PROBLEM SET 9 — §3.1

Exercise 3.1.6: Recall that Euler’s formula tells us that if u;,us € 7, M are the principal vectors at a
point p € M, with respective curvatures k; and kg, and if T,M > u = cosf - u; +sinf - uy, then:

E(u) = cos? 0 -k +sin? 6 - ky
(1): We claim the the mean curvature H at p is the average normal curvature at p, i.e. that H =

L f% k(@) df. This claim follows from the computation:
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(2): Suppose T,M > vi,vs with vi L vo. We claim that H = 3 (k(v1) 4+ k(v2)). To see this, let ¢ be such
that vi = cos ¢ - uj 4 sin ¢ - us, where u; and uy are the principal directions as above, again with respective
curvatures k1 and k3. Then we may assume that vo = cos (gi) + %) u; +sin (qS + g) us. (The other possibility
would be with ¢ — 5, but then we could switch the indices of v; and vz and choose a new ¢ for our relabeled
v1, giving vo as above.) Now by Euler’s formula, we have:
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Exercise 3.1.7: We know that K and H are given in terms of the principal curvatures ki > ko by:
k1 + ko
2

K = k‘lk‘Q and H =

We claim inversely that the principal curvatures are given by:

=H++vVH?-K and ko=H—-+VH?-K

This follows from the computations:
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Exercise 3.1.9: Recall from Exercise 2.2.14 that for a cylinder ¢(u,v) = (Rcosu, Rsinu,v), the shape
operator satisfies:

1
S(dy) = —Eqﬁu and S(¢y) =0
and is therefore given with respect to the ¢,,, ¢, basis by

[

0 0
Hence, we have principal curvatures k1 = 0 and ko = —% with Gauss and mean curvatures given respectively
by:
k1 + ko 1
K=k k=0 d H= = —
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The fact that K = 0 means that the cylinder is flat, while the fact that H # 0 means that the cylinder is
not minimal.

Exercise 3.1.10: Suppose that M is minimal, i.e. that at each point p € M the principal curvatures ki, ko
satisfy 0 = H = %(kzl + ko), hence k; = —ko. It immediately follows that at each point we have:
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K="k ky=(—ko) ky=—ky <0

Thus, a minimal surface must everywhere have nonpositive Gaussian curvature.

Exercise 3.1.11: We claim that the sphere of radius R has Gaussian curvature K = %. We will show this
two ways.

First, recall from Exercise 2.2.13 that the shape operator satisfies S(¢,) = —% - ¢, and S(¢y,) = —% - b,
and is therefore given with respect to this basis by:

g {—10/}% _10/R]

Hence, K equals the determinant of this matrix: K = %.

Alternatively, consider that the Gauss map G : M — S? from the sphere of radius R to the unit sphere is
=52
given by G : p — p/R. That is, G is just radial projection of the R-sphere to the unit sphere, sending any
region of the R-sphere to the corresponding region of the unit sphere. Note in particular that for any region
U on the R-sphere, the percentage of the area of the R-sphere which U occupies will equal the percentage of
area that its image occupies on the unit sphere. Since the area of the R-sphere is 47 R? while the area of the
unit sphere is 4, it follows that the Gauss map will send an arbitrary region U of area A on the R-sphere
to a region G(U) of area % on the unit sphere. Hence:
Area(G(U)) 1
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