PROBLEM SET 9 - §3.1

Exercise 3.1.6: Recall that Euler's formula tells us that if $\mathbf{u}_1, \mathbf{u}_2 \in T_p M$ are the principal vectors at a point $p \in M$, with respective curvatures k_1 and k_2 , and if $T_p M \ni \mathbf{u} = \cos \theta \cdot \mathbf{u}_1 + \sin \theta \cdot \mathbf{u}_2$, then:

$$k(u) = \cos^2 \theta \cdot k_1 + \sin^2 \theta \cdot k_2$$

(1): We claim the the mean curvature H at p is the average normal curvature at p, i.e. that $H = \frac{1}{2\pi} \int_{0}^{2\pi} k(\theta) d\theta$. This claim follows from the computation:

$$\frac{1}{2\pi} \int_{0}^{2\pi} k(\theta) \ d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} k_1 \cos^2 \theta + k_2 \sin^2 \theta \ d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} k_1 (1 - \sin^2 \theta) + k_2 \sin^2 \theta \ d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} k_1 + \sin^2 \theta (k_2 - k_1) \ d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} k_1 + \frac{1}{2} (1 - \cos 2\theta) (k_2 - k_1) \ d\theta$$
$$= \frac{1}{2\pi} \left[k_1 \theta + \frac{k_2 - k_1}{2} \left(\theta - \frac{\sin 2\theta}{2} \right) \right]_{0}^{2\pi}$$
$$= \frac{1}{2\pi} \left[2\pi k_1 + \frac{k_2 - k_1}{2} \cdot 2\pi \right]$$
$$= k_1 + \frac{k_2 - k_1}{2}$$
$$= \frac{k_2 + k_1}{2}$$
$$= H$$

(2): Suppose $T_p M \ni \mathbf{v}_1, \mathbf{v}_2$ with $\mathbf{v}_1 \perp \mathbf{v}_2$. We claim that $H = \frac{1}{2} \left(k(\mathbf{v}_1) + k(\mathbf{v}_2) \right)$. To see this, let ϕ be such that $\mathbf{v}_1 = \cos \phi \cdot \mathbf{u}_1 + \sin \phi \cdot \mathbf{u}_2$, where \mathbf{u}_1 and \mathbf{u}_2 are the principal directions as above, again with respective curvatures k_1 and k_2 . Then we may assume that $\mathbf{v}_2 = \cos \left(\phi + \frac{\pi}{2}\right) \mathbf{u}_1 + \sin \left(\phi + \frac{\pi}{2}\right) \mathbf{u}_2$. (The other possibility would be with $\phi - \frac{\pi}{2}$, but then we could switch the indices of \mathbf{v}_1 and \mathbf{v}_2 and choose a new ϕ for our relabeled \mathbf{v}_1 , giving \mathbf{v}_2 as above.) Now by Euler's formula, we have:

$$\frac{k(\mathbf{v}_1) + k(\mathbf{v}_2)}{2} = \frac{1}{2} \left[\left(\cos^2 \phi + \cos^2 \left(\phi + \frac{\pi}{2} \right) \right) k_1 + \left(\sin^2 \phi + \sin^2 \left(\phi + \frac{\pi}{2} \right) \right) k_2 \right]$$
$$= \frac{1}{2} \left[\left(\cos^2 \phi + \left(-\sin \phi \right)^2 \right) k_1 + \left(\sin^2 \phi + \cos^2 \left(\phi \right) \right) k_2 \right]$$
$$= \frac{1}{2} \left[k_1 + k_2 \right]$$
$$= H$$

Exercise 3.1.7: We know that K and H are given in terms of the principal curvatures $k_1 \ge k_2$ by:

$$K = k_1 k_2 \qquad \text{and} \qquad H = \frac{k_1 + k_2}{2}$$

We claim inversely that the principal curvatures are given by:

$$k_1 = H + \sqrt{H^2 - K}$$
 and $k_2 = H - \sqrt{H^2 - K}$

This follows from the computations:

$$H + \sqrt{H^2 - K} = \frac{k_1 + k_2}{2} + \sqrt{\frac{k_1^2 + 2k_1k_2 + k_2^2}{4}} - k_1k_2$$

= $\frac{k_1 + k_2}{2} + \frac{1}{2}\sqrt{k_1^2 - 2k_1k_2 + k_2^2}$
= $\frac{1}{2}\left(k_1 + k_2 + \sqrt{(k_1 - k_2)^2}\right)$ and now because $k_1 \ge k_2$:
= $\frac{1}{2}\left(k_1 + k_2 + (k_1 - k_2)\right)$
= k_1

and similarly

$$H - \sqrt{H^2 - K} = \frac{k_1 + k_2}{2} - \sqrt{\frac{k_1^2 + 2k_1k_2 + k_2^2}{4}} - k_1k_2$$
$$= \frac{k_1 + k_2}{2} - \frac{1}{2}\sqrt{k_1^2 - 2k_1k_2 + k_2^2}$$
$$= \frac{1}{2}\left(k_1 + k_2 - \sqrt{(k_1 - k_2)^2}\right)$$
$$= \frac{1}{2}\left(k_1 + k_2 - (k_1 - k_2)\right)$$
$$= k_2$$

Exercise 3.1.9: Recall from Exercise 2.2.14 that for a cylinder $\phi(u, v) = (R \cos u, R \sin u, v)$, the shape operator satisfies:

$$S(\phi_u) = -\frac{1}{R}\phi_u$$
 and $S(\phi_v) = 0$

and is therefore given with respect to the ϕ_u, ϕ_v basis by

$$S = \begin{bmatrix} -1/R & 0\\ 0 & 0 \end{bmatrix}$$

Hence, we have principal curvatures $k_1 = 0$ and $k_2 = -\frac{1}{R}$ with Gauss and mean curvatures given respectively by:

$$K = k_1 \cdot k_2 = 0$$
 and $H = \frac{k_1 + k_2}{2} = \frac{1}{-2R}$

The fact that K = 0 means that the cylinder is flat, while the fact that $H \neq 0$ means that the cylinder is not minimal.

Exercise 3.1.10: Suppose that M is minimal, i.e. that at each point $p \in M$ the principal curvatures k_1, k_2 satisfy $0 = H = \frac{1}{2}(k_1 + k_2)$, hence $k_1 = -k_2$. It immediately follows that at each point we have:

$$K = k_1 \cdot k_2 = (-k_2) \cdot k_2 = -k_2^2 \le 0$$

Thus, a minimal surface must everywhere have nonpositive Gaussian curvature.

Exercise 3.1.11: We claim that the sphere of radius R has Gaussian curvature $K \equiv \frac{1}{R^2}$. We will show this two ways.

First, recall from Exercise 2.2.13 that the shape operator satisfies $S(\phi_u) = -\frac{1}{R} \cdot \phi_u$ and $S(\phi_v) = -\frac{1}{R} \cdot \phi_v$, and is therefore given with respect to this basis by:

$$S = \begin{bmatrix} -1/R & 0\\ 0 & -1/R \end{bmatrix}$$

Hence, K equals the determinant of this matrix: $K = \frac{1}{R^2}$.

Alternatively, consider that the Gauss map $G: \underbrace{M}_{=S_R^2} \to S^2$ from the sphere of radius R to the unit sphere is

given by $G: \mathbf{p} \mapsto \mathbf{p}/R$. That is, G is just radial projection of the R-sphere to the unit sphere, sending any region of the R-sphere to the corresponding region of the unit sphere. Note in particular that for any region U on the R-sphere, the percentage of the area of the R-sphere which U occupies will equal the percentage of area that its image occupies on the unit sphere. Since the area of the R-sphere is $4\pi R^2$ while the area of the unit sphere is 4π , it follows that the Gauss map will send an arbitrary region U of area A on the R-sphere to a region G(U) of area $\frac{A}{R^2}$ on the unit sphere. Hence:

$$|K| = \frac{\operatorname{Area}(G(U))}{\operatorname{Area}(U)} = \frac{1}{R^2}$$