

dε
κγε

∣∣∣∣
ε=0

=
d

dε
‖γ′′ε (γ′ε · γ′ε)− γ′ε(γ′′ε · γ′ε)‖ ‖γ′ε‖

−4

∣∣∣∣
ε=0

= (γ′′ · V ′′ + 2(V ′ · γ′)) ‖γ′′‖−1 ‖γ′‖−4 − 4 ‖γ′′‖ ‖γ′‖−6 (V ′ · γ′)
= γ′′ · V ′′ + 2V ′ · γ′ − 4V ′ · γ′ = γ′′ · V ′′ − 2V ′ · γ′(4.11)
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This proves (4.4).

(4.12) Γε(t) =
L

`(γε)
γε(t) hence κΓε(t) =

`(γε)
L

κγε(t)

By using the usual First Variation Formula [3], we obtain (4.5):

d

dε
`(γε)

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

∫ L

0

‖γ′ε(u)‖ du =
∫ L

0

d

dε

∣∣∣∣
ε=0

‖γ′ε(u)‖ du

=
∫ L

0

‖γ′‖−1
V ′ · γ′du =

∫ L

0

V ′ · γ′du(4.13)

d

dε
κΓε(t)

∣∣∣∣
ε=0

=
`(γ)
L
· d
dε
κγε(t)

∣∣∣∣
ε=0

+
d

dε

`(γε)
L

∣∣∣∣
ε=0

· κγ(t)

= (γ′′ · V ′′ − 2V ′ · γ′) (t) +
1
L

∫ L

0

V ′ · γ′du(4.14)

�

Lemma 3. If there exists a C1,1 K parametrized by γ : S1 → K ⊂ Rn sat-
isfying both (i) K is a relative minimum of `e in Rn, and (ii) NIR(K,Rn) =
Fk(K) = 1 < 1

2DCSD(K), then ∃δ > 0 such that γ([a, b]) is a shortest curve in
C(γ(a), γ(b); γ′(a), γ′(b)) whenever `ab(γ) ≤ δ. This is also true for K with several
components.

Proof. By [6] Corollary 2, κγ ≡ 1. Reparametrize γ : S1 ∼= R/LZ → K ⊂
Rn, such that ‖γ′‖ = ‖γ′′‖ = 1, almost everywhere. Suppose that such δ > 0 does
not exist. ∀m ∈ N,∃am, bm ∈ S1 such that 0 < |am − bm| ≤ 1

m but γ([am, bm])
is not a shortest curve in C(γ(am), γ(bm); γ′(am), γ′(bm)). By Proposition 3 of [6],
there exists a shortest curve θm in C(γ(am), γ(bm); γ′(am), γ′(bm)). The C1 end
point data of θm and γ([am, bm]) match. Let γm be the C1 curve obtained from
γ by removing γ([am, bm]) and attaching θm in its place. Then, κγm ≤ 1, and
L− 1

m ≤ `(γm) < L = `(γ). Hence, it is possible to reparametrize γm uniformly with
a common domain S1 ∼= R/LZ, with ‖γ′m‖ ≤ 1 and ‖γ′′m‖ ≤ 1, almost everywhere,
for sufficiently large m. Hence, the convergence γm → γ can be taken uniformly
in C1-sense, by Arzela-Ascoli Theorem and taking a subsequence if it is necessary.
Let Km = γm(S1). By Proposition 1(ii),

lim inf
m

1
2
DCSD(Km) ≥ 1

2
DCSD(K) > Fk(K) = 1.

For sufficiently large m,
1
2
DCSD(Km) > 1

Fk(Km) = Fk(K) = 1

NIR(Km,Rn) = NIR(K,Rn) = 1

`(Km) < L = `(K)

`e(Km) < `e(K)

which contradicts relative minimality of K for `e. If K has finitely many compo-
nents, then at least one of the components of K contains infinitely many pairs
{γ(am), γ(bm)} specified as above, and the rest of the proof is the same. �
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Proof. (Theorem 1) Let n be a dimension such that (i) every minimizer for
the Markov-Dubins problem in Rn is either a smooth curve with curvature 1 and
positive torsion, or a C1−concatenation of finitely many circular arcs of curvature
1 and a line segment, and (ii) every CCC−curve with the middle arc of length < π
is not a minimizer.

First consider the case of a connected K. Suppose that there exists a rela-
tive minimum K of `e such that NIR(K,Rn) = Fk(K) < 1

2DCSD(K). Rescale
to obtain Fk(K) = 1. By [6] Corollary 2, K has constant generalized curvature
κ = 1. By Lemma 3, ∃δ > 0 such that ∀a ∈ S1, γ([a, a + δ]) is a shortest curve in
C(γ(a), γ(a+δ); γ′(a), γ′(a+δ)), where γ : S1 ∼= R/LZ→ K ⊂ Rn is a parametriza-
tion with respect to arclength. By the hypothesis (i), each γ([a, a+ δ]) is either (a)
a smooth curve with κ = 1 and τ > 0 or (b) a C1−concatenation of finitely many
pieces each of which is an arc of a circle or a line segment. Since κ = 1, there are
no line segments. Type (a) curves and type (b) curves do not have any curve in
common, even in part, since one type has τ > 0 everywhere and the other one has
concatenations of planar arcs of circles. γ([a, a + δ]) and γ([a + δ

2 , a + 3δ
2 ]) have a

common piece, and hence they must be of the same type. Inductively, we conclude
that either all of K is a smooth curve with positive torsion or a C1−concatenation
of finitely many circular arcs. Proposition 5 and Fk(K) < 1

2DCSD(K) exclude
the smooth case with τ > 0, and imply that K must be a concatenation of finitely
many circular arcs.

We will assume that two successive circular arcs have distinct centers, i.e. no
trivial concatenations. If any of the circular arcs of K has length π or more, one can
find 2 diametrically opposed points on it, forming a minimal double critical pair, and
NIR(K,Rn) = Fk(K) = 1

2DCSD(K) = 1 contradicting the initial assumption.
This leaves us the final case of C1−concatenations with circular arcs of length

< π. There must be at least 3 circular arcs in K. Consider a parametrization
γ : S1 → K with respect to arclength such that γ([0, a]) is a single maximal circular
arc of length a < π. For m sufficiently large, γ([− 1

m , a+ 1
m ]) is a CCC-curve such

that the middle arc has length a < π. By the hypothesis (ii), this type CCC-sections
of K are not minimizers in a corresponding C. Let U be an open set in C1 topology
such that γ ∈ U and `e(γ) ≤ `e(η),∀η ∈ U ∩ [γ]. When one replaces a non-minimal
CCC-section with a minimal curve in the same C, then a priori one can not assume
that the new curve is in U ∩ [γ], and one can not use relative minimality of K. Let
θm be any minimizer of C(γ(− 1

m ), γ(a+ 1
m ); γ′(− 1

m ), γ′(a+ 1
m )). Let γm be the C1

curve obtained from γ by removing γ([− 1
m , a+ 1

m ]) and attaching θm in its place.
Then, κγm ≤ 1 and L− (a+ 2

m ) ≤ `(γm) < L = `(γ) where L− a > 0 and L <∞.
Hence, for all sufficiently large m, it is possible to reparametrize γm with a common
domain S1 ∼= R/LZ, such that:

1. γm(− 1
m ) = γ(− 1

m ),
2. ‖γ′m‖ = 1, and ‖γ′′m‖ ≤ 1 almost everywhere, on [− 1

m , a+ 1
m ], and

3. ‖γ′m‖ ≤ c1 <∞, and ‖γ′′m‖ ≤ c2 <∞ almost everywhere, on S1 ∼= R/LZ.
Observe that (‖γ′(s)− γ′(t)‖ ≤ C |s− t| ,∀s, t ∈ I) if and only if ‖γ′′(s)‖ ≤ C

for almost all s ∈ I, and γ′ is absolutely continuous. By Arzela-Ascoli Theorem,
there exists a convergent subsequence (using the same indices), γm → γ0 converging
uniformly on S1 in the C1-sense.
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4. ‖γ′0‖ = 1 on [0, a],
5. κγ0 ≤ 1 on [0, a], since the inequality ‖γ′m(s)− γ′m(t)‖ ≤ |s− t| carries

to the limit: ‖γ′0(s)− γ′0(t)‖ ≤ |s− t| ,
6. γ0(0) = γ(0), and hence γ′0(0) = γ′(0), and
7. Since γm(tm) = γ(a+ 1

m ) for some tm ∈ (− 1
m , a+ 1

m ),
∃t0 ∈ [0, a] such that γ0(t0) = γ(a), and hence γ′0(t0) = γ′(a).

By

Proposition 1 of [6], the planar circular arc γ([0, a]) is the unique minimizer in
C(γ(0), γ(a); γ′(0), γ′(a)) which also contains γ0([0, t0]).

a = `(γ[0, a]) ≤ `(γ0[0, t0]) = t0 = lim(tm +
1
m

) ≤ lim(a+
2
m

) = a

Consequently, a = t0, γ|[0, a] = γ0|[0, a] and γ(S1) = γ0(S1) = K. Let Km =
γm(S1). By Proposition 1(ii),

lim inf
m

1
2
DCSD(Km) ≥ 1

2
DCSD(K) > Fk(K) = 1.

For sufficiently large m,

γm ∈ U ∩ [γ0] = U ∩ [γ]
1
2
DCSD(Km) > 1

Fk(Km) = Fk(K) = 1

NIR(Km,Rn) = NIR(K,Rn) = 1

`(Km) < L = `(K)

`e(Km) < `e(K)

which contradicts relative minimality of K. This shows the nonexistence of con-
catenations only with circular arcs of length < π. Actually, the existence of one
circular arc of length < π actually led to the contradiction. Since all cases lead
to a contradiction, one must have NIR(K,Rn) = 1

2DCSD(K). The extension to
several component case is straightforward, by Proposition 5, Corollary 2 of [6], and
the proof of the final case being a local argument. �
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